XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE
S

Program Analysis for the Construction of
Libraries of Programming Plans

Applying Slicing

Gustavo Villavicencio
Universidad Catolica de Santiago del Estero
Santiago del Estero
Argentina

Abstract

Why the antomatic understanding systems of prograins based on plan libraries of pro-
grains are not of cnrrent application in the reverse engineering processes or in the ambient
of re-engineering?. Even though the complexity of the algorithms that explore the libraries
constitutes one of the principal problems to solve, the constrnction itself of the plan li-
braries represents a problem even more crucial. To mount a repository of this type, it
is essential to have the professionals that have developed the systems or that accomplish
maintenance in the interest area. To date, there exist no reports that describe some tech-
nique on how to accomplish analysis of programs oriented to the construction of libraries
of programming plans. In the framework of the NEIGHBORS Project currently in exe-
cution, a technique based on the antomatic comparison of slices is being investigate; this
permits the analyst to focus his attention on a meaningfii code for the design of program
plans, liberating to a large extent the efficiency of the tasks of analysis from the previous
knowledge of the applications and from the problems domain. The obtained results until
now confirm the feasability of the approach.

Keywords: Reverse Engineering, antomatic programs understanding, reuse, re-engineering,
libraries of programming plans, slicing.

1 Introduction

The process of programs understanding for maintenance purposes, rense, or re-engineering,
can be seen as the construction of "mappings™ between the knowledge of the professional
(analyst) that accomplishes the process, and the implementation of the application soft-
ware [WQ96]. The knowledge previously acquired by the analyst, can be general, on how
the system has been built, or specific, on the typical algorithmical constructions.

The automatic understanding systems of programs intend to simulate the hehavior
of the analyst. The final objective consists of extracting programming plans and design
objectives from the sonrce code [QYWOG]. The programming plans are algorithmical
structires that the programmers have applied reiteratively during the implementation of
the system and that are disperse in the source code' [RSW96]. Precisely the integration
of such structures and its storage in antomatic support (libraries of program plans), con-
stitutes the "knowledge” with which it is attempted to "map” the source code object of

'Such code segments also delocalized plans are ealled.

101

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

analysis.

In general, the process consists of moving the source code of input in a intermeds
representation, usnally AST (Abstract Sintax Tree). Then. search mechanisms exnls
the libraries in search of index? [Q94] that permit to link some programning plan y
components AST. The indices do not determine the existence of a plan, but simply |
possibility of their existence. Starting from the detection of the instance of an index,
“checkup® of a series of pre-defined conditions is started. Such pre-conditions descrilyg
architectural arrangement of the components and the relationships of data flow and
trol among them. This problem is known as the constraint satisfaction problem \
It has been demonstrated in l[QYW!]S] that an approach based on the constraint satisfiy
tion is adapted to the type of programns nnderstanding in which interest lies. not thus gy
recognition algorithms applied to artificial intelligence. '

Unfortunately, the application of this technology to real programs requires the co
striction of large libraries of programming plans. In this regard in [CQI0] it is argue

Unfortunately, there are severul fundamental problems with trying to apply
this approach to large. real-world leguey systems:

o This approach requires enormous libraries of code patterns. Every do-
main has its own domain-specific design elements, each of which requires

a set of domain-specific code patterns to represent its different implemen-
tations.

Also in [QYWOB| it is asserted:

One key problem is that the plan recognizer requires a library of program plans.
Our simple example to illustrate the behavier of Kautzs algorithm showed that
a relatively compler hierarchy is required to understand Just a few lines of
code. That implies that a significantly more complex hierarchy will be required
to understand 10,000-lines modules. It’s clear that to apply plan-based under-

standing to real-world systems we will need a cost-efective way to ereate plan
hierarchies.

Now then, what technique of programs analysis for the construction of library of pro-
gramming plans is executed?. To date, there are no known reports that refer this topic.
However, it is not. difficult to notice that would be indispensable the participation of the
professional that have developed the system or, at least, of those that maintain it, to
extract from them and/or with them, the repetitive algorithmical structures. It si widely
known the motives because of which, in practice, it. is not possible to count on such pro
fessionals. It is intcresting to emphasize, nevertheless, that such problem constitutes a
decisive limitation for the proliferation of these understanding environments, inasmuch a8
for each problem domain experts on this field are required, and it can not be thought
about professionals devoted to the assembly of libraries of programming plans in different

domains. I

The foregoing, implicitly discredits the alternative of the anticipated definition of the
programming plans. That is to say, again it is required the participation of the experts
in the problems domain. The technique that, is described has been designed to be applied

It is eonsiclered real predefined "hooks” through which a code segnent, is attempted to bind Lo some
planin the library,

102

X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

fessional that do not have meticnlous knowledge of the domain of application.

