X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

study of the Knowledge Contained in
Software Components’ Identifiers”

Nicolas Anquetil
Visiting Professor
COPPE Universidade Federal do Rio de Janeiro
C.P. 68511, Cidade Universitaria
RJ, 21945-970. Braxil
(55) (21) 590-2552 x.334

nicolastcos.ufrj.br

Abstract

Maintaining old software, designed with obsolete methods, and poorly struc-
tured, is a knowledge intensive and difficult task. To help in this task, Reverse
Engineering seeks to offer tools and analysis techniques that will help creating an
abstract representation (a model) of a software system. We believe that one should
take advantage of any available source of information to help in this task and know
precisely what each source has to offer.

In this paper we study the knowledge contained in the name of software com-
ponents. Such study is needed to ascertain if this knowledge could be of use for
Reverse Engineering, and to perform what activity? Our conclusions are that there
is certainly interesting information to be extracted from identifiers, but that alone

they may not be sufficient, and other sources, such as contments, would provide a
welcome help.

Keywords: Reverse En gineering, vocabulary analysis, program comprehension, concept
extraction

1 Introduction

As valuable software gets older, it becomes increasingly difficult to maintain and evolve.

M_B.&nwhile the fact that such software still exists is a proof that it is successful and
ortant to the organizations that keep it. The purpose of Reverse Engineering is to
P software engineers understand, reorganize and evolve such software.

tmmm En_giut‘erinq n, deﬁlbled as “the pf{)m of analyzing a 2.511}’)j£!t'1: syst_nm “jt.h

and, (2) Iln I-mnd: (1) to 1dcn‘r.|fy the system’s cc?mponcms and their 111[-01‘{'01&1.[0!15}.11[)5:
' O create representations of the system in another form or at a higher level of

*This work is g i i i
4 s sponsored by a grant from the Fundacao de Am & Pesquisa do Estado do Rio d
Janeiro (FAPER 1) 3 o P .

B

85

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

abstraction™ [22]. It is a knowledge intensive task that requires knowledge aboug
application domain (e.g. what function does the system perform? For who?), sof ;
engineering domain (e.g. knowledge of the programming language used). computer
ence (e.g. speed optimization using register), common sense (e.g. a comment inside tf
body of a routine describes a particular operation and not the routine as a whole), o

We have long advocated that the issue of what information one uses to do revers
engineering is a fundamental one. The majority of the works consider the code as
sole source of information, but this is not enough and a new trend in Reverse Eng
ing seems to combine information coming from other sonrces, including documen
comments or identifiers. We believe that, under certain conditions, these new s
allow to extract more abstract coneepts, casier to understand for the software engi
maintaining the code.

But there are still some issues pending:

e To what extent do these sources of information, not related to the code, repre
the actual state of a system?

e How can this information help us doing reverse engineering?
* What kind of information can we expect to find there?
e Is this information any better from what we find in the source code?

We will not answer all these questions here, some of them have already heen tre
in other works and we will come back to these in section 5 (related works). We
essentially discuss the third question and briefly comment on the last one. In order
do this, we have conducted an experiment on the Mosaic system, where all its identifi
were decomposed into words and the resulting vocabulary analyzed. In this paper,
will discuss some conclusions that we draw from this study.

The organization of the paper is the following: First, we will discuss the cho
source(s) of information for reverse engineering. Then, in section 3 we describe
experiment we conducted on Mosaie. Section 4 disensses some aspeets of the n
obtained. Finally, we present the related works and our conclusions.

2 Sources of Information for Reverse Engineering

One of the traditional hypothesis of Reverse Engineering is that the documentation o
legacy software systems is either absent or obsolote. Tn this context, the sole source
information has often been the code (3], for example, considering interaction betw
routines, or uses of global variables and nser defined types. However, this source 0
information is intrinsically at a very low abstraction level boeause it is directed towart
automatic tools (e.g. compilers). The code contains much noise and details that are i
evant to the general understanding of the svstem. One of the major difficulty in Re
Engineering is to bridge the gap between the code and significantly abstract concep
from the application domain. This is known as the “concept assignment. problem”
An example of this problem, proposed by Biggerstaff, is to consider the fundamental
between the concept of “reserving an airline seat” and the code “if (seat=roquest(flight))
&& available(seat) then reserve(seat,customer)” . '

86

X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

To try to solve this difficult problem, & new trend in Reverse Engit‘wt‘.r‘iug combines
. at.-ion coming from various sources, including the "rin(‘um{‘mar.mr.a {mmm:-nrsi,
Wm or external documentation). We classify a source of information as formal
it 'cbnsi;its of information that has direet impact on, or is a direct consequence of,
f&wﬂ“"““ svstem’s behavior. For example, using information on routine calls is tonna}l
boca : use if we change a routine call in the code, we should expect a change in the system’s
behavior. Reciprocally, we define as non-formal, a source of information t-llflf- has no dp‘oct
influence on the system’s behavior. A typical example would be L[}n naming of mm.lflr‘s.
5@@ changing the name of a routine has no impact on the I'}r.‘ha.\'mr of a system. I\()n-
m,_] sources of information have been used recently by various researchers [3, 4, 7].
As an information intended for software engineers, such non-formal hs«nnrres .‘ihl:)ﬂ[{l
allow to extract more abstract concepts, [!EISiL‘.I‘ to lIn(]l:‘I‘h‘-T-Flll(l to the nm.l'nt:un.nm ‘fl l]‘l(‘
mde Ultimately, the use of these sources of information for reverse engineering lies in

three hypotheses:

» Docnmentation exists in some form.

e Documentation contains information related to the semantics of the software de-
seribed.

