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Abstract

The refinement caleulis is o modern Lechnigneof formal program development. s application,
Lowever, may leadd 1o long and repetitive developments. Tn this paper we present a language to
m‘ilﬂ refinement, tactics, and present examples of useful tactics. They encompass the applica-
tion of several refinement, laws, but can be nsed as a single bransformation rule. Using Lactics
is ol a novel idea, bul apparently, in the context of refinement the only existing work uses
Prolog as a tactic langnage. Our language does not depend of any programming language or
tool. Also, we are nol aware of any presentation of refinement strategios writlen in the form
of Lactics as we present here,

Keywords: ['ormal methods, program development, vefinement calenlus, tactic language.

1 Introduction

Morgan's vefinement calenlus [10] is a successful technigue to develop and implement, soft-
ware in a precise, complete, and consistent, way. rom a formal specification we produce a
program which correctly implements the specification by repeatedly applying transformation
rules, whicli are called refinement. laws. Using the refinement. calenlus, however, can be a hard
bask, as program developments may prove 1o be long and repetitive.

Frequently used strategios of development are veflected in sequences of law applications that
are over and over applied in different. developmenls or even in different. points of a single
development. A lot is to be gained from identilving these Lacties of development., documenting
therm, and using then in program developments as a single Lransformation vule.

I this paper we present. RTL (Refinement Tactic Language), a language Tor Lhe definition of
refinement. tactics based on Angel [9]. This is a general tactic language that is not Lailored
1o any particular proof tool. It makes no assumption about. the form of proof goals and the
riles that, ave applied 1o them. Moreover, the semantics of Angel is well-defined and it Las an
associaled algehraie theory that allows the prool of properties of Lictics.

The proof of Lheorems is usually based on wference rules that involve only terms of the logic.
Th.e.-n-.l'm-(.-. Angel assumes that rules transform proof goals into (a sequence of ) proof goals. For
refinement, tactics we need a language that takes into account the fact that vefinement. laws
bransform programs into programs, bul generate prool obligations. These are not affected by
later applications of refinement. laws, but. the result, of applying a sequence of laws (tactic) is
A program and the list of all proof obligations generated by the individual law applications.

The constructs of RTL are similar to those of Angel, but are adapted to deal witl refinement,
laws iyl programs. Moreover, RTL provides structural combinators that are suitable to apply
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refinement, laws to components of programs, Using RTL. we deline relinerment taggj
embody commom development, and prograumming stratogics [10, 8§, 2.

The use of tactics Lo guide proofs is nol a novel idea [9]. Many proof 1ools Provide
languages Lo write programs thal, lielp in the construction of proofs (6, 11]. As far as wo
however, relinement. tactics Lave only been considered in [7]. where Prolog is usod as i
language. 1

In Section 2 we give an overview of the refinement. ealenlis. Section 3 introduces
Section 4 we present. some tactics and examples of their applications. Finally in Section
discuss related and future works.

2 Refinement Calculus

The vefinement. calenlus is based on a unilied language of specilication, design and impl,
tion. There is no difforence bebwoen specilication and programs. Developing programs cong
of applying relinement laws to a specification repeatedly until ar adequate program is oly i

Some of these laws are listed in A ppendic AL

A specilication hias the form - - [1re, post] where w, the frame. lists Lhe vaviables whose 1 il
may clhange, pre is e precondition, and post i the posteondition. The language nyed
define the precondition and the posteondition is the predicate ealcalis. The: execution g
specilication statement, in a state Lt salisfies the precondition changes the variables liy
Lhe frame so that the final state satislies the posteondition. If the initial stale does not sa
the precondition the result cannol, e predicted. A precondition fime can be omitted,

In Lhe posteondition O-subseripted variables can be used Lo represent the initial value of i

corresponding variable, As an example of its use we Live r [+ = +1]. After the exa o
of this program the variable r has its value in the initial state incrementod by one.

Besides the specification stalement, the langnage of the refinement. caleulus includes all
constructors of Dijkstra’s langnage [3]. There are also block constructs to declare local 3
ables, logical constanis, and procedures. Variable blocks Lave the form [var »: 7 o p], w
o s a variable name of tvpe T whose scope is restricted 1o . Similarly, logical constants e a
declared in blocks of the form [con ce vl

Procedure blocks are verysimple: Lhey begin with the keyword proe, the name of the proced
and a program fragment., called the hody of the proceduve. This body can have argu
declarations, if the procedure has arguments. Then, after 2 o the main program is decl
The general form is [proc name = body » prog]. The arguments can be passed by value
the keyword val, by resull, keyword res, or by value-result, using the keyword val_res.
example of a parameterized procedure is [proc ine = (valresn: Nen:= 4 + 1) o ine(n))
The body of the procedure in this case i o parameterized command [1].