by pre : .
or. also in [QYWO8], it is briefly described a possible approach with "'“"”“l“?‘
ey ‘huw analysis for the construction of libraries of programs plans would I

on . i)
suppor 1: details about, which this approach are scarce:

p!‘“’l'i”"(] ' s construct a
We have begun exploving an ﬂppr'mch for !ml'pm;,t';r;mmumm!: 5 (j{ ; f}"‘p'n
fun library. The idea is to provide programmers with a tool that allows th ;
o side pluns by example. In particular, the approach s to let them high-
o4 }%Lst:‘m; code as an instance of a plan, provide them with a detailed view
g ;! & ..'."urrq;uflt'u!s and constraints present in this instance, ‘rmd allow them
';:: .:l:_-.!ctr and/or generalize constraints tmnl'_m'nqmu-rf.'..-;‘ ’ The Hll';‘sﬁt‘lr.f-.'j cim
support this process by uhcck:'ng_ whether various camlnnations ;:f r.‘::}e w;upc:}
nents/constraints presents in this p!agu instance t‘z.!f'!“espund to a i;!.(.l y-e1 er}ct
plans. and then automatically grouping and replacing themn wn‘.;l f;*emmm yr
defined plans. The end result is a definition of the plan and links from }
to other library entries. Given o su_[ﬁcu.'utlyl fast program H‘{Ld{-‘.‘r'.s’lmldll:i.y t;
gorithm, the set of programs that may contain the u.srﬂ'-pr_vt_n{h'd !{‘)!m:} wurhm
immediately searched, and the user can adjust the plans definition based on the
E::fjja the techmnical issues involved in constructing this tool, ft.ﬂirm npc:?..
empirical question whether such a tool can be u.-u.».t_.l tao mst-eﬂec!&m y{ [p?‘l"ﬂ?f;r e
plun libraries. However, it dves suggest one ptfasv.bhr path towar rf.q.r r'es.s;u_r;
the problem of how the necessary plans are provided to program understanding
system.

One of the observations to this approach is that due to the fact that inﬂ-ii\ll_\; the]fla.n‘
library would be empty or in the best of the cases scarcely pnpuia.tf:ld, t.h:-.mlm){natl.lrl)]r:i
of cmfapununt.s{ restrictions of the instances could not. he (-mu;mrf‘d \.\‘ll.hlal}__ P au‘a‘:t(: a
process would fail. Other of the limitations that is observed. is that it is r?rziau L-ﬂﬁl 4
strategy highly dependent on the professional or professionals, that is to say, of t 1:;3(.3. ;P.
have participated in the development of the system or t.!!ai. are devoted to its mal:{ lrl f! i
Their participation is indispensable, not only becaunso in t.hr!u; minds t.h(lv poten .:}I; p. ?;q;\
against. which example plans will be initially checked are kept®, but furtlmiru:jnﬁ .){-r.d.)
they know the approximated location in the source code where sm:.h [)lﬂllhy(ol §1"1 e imple-
mented, fundamental knowledge when a source code of great size is analyzoed. : A ngtl:n
emerging the problem already mentioned about the unavailability of these professionals.

In the framework of the NEIGHBORS Project!, a alt.rrrm.u.iw's t.e(fhniqnt- bﬂTwcl‘ml Ihf‘
automatic comparison of slices has begnn to he developed. This technigue has as objective:

e To filter those code segments potentially meaningful for substantially reducing the
search space of the programming plans.

® To liberate to a large extent the efficiency of the task of"t.hu analyst l_'rnm his previous
knowledge of the source code object. of study, supplying automatic tools and well
defined tasks.

Below briefly the basic concepts needed to know aho};l. programs shicing will be rhfelt‘luxll..
Then the general ideas that compose the technigue \\'lIl‘hu lnf.l'[)dl‘l(‘.(‘.d r.Injt)ugh aﬁmnp e
example, before entering to detail the components of it. Thereinafter its app'_eﬁtl.‘mr;
through an example of source code of the real world will be shown. The work will enc
with the conclusions to which it has been arrived.

'l-}glniu. to be the empty plans library, the plans in the mind of the analyst would be the ouly one
Possibility of comparison. . ‘ g 2

"The Keighlbors Project. approved by resolution 164/99 of rhe Conneil Superior of o1 I universicy lw;
A% prirpose to develop a slicer (exteacting of slices), and the same time, to explore new applications o
they,

103

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

2 Background: Program Slicing

It is considered a technique developed by Weiser [W84] for the nnderstanding and debig
ging of programs. A slice S(v,1)® of a program. on a variable v in a sentence muml
brings all the previous sentences that *contribute” to afoct the value of v in 1 (back
slicing). Inversely, given the slicing criteria S(v,l) the sentences which depend on it
be caleulated (forward slicing) [HRB90], [HDS96].

The calenlation of the sentences involved in a slice is accomplished antomatically ap-
plying dependencies analysis on data flows and control flows [Tip94].

This technique that in principle has been applied to the program understanding
debugging, has also been adapted to other contexts such as maintenance [GL91], [KRO
[ADS93], [KS98], rense [LVO6], [LVO7], prograns specialization [RT96], architecture anal-
ysis of software [Z98], re-engineering systems QO [S98), [LHO6), programs evaluation
[DH99], etc. With the present work a new arca of application of this technique is he=
ing explored.