* Documentation refers to abstract concepts that can help in solving the concept
assignment problem.

 These hypotheses are not true for all systems and we will now diseuss their probability
in real cases.

2.1 Documentation Exists

There are legacy software systems with absolutely no documentation whatsoever., We
already said that traditionally external documentation is considered absent or irrelevant
i Reverse Engincering. There are also cases where not even source code is available.

However there is a limit to what automatic tools can do and no significantly abstract
information can be extracted from such systems. Most works in Reverse Engineering
consider more favorable conditions, where the systems exhibit some minimal amount
of organization (e.g. structured programming, object oricnted code) or documentation
(eg. presence of comments, use of significant identifiers). We will only consider cases
m there is some sort of “documentation”, We refer here to comments and identifiers
(mames of types, variables, funetions, ete.). This hypothesis is reasonable in that it
actually corresponds to many real world legacy software systems as witnessed by various
Reverse Engineering researchers [4,6, 7, 8, 16].

2.2 Documentation Relates to Semantics

The second hvpothesis is the most important one: We can only hope to use informal
of information if they have some link with what the system is actually doing.
P example, Sneed reports extreme cases where identifiers were the names of people

Iy — T — : . s
Note thay, iy, [12], Gannod and Cheng give another definition of formality and informality Lased on
15e 01 not, of Formal Mothods and Formal Languages (e [11, 13]).

87

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

important to the software developers such as their girlfricnds or favorite sportsmey [9
Obviously in such cases, non-formal sources of information would he of no use. P

Anquetil [3] had a better experience with a 15 vear old legacy telecommuni
software and, for example, found that file naming convention plaved a significant
its organization. Our position is that, it scems unlikely that organizations can sucees
maintain huge software systems for years with constantly renewed maintenance _
without relying on some kind of structuring technique. Reliable comments and ide
is one such possible structuring technique. By reliable, we mean that the concepts
in these sources of information are related to the software components’ semantj
describe and can help understand the purpose of these software components,
studies agree to some degree with our position [4, 7, 8]

This issue is also dealt more scientifically with in [1]. It presents an experi
to test the reliability of identifiers of structured types and fields with regard to ¢
definition. The experiment showed that, for the legacy system studied. the st t
types’ identifiers significantly relate to the types’ definitions. This property is only
“locally” and not over the entire system (~ 2 MLOC). There are different for:
“locality”, but one can think of it as sub-systems: Inside a sub-system, the identifie
fields and structured types are related to their definitions. This property has been
by others [14] to extract, sub-systems using similaritios between identifiors contained
source files.

We suppose that if fields and structured types identifiers are significant, other soft
components like variables or functions will share the same property. It scems unlikely
software engineers would pay particular attention to types naming and use comyp
incohierent. function or variable names. The same experiment. has been conducted on
system we will study here and the results are similar.

.

2.3 Documentation Contains Important Abstract Concepts

The last issue is whether the concepts referred to in the “documentation” can help in
reverse engineering process. This is the focus of this paper. This issue is not exactly th
same as the previous one. We just described how we verified that the software compo
identifiers were related to their definitions, but this does not mean that the identif
refer to abstract, concepts of interest,

However, precisely establishing the level of abstraction of a concept, would be a
ficult if not impossible task. We will use an ad hoe scale with two lovels of abstra ;
application domain level and computer science level. This is clearly not enough
further studies should be devoted to this issue.

In our scale, application domain concepts are the most abstract, they could
plane, reservation, seat, passenger, or account, bank, client, stock exchange, ete.
expect computer science domain concepts to be of a lower abstraction level because
would be more related to the implementation. These conld be coneepts like linke
array, pointer, file, memory, ete.

We have few evidences to back up our scale. However, we considered that appros
such as cliché recognition [17, 18, 23, 25] are able to discover programming clichés (
dling of a counter, insertion of an element. in a list), but, to our knowledge, no
considers application domain cliché. It is not even clear whether such application
main clichés could be defined. Therefore, it scems reasonable to consider that

88

Y1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

Jing coucepts arc at a lower level of abstraction than the application domain

The notion of importance of the concepts is a topic different from their l(f\-’nl of ab-
; som. It should normally depend on the task at hand. F‘c.1r SOme T,T‘!.."ikﬁ. mlport.?!.m.
Tt nav not be the most abstract ones. For example, if we realize ‘r.lia'r‘ the in-
o m},f a software system are very slow, the important concepts to find out why,
:Fgoult;pumlmml to the computer science domain. Nevoertheless, for this first study of
Wumkuﬁt of concepts we can find in our informal sonrces of information, we will consider
M the important concepts are the most ;1hﬁT.mct. ones.
, Tm. next section will deseribe the experiment we conducted to evaluate to whar

o :
! BtS in the “documentation™ are abstract concepts,
;W. CONCepts found in

3 The experiment

We will be working with the Mosaic system [l-")] for which we already have the needed
.ﬁm This system is a well accepted workbench for reverse engineering rnﬁcmrt:.h. It is
'-rml:ably old (code dates from 1991 1o 1994), it is not a toy program (=140 KLOC of
C code, in more than 380 files), and was developed by various persons. Other, larger, de
facte workbenches exist, for example the gee compiler (460 KLOC) or the Linux kernel
(600 KLOC). We do think that reverse engineering experiments, as a rnle, should be
perfor on systemns in the range of a million lines of code to present some significance,
howaever for this first study, which essentially consisted in manunal work, we wanted to limit
the work to some reasonable amount. The extraction and classification of the concepts
alveady representod four man/days work.