Variant. blocks are used 1o develap reenrsive procediros. Besides declaring the procedure and
the main program, a variant block declares o variant r named v used 1o develop a recursive -
plementation for the procedure. The general form is [proc name = body variant risc e prog]-
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3 RTL
L. ) T v ats). When
[ a tactic s a simple law application: law Nome( Argumen l]' Ay
. An o A LAk s * s law is : il ol
simplest. forin program, there are two possible ontcomes: il the law is APPHERINE (;
3 r ol A e, - a1 bl sralin IO
?Q’l““g = I”; law is actnally applied and changes the program, possibly g‘t‘“”r'"!l'g |
L85 the law 18 HLEHERL i Santt » faw 5.
the p m"'[ the law is not applicable o the program, the application of the law fai
] i'ﬁ plio“s: 1 -
; ptimes 1‘: the constmet tactic lacticName(tacticArguments). The behavior ul" h:"‘
< is nsing Lhe sl ity ; ' I o L L single
can do this ‘ll" Ig that of a law tactic, except that it applies a whole tactic and not a sing
e = Ly Lhal i
aptic is simili

3 i Ter Tan m A o T 4 b Wi
sy uselnl o apply a previonsly defined tactic in another tactic, In RTL

o The distinetion is usefl for documentation purposes.
Law. e distinet ' . .
W‘P- pe ine s actics: Lhey are and fail.
. ial tactics are intvodneed to help ns 1o define some tactics: they are skip m ;
I A ¥ P LS J 8 MErale Proy
;.’ s -:fu"uw‘ succeeds, does not. change the program, and also does not gener I
Phe lirst one always s

ohligations. The second one always fails.

3.1 Tacticals

i i in se . The sequential composition of two tactics is
* 'R.I.L IIm‘“‘..\I'Il“l“;"l' Tl:;'Itil::.1!1:::‘;.;:;:1is::;q;:p:-lrijt.‘lmlrllr‘ugra:n and then L.ppiir‘ﬁ ty to the outcome
e i b‘tinn}:i"r .Ifi'lnit-lmr ty or # fails this tactic fails. The proof obligations generated
:{yttl;:::;'::;;i“:;l.ir}l1 of T].h?s tactic are those resulting from the application of f; and lfg. )
For example, if we apply the tactic law strl:"ost.{.r = 10); law we_alful:')re:::cli 1:;]:; 1:; ,!:,:;E_T:m
i e < 10,0 >= 10], first. we have the application of strPotfti[.: =10). s '”, sy
;ﬂﬁknnrﬁhinn refinement. law, which takes a new posteondition w8 ar!;umr':kL.P e";.',:w] L
itz e < 10,0 = 10] and the proof obligation is = 10 = > lt‘l. .I hPll:; \:"ez w]r a{"d & gm
weaken precondition law with parameter frue, is applied to 1.ru._[..r :”P g % )
2 [x = 10] with proof obligations & = 10 = ¢ > 10 and & < 10 = true.

i ich is wri This tactic applies #; to
Tactics can also be combined in alternation, which is wnr.t.f!n h | t;. ”‘HIR l<?it|rtlp::r 4 11:“0‘;
the program. If the application of #; succeeds, then this r.art.nf- gnr'.rf'.t-‘.ds, clse ! s ]. .t X i‘. Iml;
. : icati 3 coods then this tactic succeeds, else the
ts to the program. If the application of #, suc e
tactic fails. When a tactic presents such a choice of next. steps, the one that leads to s s
if any, is chosen. This is implemented using backtracking.

Consider, by way of illustration, APDLABE s afsR caldein Axatemnel. s [:r< -l}”. IFi«J}n] tlli':
tactic (law assig{< + >,< 10 >) | law strPost(r & 10)): 1m|.v wral’cPre:LI J,m,.i;,{,n 111‘1‘).:'T8-Iﬂ'-
tactic applies assig(< « >, < 10 >), the assi_qnmf-m. introduction n.\\..;.n h e g .; g
This application suceeeds and results in the assignment. = 1) wit T'Ai T(-;-m 1‘|ﬁq,:|.'n li-
€ <10 = 10 = 10. Then, the tactic tries to apply weakPre{true) to » = tenibing :rl:lm
eation fails becanse weakPre only applies to specification si.m.(!mt*.n.t.n.. Barl\.!.rm.' ing nr“\d;
to consider the second branch of the alternation: strPost(x = 10). This app .I.'ra.rllh?nr.r“: ot i;"
and we get ¢ 2 [ < 10,+ = 10] with the proof ebligation ¢ ill‘l = i 2 H'J, Fmaf‘{_:d::“.: ‘I\,,.
tries to apply law weakPre(true) to « : [« < I.U. ¢ =10). This nppllm&:’u‘s\:rm :;, t,.-.u(.» *
8et the program & : [r = 10] with proof obligations » = W=z Z Ll;~ s.lin : .l‘ L E
this last law application had failed then the whole tactic would have failed as .