For the purposes pursued, it. is interesting to calenlate complete (maximmn) slices on
a datum item in a program, that is to say, as of the last sentence where the variable t
mtegrates the slicing criteria is employed. Which, howoever, does not, gnarantee that all th
computations set. associated with the variable is captured, as it is demonstrated throngh
the program example of the figure 1 extracted from [GL91]. |

1inputa
2 inpulb
Jt=a+b
4 print t
St=ab
& pint 1

Figure 1: Example Program Fragment

The slice with criteria S(t,6) is composed by the sentences 1, 2, 5 and 6. The selection
of the last sentence, is done with the simple purpose of attempting to extract the great,
possible quantity of sentences to, at the same time, increase the possibility of detecting
similarities as it will be seen below. For the fixed objectives, the slices S(t,6) and S(t,4)
will have to he considered independently one from the other,

A form of establishing if the slice is completed is to attempt to accomplish forward
chaining (as caleulating forward slicing) to depart, from the sentence that, integrates the
slicing eriteria. If more sentences are incorporated the slice caleulated is incomplete.
However, it is clear that automatically a complete slice can be calenlated given any slicing
criteria, without need of caleulating first a backward slicing and then to verify if it is
complete or not.

Nevertheless, since it is desirable to reduce the source code volume of lines to be ana-~
lvzed, the semi-complete slicos are those which take the greatest importance in practice.
A semi-complete slice is defined in the same way Weiser did in [WB4], that is to say, given
a slicing criteria calenlate the previous dependencies.

However, due to the fact that the specific sentonee from which it is possible caleulate
the slice that contains the sentences that will be instances of the plan that is songht and is

It is designated slicing criteria, and v is able to do reforence to a variablos sot,

104

X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

intended to design is not known a priori, usnally it will be failed in specifying the correct
slicing criteria. For this reason, the concept of gradually calculated slice is introduced.
That is to say, to calculate a semi-complete slice and, starting from exceuting forward
chaining, to add sentences in the measure that. the analyst considers necessary. It is clear
that applving this mechanism one can arrive to calenlate a complete slice,

Other important concept for detecting recurrent algorithmical structures and due to
the fact that they ean be found dnlm;_t]imd. is that of inter-procedural slice, “’hlt'll. is cal-
enlated applying dependencies analysis beyond the limits of the procedure to which the
slicing criteria make reference [H.HSQ[)I. IHR.BQD] [FGQY].

On the other hand, the slices caleulated from a same program can :slmw.rli{'l'eren_t.
relationships mntually, according to the fact of sharing or not. sentences. In this way, _1f
there arc slices with conmmon sentenees but at, the sawme time with own sentences they will
be called slices with not empty intersection or simply slices i intersection (fignre 2.1:_).
Also it is possible to calenlate slices totally contained in others, in whose case they will
be calledmeluded slices (fignure 2.a). And finally it will be possible to have slices that do
not possess common sentences which will be called disjoined stices (fignre 2.¢),

(=] (&) Ic)
Figure 2: Relationships Between Slices

These relationships among slices are the mechanisms of filter of sonice code lines
that will be applied to reduce the volume of sentences to be analyzed. It constitutes a
subsequent. investigation matter to analyze whether these relationships among slices can
provide some clue on the arrangement of the programming plans in the libraries.

3 A Technique of Programs Analysis for the Con-
struction of Programming Plans

3.1 Slices and Programming Plans

Until now, there are no reports that may have attempted Lo combine these two techniques.
On what is the idea of linking the slices to the programming plans founded?, If a slice
Sona specific datum item d is caleulated, and there is a plan programming P where
the computations abstracted in its components can be applied to the datum item d, then

contains the sentences that instance P. That is to say, a "well caleulated” slice can
“ontain a programming plan, and if this programming plan exists no abstract components
without instancing will remain.

In other words, if a hypothetical programming plan is in mind, the key consists in
calculating the slice that contains the instances of the abstract components of the plan,
tis clear that to calculate the appropriate slice in programs that manipulate thousands
of data items is not a simple task, since not only it would be necessary to know which the
datum item to be specified in the slicing eriteria, but furthermore, of what sector of the

Di"JgT«'Lm it. shonld be caleulated so that it will contain the instances of the programiming
Plan,

105

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

So far no one has ever developed mathematical bases that guarantee that if thepe
4 programming plan then there has to exist a slice that contains the instances of its
stract. components. However, it has been gathered empirical evidence that demonstrage

this hypothesis.

These ideas will be analyzed with an example. It is assumed that there is intention
design a hierarchy of programming plans as the one shown in figure 1 of [QYWOS], 4
that is the program fragment. of the figure 3, extracted from the same work. If the s
S(sum,l+6) is calculated all the sentences that compose the fragment will be extrs
and this certifies a perfect instance of the program plans that integrate the hierarchy off

the figure 1 of that work.

X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

for {inf i=0; Blili+ +]

oy pAt %", Bl

{ }

char * A char * B chaor *C; S
A="sining 1"

B="sting 2' Mazin)

C= "sinng ¥ Lmr -

tor (ind | =0; Bliji+ +] »| C="shing 3*

Pt %, BliD:

for int |=0: Clijj+ +)

| n=0;

I+1 while (scan'%", &value) == 1)
1+2 a[n++] = value;

I+3 sum=0;

I+4 forfi=1: <n; |++)

+5 sum += ali}

l+& P, sum);

Figure 3: Program Fragment that Instance a Programming Plan

However, it is evident, that if the slice S(sum, 1+3) is ealeulated the results that will
be obtained (for this case) will be more specific (poor) with view to the construction of
program plans (miscaleulated slice), sinee it will be possible to design only some of the
desired plans.