The informal source of information we are working with is the set of identifiers found
in the source code: identifiers of variables, functions, types and macros (C code). These
identifiers can usually be casily decomposed into words following some simple rules such
as decomposing on “word markers” (any non alphabetic character such as the underscore
sign “"), or usage of upper and lower cases. Wo assumed that each word inside an
identifier denotos a potential abstract concept.

The experiment. consists in evaluating if this hypothesis is true and, when it is, with
what kind of concept. we are dealing. We will first present. the domain of knowledge we
considorod and thon the steps we followed to extract the concepts and elassify them into
the various domains.

82 The Domains of Knowledge

We will partition the set of concepts in three domains: the two domains of our abstraction
seale ((A)pplication domain, and (C)omputer science domain) and a (G)eneral domain
?hich will contain all the concepts we could not. classify in the two previous ones. We
eady: cited some possible examples of concepts belouging to the first. two domains,
Examples for the last. one conld be mathematical notions like “square root” and “absolute
value” | or references 1o actions comn wnly performed in computer science like read, write,
B and ser, qic.

The application domain is divided in a number of independent. sub-domains. The
unber of t]pse application sub~lomains is larger than we expected. We limited ourselves
10 fve sulHlnm;liuS. but actually identifi] more than that. Tﬁli‘:ﬁgg“f sub-domains

£ qméﬁtﬂa
wuto 48 inic

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

X1V SIM pOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

was based on the number of concepts they contained (we kept, the most. populated),

we extracted all the global identifiers from the Mosaic system, that is
; 2) ‘ . . _
five application sub-domains are: he first stop,

; : pes, fiunetions, and macros, The restriction to global i:lt‘ul.ilivrsl is
fihe mmblt‘-ﬁ-“‘-._ll.h(’;! are the data we already had available and it limits the size
- i nf-;q:‘?:w ﬁ-pﬂ;lf» more than 30 hours :ma.l_vzin;.: _t.hr- vm:abulnr}'): L

i Il at the beginning of this seetion, the ulcni.ihnrfa are nu.mumt.u:nlll_v. ‘ M:T””-
iy We then manually corrected this decomposition. This step raised some
e .':I'L\' Ir.lml. luu:m-uc part. of our vocabulary, Things like “printf” (for C
o ;Wi‘;'(')“ (also known as: I/0) raise the problem of deciding if they should

[UTeTS). el

wded “as is” » decompaosed.
. d::l(-;sr-::‘ (:‘fr LI:: l:xl)pli('la).himl domain(s), we also Iu.nl difficulties }vitl.l.: ,I]‘la.]‘l‘?(,-?f
i m vis. 1t was often diffienlt, 1o dJ;_‘mwr-.,-. the u:t-mu'ug of -s‘utr:h f.hlu:pi,:‘ :“{,:;m’
"3 .'[.whi('h appears to be “a” + “pdu”) or “vdara”. When we fonud '

e
]

(I)nterface: Everything dealing with the GUJ (e.g.: window, buttons, slide bars), ¢

playing images in the browser (e.g.: jpog, pixels), formating the text, of a web pg
for display or printing (e.g.: postseript,). '

(T)elecommunication: Everything dealing with the low level aspect, of the Ing,
(e.g.: socket, addresses, data-gram, connect, bind, port, protocol). This als
cludes concepts related to “DTM” a special language used in Mosaic 1o 1
complex data over the net.

(H)TML: Everything dealing with the HTML language such as URLs, anchors, v
littp, cookie, ote. !

(U)ser related features: High level concepts that concern directly the user like by

R - = o ok 7
!Jh' terminate this step by applying a standard stop list to remove some words as “the”,
mail, news, thread, article, telnet, ete, ;

\'d"gu", ete. The stop list comes from the Information R:ﬂtl.'l{‘\r‘ﬂ.] system]Sllna.t'ri [.'i(l;l
; general purpose stop list for english texts, a more specialized one should probably

(W)AILS: Everything that relates 1o the WAIS application. The Mosaic browses 1. For example, this stop list. eliminates all single letter words, inclnding the

ancestor of the current, web browsers and it included the ability to deal with
“concurrent” applications: WAIS and gopher. We found few things directly
to gopher and they were included in the user sub-domain. WAIS was a kind of _
wide web information retrioval experiment. (somehow like todays Yahoo, Altal
InfoSeek, ...). We found enough concepts to justify the creation of a sepa
application sub-domain. This sub-domain includes concepts referring to WAIS
wais), information retrieval (e.g.: hit, libraryOfCongross, informationRetriev
particular types of documents that WAIS could deal with (e.g.: bibtex, m
biology) .

ile (9] reports problems similar to ours, pﬂr’r.it:u]ar]{ mm.rnmi:'l‘g the t.lm:l'sur‘m’nf
or decomposing acronyms. He proposes a small ':ng'nnt.lm.l (m:!.u.lll,\ .mv‘.r-n.
) that he mannally applied to try to formalize his method. We applied G\.SIIHI]FI.I
ch in all the different steps of the concept extraction process. Coneerning the
decision of decomposing acronyvins the heuristics were:

& As proposed by Cimitile, we established a small list. of "ipm:i‘:.al strings” ‘f'llhfh "'-‘"i
b i acronyms we kept “as i8” (not decomposed). The “jpeg” acronym is a gooc
. example of this.