PR . So, WI'L includes the cnt
This kind of behavior may lead to problems of ineflicient searches, So, :t: I1 1':;:’:!1) sl
i - . s e actic a on;

operatar (1), The tactic 't behaves just like t: it returns the first suceessful ta I

UFRGS
inetittito de informéatica
119 gl le




XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE 3

if a subsequent tactic application fails, however, then the whole tactic fails, For e
the application of '(law assig(< r> < 10 >) l law strPost(r = 10)}); law wes ]
to the program r: [r < 10, ¢ > 10] fails since the application of weakPre 1o » := 0

We also have the recursion operator fi. As an example we have the tactic erbaus
applied o a tactic ¢, this tactic applies ¢ as many times as possible, terminating wi

when the application of ¢ fails. Its definition is erhaust ¢ — (¥ o (t; YV |skip)).

Semetimes the recursive application of a tactic generates a situation where it neither fail
sueceeds, but keeps running indefinitely. To reason abont this kind of problem, it. is negg
to introduce a tactic which presents this behavior, this is abort.

When we want to define the programs to which the tactic can he applied we use the g
applies to pdo tactic, which introdices a meta-program p that characterizes the p
to which this tactic is applicable. The meta-variables nsed in pocan be used in taetie.
programs are programs written in a general format. As an exam ple we have the metasp
w : [pre, post] which has as its meta-variables w, pre, post. By way of illustration, we cona
applies to w : [prey A pre, ,post] do law weakPre(pre;); law strPost(post A prey),

applies only to specifications of the form - [prey A preg, post].

3.2 Structural Combinators

In some cases the program has subprograms and we want to apply tactics to each of
This is made nsing structural combinators. For exanmple the tactic f [E] f2 applies to pro
of the form py; po. Tt returns e sequential composition of tlie programs obtained by a
b to py and Iy w0 py. The proof obligations generated by the application of this tactic are
generated by the application of 4 Lo m and of 1y o pa.

In the case of an alternation, we use Ll combinator tyynily @ When applied
an alternation if gy — pi ] .. 9. — pofi, it applies eack of the tactics o the corres

ing program. For example, il we apply W ifr 20— ¢ : [+ 2 0|0 <0 — o : [+ < O]fi
Lactic < law assig(< ¢ >, < | >), law assig(<r >, < —1 >) >E|. we gel Le prog
ifr>0—r:=10r<0-r:=—1f. The resultiug prool obligations are Lrue = 1 > () s
true = —1 < 0. For iterations dog, — p, [] ...[) Pu = p od we have a similar structur

combinator [dol/,, ..., 1, jod].

[ the case we Lave a variable block we use tle structural combinator @ ! D:]. which a,
the Lactic £ to the body of the block. For example, il we apply [var]law strPost(r > 0
[vare:Ner:[r> 0] weget [vars:Nez:[s > 0]] and the prool obligation + > 0 = ¢ >
Similarly, we have the structural combinator fcons] f in the case we Lave a logical cons!
block. This structural combinator also applies the tactic ¢ o the body of the block.

The structural combinators t [:[] and / D] are applied 1o procedur
blocks and variant blocks, respectively. They apply { to the main program of procedure and
variant blocks, respectively, For example, if we have the tactic [pmain] law strPost(r > l)m_
and we apply this tactic to the procedure block [proc wonNeg = r:[x > 0] o r: [ > 0]] we
get [proc p=u:[r> 0] & +: [# > 0]] and the proof obligation + > 0= r >0,

When we want o apply a tactic to a procedure body we use the structural combinators

[pPbody] ¢ [] ] aud [phodyvariant] ¢ (I, which apply to procedure blocks aud variant blocks,

respectively. For example, if we apply the tactic law assig{< r >, < |0 > m to the
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o AT
Neg =« + [# > 0] @ nouNeg], we get [proc nonNeg =z := 10 o uonNey]
pOC ROTLAE] = 5 1 R
]‘obﬁj.'li-l-l»iou Irue = 10 2 0. ) . ' { sid
the pr arpuments declaration, we use the structural t'umbl.n:nl.ol'sh._fa!dl s -!E ]; E l
te ary b ; - Vi s T
R g on whether the arguments are passed by value, result, or value-resu

{dependi ol thie ictic [pBoaT] law strPost(s > 0)(I] o the

. ., il wee ; he
-. For example, | S : e 0))er:fe>0 s we get the
. NeyArg = (valresr :Ner:[r = -
cedure block [proc ":'”‘: :{,am]'res{.r :Ner:[r>0])er:[c>0]]and the proof obligs-

e [Pmc mm_-\'f'.l'lr. Ir

P _':.7[)::,;2{].