That is to say, it can oceur that a correct. programming plan is desired and that the
data item or items that will constitute the sl icing criteria have been selected correctly, but
it has been failed in indicating the correct sector from which the slice would have to be
caleulated the slice. Under such cireumstances, it can be supposed incorrectly that a slice
on that data item does not permit to capture the sentences that instance the abstract
components of the programming plan thought. An extreme solution would be to caleulate
a complete slice, that is to say, in all the program, but this would hinder the subsequent.
analysis incorporating perhaps unnecessary sentences and hindering the selection of the
region from which to begin the analysis.

Even though this is not the case, it can also oceur that the caleulated slice is com-
posed by other sentences that will not be instances of any abstract. component of Ary
programming plan. In this case, the slice will be "dirty” with irrelevant information for
the pursued purpose what will hinder the detection of the plan hidden in it. This situation
in program fragments COBOL will be bolow.

3.2 A Introductory Example

An very simple example is presented below as a way of illustrating the basic ideas that
compose the technique that has been designed.

It is supposed the presence of the program fragment. observed in figure 4 that a repro-
duction of [WY93), and from which the slices on the data items A, B, and C have been
caleulated.

It is clear that in case of being the complete program, perhaps the slices would be
composed of additional sentences that provide nothing to the construction of the hierar-
chy intended to be designed. Even though the simplicity of the example makes a deep
study to establish the similaritios among slices unnecessary, a short analysis will proceed

106

prirt(™%", Gl
tor int k=0; Cliki++}
priet(*%*, i)
for (intk=0; Afkjk++) { !
?um! %", Akl chat * A
A A=sting 1

for (int k=0; AlkLk++)
"%, Afkl):
}

Figure 4: Calculated Slices

in order to delineate the general ideas of the technique.

At the beginning the two slices to the tool are proposed to ll.(:(.'ﬂl‘.l‘l[)llﬁl,l lil.l.ttlm.“l‘;;l:r
one of the them will enable to accomplish the observations (slice on B), while & l;l .‘: .’1 i
one will reflect. the similarities with the first, if these arc present (slice on C}'. In re 11-_3. 1‘
is perfectly possible to accomplish simultancous comparisons between more than two slices,

Starting at the PRINT sentence in the first slice, it is u])ei(.!'r\‘ﬂfl that. it lla;‘? a dt-.Pumlm:;:_\'
of control and data (by the variable index i) on the F‘()H....._\ EXT mm“m(:.lif ‘T);‘L"Eﬂma rj;i
it is required the tool that confirms if the PRINT sentence in l‘.hn. second shice fulfills ll. .
identical restriction. The response is positive. Continuing with the observations in t o
first, slice, it is also observed that the PRINT sentence has a de}ta (IL-.]u.-.n(Icucy on the as-
signment sentence previous to the FOR...NEXT sentence. Ag:.nn 1o m"'“-ml'li (5(;:1?111'-(‘.(1
to check, if the corresponding PRINT sentence in the second s]:t’:e (r“(.:mphm with the hgln(r'
restriction. In fact the response is positive. Finally, the FOR...NEXT sentence in the iliﬁ.
slice has a data dependency on the assignment sentence. The tool confirms that in the
second slice identical restriction is verified.

The fact that the restrictions or dependencies are fulfilled, implies that, t.?us :f,unt{:nmst
involved can be considered conceptually identical, and that both are pmmnt.m!.mwl.émlctz«
of an abstract, component of a hypothetical programming plan. This concept is very im-
portant, inasmuch as there is no secking of syntactically identical sentences but of the
concept. that can be abstracted from them.

Figure 5 shows the sequence in which the components considered similar have appear-
ing.

As shown below, based on the detected similar ties, the task of the analvst is to crvfah.c
the abstract components that synthesize both instances. As a rule, and (!Il_l.' to _t.?ul‘. im.;.
that. the two slices possess instances that can be considered (:0!1‘71}[‘1-""-1].\ identic f‘ ant
that the data and control dependencics demonstrate that. the architoctural arrangement
of such components is the same in both slices, then the involved source code can hide a

107

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE | F X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

Main() Maini) | ty in
* a
chor * 8 char = C;

tion (shaded regions of the graphic 2). Consequently, the relationships
uim;]ldiSjainNI slice will be applied as mechanisins to reduce the volume of
S .
[}

B="sting2" 4 - 3 > C= “string ¥ analyze. ‘
fm&:\ﬂirl;?::lﬂ%"+::, | ‘ : bpit:;i?;gﬂl}{“ ™ o+ on considered convenient to detail the technique the style of an algorithm as
} } ’ub‘m

Figure 5: Appearance Sequence of Similarities i : ' ' caleulate the pair of slices.

ﬁ detect: relationships between slices (difference, inclusion or disjoint). If there
programming plan and therefore deserves the attention of the analyst. Figure ssion return to L.

hierarchy of program plans that would be the result of the ob: ti ACCOI ' 3 : P—— o aren’
an analyst inpr.h%- pmv[i)ﬂ?:; fmmm!n:: S(Jl::ttt! mg: o G dhpraiions Ml 5 soloet a sentence in a slice from which the analvsis will be continued. If aren’t

sentence to consider go to 8.

c - 3 - A " . =
o o request the tool that detects identical sentences in the other slice (As uil here,
. 5 cond slice will try to reflect the dependencies that have been detected in the
ol - Hﬁ—smm t and that the analyst has confirmed).
S - [y accomplish backward chaining (or forward) to deteet sentences that mav have
O . ‘or control dependencics,

Once detected the sentence in the first slice, observe if the (‘J-I.lfﬂllﬂ.i&'.dlst‘.llmfll:(*
the second slice is conceptually identical to the one caleulated in the first slice.
this case, accept correspondence between the calenlated components. On the
trary return to 3.