The interface and telecommunication sub-domains were a bit of a problem, since
would normally consider the GUT and management of internet. connections as part of th
computer science domain rather than the application domain. However, in the case ¢
web browser, they become parts of the application domain.
For the sake of brevity, we will rofor to all the domains by their fivst, lettor: capita
for the three main domains (A, C and G) and lower ¢ase for the five application sub
domains (i, t, b, u, and w). We will also sometimes refer 1o a coucept belonging #
domain X as an Xeconeept. For example “cookie” is an A-concept and more precisely a
li-concept.

"

~ ® Another small set of unknown acronyms woere also kept, “as is” for lack of knowledge

of their meaning (e.g. “apdu”).

® Finally, to try 10 deal with the hierarchical nature of the ctm:cr-.pt.s,"wn mn.mr.imf:s

decomposed an acronym and also kept it. “as is”, such that “colormap gam: "[‘.OII')I.‘ A

“map” and “colormap”. This allows us to recognize the concept; ";'s‘mp and its

© sub-concopts: “colormap” or “keviap”. Likewise, the concept: “key" has several
Sub-concopts such as “keymap” or “kevboard”.

® The majority of the acronyms were decomposed. This may actually be an error
and we now think that the list of special strings (first. heuristic) could have been
larger. We will come back to this point later in the discussion of the results.

3.2 Eztraction and Classification of Concepts

The procedure for extracting and classifying the concepts is the following: The next, step of the procoss consists in ausigning each werd to a concept. We also

0ok care of abbreviations in this step. After this step, nouns, adjectives, verbs and d.b-
¥iations are converted to standardized concepts, for example, the four words: “alloc”,
' 1, “allocator” and “allocation” were all converted to the same concept. '

vV we assigned each concept to a domain. Clearly our lmrl:c of nnderstanding of
goanh ATONY IS raisod problems here. Another difficulty was to decide for a clear border
bﬁ“’e&n the different, domains: border between G and C, betwean C and A, and hetween
: application sub-domains. We tried to structure our work along these lines:

1. Extract all identifiers from the SYSten.
2. Decompose extracted identifiers into words,
3. Assign each word to a concept.

4. Assign each concept to a domain,

90 91

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

- Concepts (with frequencies) -
Y=479; mosaic(n)=372; xm(i)=198; ink(i)=181; jpeg(i)=172;
— html(L)=479; mosaic(n)=372; xm(i)=198; ink(i) 81; | : i
e (;“"[[.)=163: xmx(i)=144; cei(t)=128; wais(w)=123; anchor(h)=108

® Assign a concept to the most specific domain, v

e Ounly consider the semnantics of the concept as used in the identifiers. We,
assigned a word to two concepts when it was used with two different, se
example, the word “address” can be the postal address of someone (G do
[P-address (t domain), an email address (1 domain), or an address in men
domain). b

= gor data=239; file=210; type=1T4; record=163; tag=135; string=122;
;mp:nﬂ’ class=120; function=108; table=101; id=100

- General
-

set=243; licader=208; text=176; size=172; list=170; document=163;
read=145; write=139; make=119; initial=117

* Assign unknown concepts (like abbreviations) to the most probable dora
the context. of use. For example, the apdu (or pdu) concept. is only used
from the WAIS library or from the file HTWAIS.c in the Mosaic source. §
don’t know what it means, we classified it as a w-conecept. This is clearly n
best. solution and more effort should be spent on discovering the reaning
ACTONYINS,

e
. 1: The 10 most frequent concepts in each top level domain with their
e frequency (number of software components where they appear).
—concepts, the sub-domain is indicated in parenthesis.

o Avcon

s one of the concepts thar exercise the definition of the border berween G and C
- We decided to classify it as a C-coneept. based on its use in the identifiers.
soly, “list” could have been a C-concept. We opted for the general domain be-
so it was mostly used in the general sense of list (e.g. “hotlist”, the ancestor of the
eurrent, bookmarks) rather than the more specific sense of linked-list, which would have
mnm clearly related to computer science. These two examples give an idea of the
culties one can face when classifying concepts.