Figure 6: Designed Plan Base on the Observed Similarities

The connections AND and OR. are cmployed, even though the latter is not prese
in [WQ96], to relate abstract components.

' Wi ew caleulated component return to 5.

It is evident that if the analyst has good knowledge of the problem domains, i tha now cal ’

a accurate mental representation of the programming plans as that showed th
of [WY05], the existence of a second slice would not be indispensable, since th
would compare his knowledge directly with the existing slice. However, in this
the comparison process would depend exclusively on the knowledge of the proble
on the part analyst, not only to detect what is considered a plan of the domain,
know the approximated location in the code source where such plan would be impl
However," this approach is not supported by automatic means like the techmi
being defined, y

. With the coneeptually equivalent sentences and the structural relationships be-

L them, design the programming plan.

explanations are necessary, In the first step, the caleulated slices can be com-

complete, or gradually caleulated, evaluating the usefulness of the sentences
been incorporated in order to design the programming plan. The gradually
d slices is an other mechanism that is used to restrict even more the oumber of
o analyze.

g with the step 1 and as a way of making the process more eﬂicient-‘_l_wt
rily the exploration is restricted to a pair of slices but. it can be perfectly amplified
* than two slices,

3.3 Activities and Automatic Support

Taking into account the previous example, it is possible to define the eloments 1
pose the technique. As it was mentioned previously, the objective is to foens
attention on code segments potentially relevant to the design of programming
clear that to apply this technicque the analysi. must have an approximated idea a
programming plan that, he is sceking and trying to build, on one side; and on the o
about. the source code, more specifically on the data items, that will constitute tl
criteria. The last is important since the analyst will specify a appropriate slicing
to be able to capture the sentences that, will be instances of the abstract. comp
the programming plan that he is seeking and trving to design.

step 3 it is necessary to indicate from what sentence the analvsis will hu‘c:m;r.in:
been observed that in certain cases the calenlation of the dependencies 'I)m_n_g
of which correspondence in the other slice is not found. In some opportunities
S due 1o the fact that the programming plans are delocatized, what makes nec-
1o continge the analysis from other sectors of the slice. Thereinafter it. is sought to
the scattored segments through the corresponding dependencies.

Skep 5 any type of chaining can be applied indistinctively,){nrnmﬂ_v. one hafs
N with backward chaining for example, then one should continue the analyvsis
Same, as long as the sector of the slice that is bei ng mml,\'znl_ has not changed.
580 say, it should be possible to apply different. types of chaining in different sectors

What types of slices are particularly interesting for this purpose?. Since it
able to detect, recurrent algorithmical structures comparing slices, incluced s ;
less importance for these objetives, since they are not useful at least by now, to co
exactly the same sentences®, On the contrary, the disjointed slices are of parti : _ .

st tha ode y 5 Shrske bl s F q COnceptually inglyded in the data item that integrates the slicing criteria of the inclusor slice. In
terest, the same as the code fragments that constitiufe the differences in the s 8 Programming plans hidden in such slicss, this relstionsiip of inclusion can provide ducs

sty
o Programming plans disposed will be in the library, In general, the relationships of disjoint
Mk 10f slices would also have to supply similar clue. UFRGS

Instituto de I= "~ Aticd

“This idea that in principle results trivial, has its importance from the perspective of the
compose the slicing criteria. That is to say, the data item thar composes the slicing criteria of the

108 109

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

of the slice, and then combine the results. It is clear that to accomplish Lhu!

qmately 40 files ebl, each one containing 1000 lines of code in aver-
must preserve the track of the correspondence that has already been detocted, N

by app! f the slices has been accomplished on the file .-\l:lmll}.').r-.l':l. of about
: tg’gpc;(.tl reasons, it is not reproduced here. As there is not a slicer, the
In the step 6 is where the participation of the analyst actually is required, af ;ﬂ,ﬂ has been exceuted manually,
observation is vital to know if the caleulated sentences are or not. equivalent,

sequently the caleulation of the successive dependencies will continue or not,
The fact. that, a correspondence between sentences is accepted or confirmed,
a link between them has been created and that the antomatic support nuist main

.. that the analyst is interested in designing a programming plan to .IIIII.\'t?
i) .hnm rh indexed files, for which he has calenlated semi-complete slices
i ﬁéb —\\-’E('ITH.R.T but from different sectors of the program source: the

B 1 d the second from line 1357, However, the semi-complete slices that
= '1388u-ra]ntiulm;rt include the sentences of files reading, On the other hand, the
' ; indicates to him that a plan to have access and travel through h_lt:s
e -rat'l component. that svnthesizes that operation. Thvr(-l'm:t-.: executing
' ' i stnrﬁng from the sentence that has Iam‘n Spt!('iﬁ'r‘.(‘l in T-I|1P.Sil{‘lng ert[.u:m
the semi-complete slice, adds new sentences in I.h:-‘slu-.n l!lll-l] finding the ,‘m,zf-
executes the reading of the file. Figure 7 shows the final slices that the analvst

With respect. to the stage 8, actually it doesn’t helong to the same technig,
it has been introduced at the end to complete the ideas tried to transmit. T}
any information in this sense, the design and the incorporation programuning pla
libraries would be a subsequent. stage within process of construetion of a
this type. However, it ean be glimpsed that once detectod the segments of
with potential programming plans, the analyvsis base on the technique here pro
of the extracted ideas from [QYW9S8] and reproduced in the section 1 would be g
accomplishing, since there would he availability of components and restrictions
to accomplish eliminations, generalizations, ete., activities impossible to acco
viously.