In the next section we will propose some examples of concepts extracred
experiment. and their classification by domain (see Table 1). We also presents and
other results,

4 Discussion of some results

" As a minor point, one shonld note that although the identifiers are globally sig-

mﬂt in Mosaic, we did found a few strange examples such as: “been_here_before”,
Smodiere_we_are son”, “mo_been_here_before_huh_dad”, “dont_nuke_after_me” , ete,

As already stated, we are experiencing with the Mosaic systonn. We will first, pre
some general information about this system to try to give an idea of the CONTEXT 0
experiment. We will then diseuss some results:

Domain distribution for Mosaic

We will now start. the first of three discussions on the distribution of the concepts in the
M I this sub-section, wo will diseuss the overall distribution, we then study more
closely the distributions per classes of software components and per sub-systoms.
- The distribution of the concepts for the three domains is: A~ 23%, C~ 20% and
& BT%. Wo ware deceived by this result. According to our abstraction scale, abour
w‘h” toneepts are of an interesting abstraction level (A and C domains), and about a
qu are A-concopts which are the ones we judge the most abstract.,
- The high percentage of G-coneepts conld be a eonsequence of the experimental condi-
Hous and narmoly our decision to decompose most of the acronyms we found. An acronym
&,.er' which kept as a “spocial string” would be a C-concept, was decomposed in
" and “format”: a C-concept and a G-coneept. It is clear that many times, the
e SSification of an acronym is differont. from the classification of its composing words,
N therefore thiat, the decision of decomposing or not. as an impact. on the distribution
of the “oucepts. This impact should be quantified more procisoly.
this time, it is not clear whether the low pereentage of A-concepts that can be
Bin the identifiors is sufficient to help in solving the “concept assignment. problem”
4l in section 2). A significant effort. would have to be made to extract as many
omeepts a5 Possible from the identifiers. A possible research path could be to look for
S BALon coming from other sources such as comments or external docnmentation. We
SREe back 1o thiis issue in the section on relaved works.
© already mentioned that, in general, the concepts have a high repetition factor,

s for the entire svstem,

e decomnposed by “sub-systems” (directories in the source code), and,

o decomposed by software components’ classes (i.e. variables, types, fun
ACros).

4.1 Concepts Extracted

We found close to 6200 global identifiers from which we extracted about 2000 words:
normalization of the words into concepts, filtering with the stop list and classifica
the domains, we ended up with 1038 different. concepts. The first, remark we
make concerns this small number of concepts. Considering that there are close to
identifiers in Mosaic and that cach identifier contains on average 2.67 concepts, th
was a potential for more than 16000 possible concepts. Another way to see it is thi
in Mosaic, a concept, is repeated, on average, in almost, 16 global identifiers, This
good point. if one was to eluster software components based on the coneepts they
in common. This high repetition factor is not significantly impacted by the fact
we “duplicated” some acronyms by keeping them “as is” and decomposing them as W
There are to few such cases to have a significant, impact. .
We see the high repetition factor as a good point. It means identifiers are
“focused” on a few important. concepts, a conclusion that was not obvions a priori.
We present, in Table 1, examples of concepts extracted and their classification.
cepts “xm” and “xmx” relate to the X-Window system, they are i-concepts. Cor

92 93

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

XV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

| alS concepts are found mainly in the “WAIS/ir™ directory. There are almost
uone in the seven “Nosaie directories”.

procally, there is only one HTML concept, in the WAIS directories.

A good point. is that the A-concepts liave an even higher one: G == 12 software
nents per concepts, C = 19 and A ~ 23. As a consequence, although only 23¢
coneepts are from the application domain, 59% of the software COMPONCNLS contag
application domain concept. A-concepts are less numerous (than G-coneepts for g
ple), but each one is repeated more frequently. This higher repetition factor con
that clustering the software components based on the concepts they have in co
soe [2, 24]) would create groups (modules) representing prineipally application
concepts. Such clusters would be easier to understand for the software engineers,

As a final point, we will suggest thar, given its larger size, the general domain
be decomposed in sub-domains too. This could exhibit. interesting subsets of this
with important abstract coneepts. This would be an extension of our abstraction se

Hibjpeg” and “ibXmx" directories contain almost, exclusively interface con-
The first. is a library to manipulate iinages in JPEG format, and the second

tnlw” direetory has also a strong interface composition. It seems 1o be the
of the code responsible for parsing the web pages and displaying them. It also
s the browser’s window (displaying, resize, scroll bars, ere.)

tavo directories “libwww2™ and “sve” seem polyvalent as they contain concepts
many application sub-domains (including a few w-concepts). The first one is
responsiblo for managing all the modnles that can be inserted into Mosaic (FTP
iection, telnet connection, eompression utility, WAIS and Gopher clients, ete.),
il the second one is the main divectory of Mosaic which links everything together.

4.3 Domain distribution per Directories

To give an idea how antomatically extracted clusters of software COmMponents o
mapped to application domain concepts, we studied the directorios of Mosaic.
scribed in [2], the Mosaic system’s source files are organized in various directori
ean be considered as forming a reasonablo functional decomposition, whoere cach di
is a subsystem. There are two directories that are part of the WAIS system and §
which belong more directly to the Mosaic syster. Some of these (e.g. “libjpeg’
“libdtm”) seem to be third party directories that wore included inside Mosaic,
In Table 2, we present the coucept, distribution for each directories of the Mo
tem. The purpose of this study is to show how the directorios can he mappod to
of knowledge, which is a first step toward mapping cluster of software compoy
coneepts.

e “WAIS/Iib” directory is interesting in that it has alinost no A-concepts (worst,
centage of A-concept with only 7%) and few C-concepts (third worst, percentage
C-concepts with 20%). The small size of this dircctory could explain this outlicrs

wvior, but. it eonld also mark a property of this directory. We did not have time
‘Q.stnd)’ this issue more in depth.

distribution of the concepts for each directory does not specify explicitly its
i, however the mapping to application sub-domain docs provide a first, idea of what,
ity sowe of the directories implement. Oune must consider that directories are

Directories G C A it b ou ow level structures, usually automatically ereated clusters of software COMmpOnents
Mosaic 592 207 239 [} 31 21 20 27 smaller. This would simplify their mapping to sub-domains or even to concepts.
1 |
WAIS/ir 269 107 51 10 13 1 ¢ 21
WAIS/lib 11 3 1 0 0 0 0 1 Domain distribution per “Class” of Software Components
li.lix;:m u‘;{l' é? ;g ?{2) 1{,; i g g studied the ropartition of concepts in the domains for each indopendent “class”
lihllzt):n;\T: 181 61 T4 64 ,} 5 9 0 © component,, where there are four “classos” of software components: variables,
L . - . o
types and S,
libjpog 157 53 43 41 0 1 1 0 - e
. lib:lt!.l. 60 10 :23 l_'l 7 4 0 ﬂ Application Computer General
e 1 8 % 4 R1n o2 Worie— 5K D% — T
sre 7
“a) variable 29% 25% 47%
Table 2: Number of different concepts found in the identifiers of the 3 i type 27% 27% 47T%
directories of Mosaic. function 24% 20% 56%
¥ _macro 23% 21% 36%
One can observe some basic facts that give an idea of the interest. that such a do Table 3: Concept distribution by classes of software components.
decomposition could have for reverse engineering. We will not. consider here the
bution following the three main domains which offor fow interesting points. We w The o,
_ 4he coyg

briefly note that these distributions are quite different, from the svstem wide distribubl

% lusion (see Table 3) is that the repartition is similar to the system-wide
: ; . ; PO . tin . s
Cur interest. is going mainly on the application sub-domains. One can observe: for funetions

and macros. For variables and types, there are more A-concepts

94 95

pOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

_— -

) = ERSE . s eemation help us doing reverse engincering”
(= 28% of all concepts, approx. +3% from the system-wide distribution) and C-ge can this information help g I

(= 26%, approx. +6%) and less G-concepts (= 47%, approx. —10%).
This distribution gives the idea that variables and types behave similarly.
logical since variables and types are data-related. However, this does not coneur
past experiences (see for example [2]). Again more study is needed here. Note
similarity of functions and macros with the entire system distribution conld be : ‘on 2.2, we do not address the first question in this paper. Mauy
. : i . e section 2.2, wo 3 S5 1, SO i . Man
their large proportion among the software ¢ : 2 i 24() fInec 1 : : : CVOLS i ing, fi
Fi:r i M“tl tl:f 630;1 ::{l‘t::::rolfunlilmq:{i::j; * cnmpanents, (2800 Snotions 1 S s have uscd informal sources of information to do reverse mlglm'-r!'ﬂlllp,, for
d . . v LR . . H - 3 = 7
) .) - i steriord, that such a source of information has its
[t is interesting 10 note that data-oriented software components (variables [4, 7. 8. 14], :l 1:): ::ﬁ,l :' ::1:?“ :Tlir‘s 0{,[:‘. system. The issue was also specifically
. . . 3 ool actually relates to the semantics of the systeim. ' -
seem 10 be slightly more related to the application domain and computer sciencad sy reia e

Of course, it is difficult to derive significant conclusions from only one systerih : iolks also provide examples of how documentation can help us doing reverse

(question 2): It ranges from building a modularization of a sfﬁt,mu Ll 4], 1o
elasses from procedural code [8], to relating portions of code with sections (?l'
| documentation [4]. In this article, we did show (as a side issuc) how aur.mna:M-
et od groups of software components could be mapped to knowledge domains
ts, thus easing their interpretation. .

fon 3 was raised during this study, Works like [4] seem to answer positively to the
eause the authors actually nsed words found in identifiers to relate classes 1o
the documentation deseribing thern. This is eertainly not a definitive answer,

A-concepts found in identifiers sufficient. to help solving

G o - f
y Jow percentage o v
s lov b problem”?

s “concept assignment

ean we better decompose identifiers to antomatically extracts concepts?

5 Related Works

The closest. work is the ZEROIN experiment, [10] which analyzes the knowledgn
into a very short, program. Their are three categories of knowledge defined: dorn
edge, language (FORTRAN) knowledge and programuming knowledge. These cat
do not. map exactly with our top level domains. Their Domain knowledge is of
cation domain, their langnage and programming knowledge fit in our compute 5 3 : ey i -
domain, but they don’t explicitly mention a general domain. However, r.!::; ' only dfm‘ls With one gk of e eqnoyp a.qm:;,m:u‘mlt‘pmbl;‘.lr:. w;m."l:,:ls{.:;?::i:,l::
five “knowledge atoms” that are not related to any of their three knowledge ty R alfoncly known abstract; comoopts (Lo, SoctoRK'G} A COCHIETAEE

i i i - arnpl ¢ shich is XA stract concepts from the code, is
lack of more information, we will suppose that, these correspond to our general ample). The sccond part, ot hich i - axna.(‘t..abﬂtrw e kv ; 1
i red. We did perform this extraction, but it. was mainly a manual work w hich