]

the tool detects what slices are considered in intersection, |}lt.1. as it has already
od previously, in this casc the only interest are the similarities that could be

n the sentences that integrate the differences in both slices.
According to what has been defined here, the designed technique requires an i -

antomatic support, Among the antomatic tasks it is emphasizod: observed in line 1395 of the first slice and in line 1365 of the second. there

on of reading. Now the tool is requested to indicate what the rlcpcnduu(:'lm
of such sentence are. In the first of the slices such dependency leads to line
in the second to line 1359, both iteration sentences are therefore mns:dcr(_ﬂ
Jidentical by the analyst. At the same time, I;lm. rt‘a.dl.ug sentence ejlnpnm.l:-.
n of the pointer that in the first slice is accomplished in sentence 1389 and
in sentence 1358. In the same way, the location of the pointer rlepcuz‘ls on
on key whose initialization is produced in the first slice in line 1388, V_A'lnlt\. in
slice the "setting™ is accomplished in line 579, w]lich_al. I.l_1£ same r,mu-.“l_l-a.%

a dependencies on the previous sentences: 531, 362, 566, 570, 374 _ﬂ.nd ‘{i&
quence, this set of sentences is conceptually equivalent to line 1388 of the first
they also iniciate the key but applying different. mechanisms.

* Calculation of slices and detoction of relationships among them (difference,
or disjoint.).

e Simultancous manipulation of two or more slices. This implies:

— To execute backward chaining or forward chaining from different soe
slices,

= To maintain the track of the links among the equivalent sentences e
by the analyst,

— To permit to section the analysis on slices to enable the detection of de
plans,) . .
i the detected equivalences the analyst can design a plan hierarchy as the one
The analysis by sectors of the slices implies that the correspondence found in diff figure 8.
sectors of the slices should be preserved, to permit the subsequent assembly with 8 _
I

of the correspondence detectod in other sectors. observing, that the component ” Open File” is incorporated for achieving of

P Progranmming plan, and not as a consequence of the n.hstra(‘.ti[_)ll of sentences
With respect to caleulation of the slices the tool must permit to calculate e . in the difforences of both slices, since the sentence that, opens the files is common
slices, semi-complete or to caleulate slices gradually, as well as its storage and s ; :
recovery.

it has already been observed, the purpose of the second slice is to have an other

erence if the knowledge of the domain problem is limited. Regrettably, here
StS the problem that in "lagacy” programs of hundreds of thousands of lines of
e, there will have to be a whole slew of slices caleulated, and it does not result,
ortable to analyze slices in pairs,

To complete the environment, while the analysis is accomplished the plans
gramming should be designed. Therefore, the system would have to permit not
create, to modify, to climinate, ete., the hierarchies of programming plans, but a
preserve the instances from which its components have boen abstracted. Moreo
plans already entered would have to be able to be applied to the base of slices, as.

approach described briefly in [QYWO8]. But this is out, of the scope of the present the other hand, the fact that a slice does not show similar algorithm structnres

Test of the calenlated slices, does not necessarily imply that does not contain an
SOmCe programming plan, if this exists. Simply can occur, that such plan is
4 only once in the current, application, but. there can be other instances in

3.4 FEzxperimentals Results

Below a more com plex example applying the techn ique on code source COBOL is ¢

ered. The program sources that have been taken as example, used to integrate the i l:g!s}d CLAVE-CURR is defined as key of aceess and is composed l?v :-htI sub-fields that appear
of control of academic management of the students of the university. This applica * O reasons of spacs the Working Storage Section is not. included.

110 111

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTW2

v SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

Access_loop_fie.
AND
A
Init_kewy Set_Pointer Tiaved_File
on ~ AND
PROCESO SECTON 4 A .
. AL Manual_init Loop_Fie Read Register |
OPEN 1.0 PERSONAL CURRICINA PUAN
. AND
M20 COMEN 7 -
34 PERFORM MENU PRI UNTL GFC = 13, Input_vahues Mave_to_key_Feics
- 15 CEAnt pr -

e O IO, 43 CLOSE MPTLIORA PERSONAL CURRICIAA

472 OPEN 10 PERSONAL CLIRRICULA PLAN T R ramming Plan to Aceess and Travel Through Indexed File
e CoMEy s -
PERFOR! il = = - = N . i
G36 comgTINNIL O = T P UNE 22 ROSBON 78 FNETY 5 of other applications in the same domain®,
434 CIDSE MPRESDAA PERSONAL CLARICILA AN ACCEPT SESLI LNE 24 POSTION 79 PROAST
a3 PR ; } "
R s s seorct : -
Sl FORC = | CROPC = 2 b . usions
AWACCEPT ORC LNE 24 PSMON 78 PROVT ECHO W i e Bt ; !) l - o S Ttk
ACCEPT SEGUR LINE 26 FOSTION 79 PROWPT MIOVE 1,10 oec demonstrated experimentaly that a programming plan can contained in a
o8 wENGmRIN v d program slice. Starting at this point, a technique that permits to detect
M TMRE NI e RO M CFC.2 INTL 81 = 0 s structures through the application of dependencies analvsis of data and control
LA e g PERFORM OXRA) d to be defined, that gradually define an architectural context that allows
NE Mo NG-ORC 2 synthesize abstract concepts from the observed instances,
y PERFORM OF
e oslom _ F OFC 15 NUMERC AND OPC = 14 MOVE
5 PERFORMING OPC-2UNTURL < 0 DA ly, the technique permits to direct the attention of the analvst to mean-
496 PERFORM DERNA | Fo¥C - 10 4l ' l : A e
87 WEOPC2. s OB LUk U TR " source code for the design of programming plans. The comparison of
4 irewcaace 5ad MOVE D10 IDOCHN NDOC I CFAC NG 00 v automated reducing the intervention of the analyst to the observation of
47Y ¥ OPC (5 NUMERIC AND OPC < 18 MOVE 7500 10 81 . s £
e ! el ar A RO dependencies. The following stage, within a global construction process of
- ¥ moc-r i 3 he s, s desi she plans.
e o) e S i ‘program plans, would be the same design ofthe plans
530 i i -
o S the novelties introduced by the present work are:
FERF ORI RESTOTLAVE
7 m o tll’-‘ El* TS ¥ -
1389 S CURREUA KV R e fgc&"g;f' aige, 2 e dbidd nt slicing techniques to the programming plans.
o MoK R ACCEPTNDOCN LIVE 4 PONNON 20 et s, " ; G %
1392 PERFORM USTAR-1 INTLOPC - 1 . Ly ation of slicing techniques as basis for the definition of a technigue of programs
ACTEPT CRAC.N LINE 4 POSTION 38 MIOM
1393 MOVE9 10 1D0C 41 v for purposes never explored before.
1998 PEAD CLRRCIAA NXT AL BN MOVE 1 10 OFC. ACCEFTCCAR N LNE & POSFION 48 PAO
1398 USIAR I, »> gy 4.
_ ACCEST ARGHN UNE 4 POSTION 60 PRONP] weaknesses of the technique:
(1399 PERFORM LEER CURR.22 g o q
x GO 10 RESTOCLAVE. ' . 2 . s :
HAEED PN MOVED ™0 8281 BANCO-N the great quantity of data items that an application can have, it can take
RGN T CINAECUe time to find slices that possess similar progranmuning patterns. However, the

MAEURR i - ia . . .
PERFORA BNG-CLAVE OUSAIPs of disjoint and intersection of slices, already reduces, to a large extent,
tume of code lines to analvze.

€ establishment of the scopes of the slicing criteria turns to be an important factor
L can include irrelevant. code seginents in the slices or exclude nseful sectors
® the programming plans are present.

1o the fact that the programming plans can be found delocalized, even in a slice,

0 d“'ll.\’?i \}'ill the last sentence be the starting point to begin the analvsis. That

Ay, ;:-]Z perfectly possible to have program plans located in the intermediate
the slices,

PERFORM LEER CURROTROS UNIL OPC = 2
EER-CURR

RO .
READ CURRICULA NEXT AT END MOVE 2 10 (9C
FOPC = 2

.

'bﬁ-lls dealt. with the comparison of slices that belong to different applications in the same

112 113

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWAR yqv SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

* Requirement. of a complex automatic support that permits the cale rences
el dontrol deprndioncied A 4 Quilici, Qiang Yang and Steven Woods., " Applying Plan Recognition
Detected strengths: 5 2 ;\lﬂw Program Understanding”, Journal of Automated Software Engineering,
e Even though the a_.uwn'mt.iun of the tasks that have beep defined is nog i Woods and Qiang Yang. "The Program Understanding Problem: Anal-
fa.t.}- that the technique is strongly supported by automatic processes : md a Heuristic Approach”, Proceedings of the 18th International Conference
solidity. Lo . Engineering, Berlin, Germany, March 1996. Pages 6-15. IEEE Computer
® The mechanisms of filter that have been defined (disjoint and differen iety Press.
plus the gradually caleulated slices), reduce to a large extent the number ¢ Gteven Woods and Qiang Yang. "Program Understanding as Constraint Satis-

to analyze. » Tn Proceedings of International Workshop Conference Reverse Engineering
i : : Siito, a, 1995.
* The automatic comparison of slices reduces to a large extent the knowl onto, Canada)
that the analyst must have to detect programming plans in an unknown id Ching and Alex Quilici. "DECODE: A Cooperative Program Understand-
snvironment”, Journal of Software Maintenance, 8(1):3-34, 1996.