Tac for large legacy software. A similar extraction method was used by Sayyad
Hs used words found in comments to help building (manually) an ontology of the
jion domain. This work could nullify question 3 by already proposing a solution if
were “no”. Comments could be used jointly with identifiers to provide more

Experiments Application Computer General Total
ZEROIN 80% (57) 85% (60) % (3) 71
Mosaic 59% (3614) 47% (2883) 7% (4589) 6128

Table 4: Number and percentage of “knowledge atoms” for our three dom _
in the Mosaic and ZEROIN experiments. ' _ [3] proposes a technique, using various sources of 'mfonm}t.mu. to decotipose
A : without word markers. This technique could be adapted to improve our current
e tion algorithm and thus solve point 4. Note that a possible nseful source of
Table 4 suminarize our results and those of the ZEROIN experiment. We do i in this case would again be the comments.
exactly what are the “knowledge atoms” considered in the ZEROIN program, in
they are global identifiers. Note that the sum of percentages in the table is gre
100% beeause many knowledge atoms cover more than one concept, in more
domain. L
One can see that the distributions are very different in these two cases. We b
that the small size of both the program (102 lines of code) and the problem for
make it non-typical. However, the fact that one (ZEROIN) is based on code
other (Mosaic) on words inside identifiers could also have an impact. This is
which would be very interesting to resolve.]
There are other, more remotely connected, works, We will mention them and
see how they could help in solving some of the problems identified in our disct
left. opened:

;onclusion and Future Work

APEr, we propose to use words contained in‘identifiers to help solve the “concept
et problem”, that is to say the problem of linking a portion of the code with
toneepts familiar to the software engincer. We explain that, in order to do this,
first. answor several questions, one of which is: What kind of knowledge can we
__ this soureo of information, and can it actually help in solving our problemn? This
We tried to answer here, with an experiment. where we study to what domain of
_lﬁ* the words contained inside identifiers pertain.
SEresult of the study was to highlight the fact that global identifiers, in the system
are highly “focused”. There are relatively fow concepts (1038) considering the
of identificrs (close to 6200y and the average number of concept. per identifier

1. To what extent do non-formal sources of information represent, the actual stab - We see it as a proof that identifiers contain few noise

a system”

96 97

X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

Another result is that, for the system studied, about 30% of the COUCEPES cong -ennces
the identifiers are of interest (following our definition) and about 23% are fromy '
cation domain. This result appears intuitively insufficient. 1o solve the CONCEPT ass]
problem, but it mnst be mitigated;

olas Anquetil and Timothy C. Lethbridge. Assessing the Relevance of Identifier
s in a Legacy Software System. In J. Howard Johnson Stephen A. MacKay,
¢ CASCON 98, pages 213-22. IBM Centre for Advanced Studies, Dec, 1998,

o [t could be a consequence of the experimental conditions and partie

2 ; Anqguetil and Timothy C. Lethbridge. Experiments with clustering as a
choice to decompose most of the acronyins found, thus generating many i

s pemnodularization method. In Working Conferenee on Reverse Engincering,

e We do not know what amount. of concept. would be needed to solve ﬂm 23 250. IEEE, IEEE Comp. Soc. Press, Oct. 1999,

assignment. problem. Various other works seem to show that there is ho

o ieolas Anquetil and Timothy C. Lethbridge. Recovering software architecture fom
the problem, therefore 25% of A-concepts may be cnough. i :

names of source files. Jowrnal of Softwure Muintenance: Research and Practice,

21,1999,

Antoniol, G. Caufora, and Andrea De lucia. Recovering code to documentation
5 in oo systems. In Working Conference on Reverse Engineering, pages 136 144,
. IEEE Comp. Soc. Press, Oct., 1999,

® The higher repetition factor of the A-concepts is also a good point. It
clustering methods based on the common concept found in identifiors y 1
application domain related cluster with higher probability. We bricfly she
the clusters extracted could be mapped to knowledge domain or coneo

An important, point of this research is to propose a possible direction for futy
which would be to try to combine information from the identifiers and from the cg
A new study, similar to this one but focused ou the comments would clarify

The most exciting ontcome of this study is actually the mimber of new ¢
research problems it opens:

d J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster, Program Undor-
ding and the Concept. Assignement. Problens. Communications of the ACM,
):72 83, May 1994.

beth Burd, Maleom Munro, and Clazien Wezenmar. Extracting Rensable Mod-
from Legacy Code: Considering the Issues of Module Gramlarity, In Working
zrence on Reverse Engineering, pages 189 196. IEEE, IEEE Comp. Soc. Pross,
v 1996,

® Being established that. non formal sources of information are of interest,
important to discover liow they differ from the traditional source code

two could be combined to provide better resnlts, ! _
0 Caprile and Paolo Tonella, Nomen est Omen. Analyzing the language of

ion identifiers. In Working Conference on Reverse Engineering, pages 112 122.