O 2 Ot i X interesti irections to f ’ :] - R
u the other hand, some interesting directions to follow would be Chith Brian Gallagher and James R. Lyle. "Using Program Slicing in Software

e To develop mathematical bases that support the hypothesis. ", IEEE Transaction on Software Engineering, August. 1991.

 the iev of alioa ; rnative wouldibd "ili Lanubile and Giuseppe Visaggio. "Extracting Reusable Functions By
) gﬁzj:di;::et(l:; ?;:?—:;t:‘(g;bmt%‘?egxﬁgﬁdox if:{ﬁ?;::f - e e prlicing". Technical Report CS-TR-3594, University of Marvland, College
L %2 i , January 1996.
o Tu exp.lt}ll'l‘e u.lgm]'ifluns of slicing that permit to reduce even more filippo Lanubile and Ginseppe Visaggio. "Extracting Reusable Functions By
seniences to analyze. gram Slicing”, [EEE Transactions on Software Engineering, 23(4):246-239, April
® To establish if the conceptual proximity of the data that compose the slic Y
!uwe_ some role in the arrangement, uf the plans in the]liﬂl‘ﬂ.l'[':hiﬂs, for wh ‘ Quilici. "A Memory-Based Approach to Recognizing Programming Plans”,
1{{)]“fl)l!])] be necessarv to apply technigues of clusters analysis or cone : mmunications of the ACM, 37(5):84-93, 1994.
<09]. fis
: y. Mark Weiser. "Program Slicing”, IEEE Transaction on Software Engineering,
e These techniques also can be useful to organize a repository of slices ¢ r 1984.
"regions” grouping "conceptually near” slices in each one. and applvin ! . y
rithins of searches in such regions. Hiralal Agrawal, RichardA. DeMillo, and EugeneH. Spafford. Debugging
i Dynamic Slicing And Backtracking”, Software - Practive And Experience,

* To experiment with algorithms based on the constraint satisfaction th (6):589-616, June 1993,
not all the source code but a repository of slices. d = o
.'. E Forgacs and Tibor Gyimthy. " An Efficient Interprocedural Slicing Mebhptl
e To explore the defined technique in the detection of reusable componen Large Programs®, In Proceedings of SEKE’97, pages 279-287, Madrid, Spain,
With respect to the last aspect, some experiments has been accomplished

reasons of the results have not been detailed. ; '_SlmuuB. Horwitz, Thomas\W. Reps, and David Binkley, "Interprocedural

feing Using Dependence Graphs™ , ACM Transactions on Programming Languages

ey e her
Regrettably, the lack of a slicer is a decisive limitation because the ¢ wstems, 12(1):26-60, January 1990.

subsequent. manual comparison of shces_ is an irksome task that considerably ¢ Bog‘dau Korel and Jurgen Rilling. * Application Of Dynamic Slicing In Program
the advance of the project and the obtained results. b 58g”, In Proceedings of the Third International Workshop on Automatic
= (AADEBUG'97), Linkping, Sweden, May 1997.
In addition to the construction of the slicer that has already been | 1 1 ;
open the construction of the rest of the tools that compose the environment that S Krinke and Gregor Snelting. "Validation OF Measurement. Software As An
defined here. e ton Of Slicing And Constraint Solving”, Information and Software Technol-
l 8% 40(11-12):661-673, December 1998,

e] Alex Quiliei, Qiang Yang and Steve Woods. "Applying Plan Recognition
ﬁ&ﬂn thims to Program Understanding”, Knowledge Based Software Engineering
ference. Syracuse, New York, September 1996. Pages 96-103.

114 115

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

[RHS95] ThomasW. Reps, SusanB. Horwitz, and Mooly Sagiv. "Precise Inter
Dataflow Analysis Via Graph Reachability”, In Conference Record of the

Second ACM Symposium on Principles of Programming Languages, pages 49
Francicso, CA, January 1095.

[RT96] ThomasW. Reps and Todd Turnidge. "Program Specialization Via Prog
ing”, In O.Danvy, R.Glueck, and P.Thiemann, editors, Proceedings of the D
Seminar on Partial Evaluation, Lecture Notes in Computer Science, Schloss
Wadern, Germany, February 1996. Springer-Verlag,

[Z98] Jianjun Zhao, * Applying Slicing Techniques To Software Architectures”, In B
Ath [EEE International Conference on Engineering of Complex Computer §
puges 87-98, 1998,

[Tip94] Frank Tip. "A Survey Of Program Slicing Techniques”, Techuical Report |
R9438, Centrum voor Wiskunde en Informatica (CWI), CWI, P.O. Box 04079, 1
GB Amsterdam, The Netherlands, July 1994. i

[S98] Christoph Steindl. *Intermodular Slicing Of Object-Oriented Programs”, In ';jl‘
national Conference on Compiler Construction (CC98), 1998,

[LH96] LorenD. Larsen and MaryJean Harrold., "Slicing Object-Oriented &

[n Proceedings of the 18th International Conference on Software Engineering,
495-505. Berlin, March 1996,

[DHQQ] MatthewB. Dwyer and John Hatcliff. "Slicing Software For Model (

tion™, In Proceedings ACM SIGPLAN Partial Evaluation and Program M
January 1999,

[HDS96) Mark Harman, Sebastian Danicic. and Yoga Sivagurunathan. *The
Slicing Criteria”, 2ud UK Program Compreliension Workshop, Centre for Softy

Maintenance, University of Durham., July 1996.

[DK99] Arien van Deursen and Tobias Kuipers. “Identifying Objects Using

and Coucept Analysis”, Proc. 21st. Internation Conference on Software Engi
ACM Press 1999.

[RSW96] Spencer Rugaber, Kurt Stirwalt and Linda Wills.

"Understanding Interleavil
Code”, Automated Softwire Engineering, June 1996.

116