& Somo quostions remains on the exporimental conditions: What was the i
s IEEE Comp. Soc. Press, Oct. 1099,

considering only global identifiers? What is the importance of the manual
in the decomposition of identifiers into words and in the classification ﬂ_f_‘ A

concepts? Cimitile, A. De Lueia, G.A. Di Lucea, and A.R. Fasolino. [dentifving Objects

A Legacy Systems. In 5th International Workshop on Program Comprehension,
. . - 3 L/

e Another direction of research deals with the conceptual aspect. of reverse C'97, pages 138 47. IEEE, IEEE Comp. Soc. Proess, 1997,

ing: How can we classify antomatically extracted concepts in the various da s — W .) S ¥ 1

knowledge that a software encompasses? How ean we formalize the level 5 i :»'-\mm l'hfa F.amhun. :!.ml Giuseppe Visaggio. A software model

tion of a concept? What percentage of the entire application domain is “Hpact analysis: A validation experiment. In Working Conferenee: on Reverse
. B G : ' SAReEring, pages 212 222. IEEE, IEEE Comp. Soc. Press, Oct. 1999

the concepts found in identifiers? An important part. of any conceptual know J P 20C. LX0SK, LI :

which is not. considered in this article, is the relation between them: How @
find them? How to classifv them? ete.

Clayton, Spencer Rugaber, and Linda Wills. On the knowledge required
: stand a program. In Working Conference on Reverse Engineering, pages
- 3 : erse. Engineering, pages

0 978, IEEE, IEEE Comp. Soc. Pross, Oct, 1998,

‘ C. Gannod and Betty H.C. Cheng. Using Informal and Formal Techniques
p M. the Reverse Engineering of C Programs. In International Conference on Software
L ntemance, | CSM’96, pages 265 T4. IEEE, IEEE Comp. Soc. Press, Nov 1006,

|| v

| w wal C. Gannod and Betty H.C.
| Software rove
o1 Reverge

Thanks

The author whishes to thank the members of the Reverse Engineering at COPPE
University of Rio de Janeiro) for helpful conuncnts during the claboration of thi
Pr. Clandin Werner, Emerson Cordeiro Morais, Alexandre Luis Correa, José
David, and Monica Rosette.

Cheng. A fraonework for classifving and comparin ¢

rse engineering and design rocovery techniques, In Working Conferenee

Engineering, pages 77 88, [EEE, IEEE Comp. Soc. Press, Oct. 1999,
UFRGS

99 |rstituto de Informética

98 SRS
Aibliotecn

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

(13] H.P. Haughton and K. Lano. Objects Revisited. In Conference on Software Mag
tenance, pages 152 61. IEEE, IEEE Cowp. Soc. Press, 1991.

[14] Etore Merlo, Ian McAdam, and Renato De Mori. Source Code Informal Informat
Analysis Using Connectionnist Models. In Ruzena Bajesy, editor, Proceedings of the
Thirteenth International Joint Conference on Artificial Intelligence, volumne 2, pag
1339-44. Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA, 1993.

[15] NCSA Mosaic Version 2.6. Available through anonymous fip at ftp.ncsa. uiue . edy
in /Mosaic/Unix/source.

[16] PLilip Neweomb and Gordon Kotik. Reengineering Procedural Tnto (Ibject-Oriented
Systems. In Working Conference on Reverse Engineering, pages 237 49, IEEE. IE EE
Comp. Soc. Press, Jul 1995.

[17] Srinivas Palthepu, Jim E. Greer, and Gordon I McCalla. Cliché recognition in lega
software: A scalable, knowledge-based approach. In Working Conference on Reverse
Enginesring, pages 94 103. IEEE, IEEE Comp. Soc. Pross, Oct. 1997,

(18] Alyson A. Reeves and Judith D. Schlesinger. Jackal: A hierarchical approach to

program understanding. In Working Conference on Reverse Engineering, pages 84
93. [EEE, IEEE Comp. Soc. Press, Oct. 1997.

(19] Jelber Sayyad-Shirabad, Timothy C. Lethbridge, and Steve Lyon, A Little Kn
edge Can Go a Long Way Towards Program Understanding. In 5th International

Workshop on Program Comprehension, pages 111 117. IEEE, IEEE Comyp.,
Press, May 1997.

20] Smart. v11.0. Available via anonymous ftp from ftp.cs.cornell.edu,
P P
pub/smart/smart.11.0.tar.Z. Chris Buckley (maintainor).

[21] Harry M. Sneed. Objeet-Oriented COBOL Recyeling. In Working Conference
Reverse Engineering, pages 169 78, [EEE, IEEE Comp. Soc. Press, Nov 1996,

[22] IEEE Techuical Council on Software Engincering.
http://www.tcse.org/revengr/.

(23] P. Tonella, R. Fiutem, G. Antoniol, and E. Merlo. Augmenting Pattern-Based Ar-
chitectural Recovery with Flow Analysis: Mosaic A Case Study. In Working

Conference on Reverse Engineering, pages 198 207. IEEE, [EEE Comp. Soc. Press,
Nov 1996.

[24] Theo A. Wiggerts. Using clustering algorithms in legacy systems remodularization.
In Working Conference on Reverse Engineering, pages 33 43. IEEE, IEEE Comp.
Soc. Press, Oct. 1997.

(25] Steven Woods and Alex Quilici. Some Experiments Toward Understanding How
Program Plan Recognition Algorithmns Scale. In Working Conference on Reverse
Engineering, pages 21 30. IEEE, IEEE Comp. Soc. Pross, Nov 1996, 1

100