The declaration of a tactic has the form
i i me (nrys) lactic
i 'mmf: ;ll:ligalt.ions {predicate}”) [program generated program] end
r0o0 i R
‘h'u m[P is the naume of the tactic being defined, and args are its arguments. I:;l (lhx ;_u:uc:;r
e w, \\.'P include clauses proof obligations and program generated: the lo
ghion purposes, We

R : - latter presents the
tabic [ obligations generated by the application of (actic, @d the lLL‘l»t'll_ Pfd e
lists e Le J. These two clauses are optional as this information can be infered [rom u
1 generabed. s i . actics ! ions.
factic itstl:ll' I the next section we give several examples of tactics declaratio

4 Tactics and Examples

In this section we present some tactics and I:‘Xil.l.llplt's of l'tf‘ﬁllt‘lllttl’ll.; using thiese tactics. The
tactics are based on the development strategies presented in [10, 2, . . -
T the desipgn of a program involving an iteration, the'lna\iu cuuceuf ilf @Lnlt.'.::i:::mue the iteration
invariant. In [8] several strategies are presented, which we capture as tactics. -
Tactic takeConjAsInv  The first strategy cousists u.[ 1.a|.k%ng 4 u;lliju:ltllt;l' l;l:'k :&;5:;1.1};1:11::
of the progran specification as the main part of the uE\'a.l_'m:uL. s © .u. bopppn e
defined below [ollows this strategy o transform a specification w : [pre,inceon;
nto an initialized iteration. -

Tactic takeConjAsInv (ineBound, (st Var, IstVal), cariant)

applies to w : [pre, ineConj A nolCi ueu'u"]'

do law strPost{ineConj A nolGuard A incBownd):

:?‘:ws::s?;'::: ;t:;(. ;:':‘: ’13 E;.:\:u:.‘t,?l:[ (= nolGuard). ineConj A invBo und, variant));

proof obligations o
I (ineConj A nolGuard A invBownd) = (ineConj A nolGuand)

2.pre = (ineConj A invBound )[IstVal /1st Var]
program generated
IstVar == Ist Val:
do — nelGuard —
w [ineConj A imeBound A = lm.'(.'u-'m'(f. _
inrConj A invBound A0 < varianl < rariunlo)
od
end H Var, st Val), where fsf Vi
This tactic has three arguments: a predicate ineBound ., a pair (IstVar, Jstlal), ape [
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Is a list of variables and IstVal is & list of values, and au inleger expression
tactic applies 1o a specitication statement w - [pre, ineConj A uotl ruard] Lo gy
initialized iteration whose invariant is ine€ onj A ineBoand aud whose variant is g
initialization is fof Vay 1= st Val, Typically, the predicate inrBound states the
indexing variables of the iteration. The conjunction ine€onj A invBound is used g
of the iteration.

The tactic takeConjAsIny first, strengthens the posteondition (law strPost) using
went incBound, then it introduces & sequential cotnposition (law seqCom), Afie
law assig is applied to (e first prograu of the composilion to derive the initializ
law iter Lo the second program in order to inbroduce the iteration. The first proof
generabed by the application of law strPost. aud (e second by the application o

As an example consider the program ¢.r:[a 20A b >0,y =adivb A r=aq

makes ¢ lave the value of the division of « by b, and » lave the reminder of i
Using the law strPost we can refine it Lo G r:[aZ0Ab>0a=qgeb+rAD <
because, this new posteondition implies the old oue, hased on the definition of div.

Cousider the algorithm that first initializes g and o with values 0 and o, respes
uses ¢ Lo count how many times 1 can he reduced by b. To develop sucl an a
is convenient Lo use a = g+ b4 1 A D SrAr<bA D >0 an invariant, We
tactic takeConjAsInv with arguments b > (), the part of the loop invariant, Lial is
posteondition of the specification, ((g. 1}, (0, a)). the initialization of the variables, a
the termination condition of the loop, and obtain the program .-

i, =10 a; [
do r>b— P
q.r‘:[u=qtb+r!\ﬂ£i‘!’\t'a:v[]!\r}_"b. L
e=ysb+rAD<rAb>DADZ < )
od

The fiest proof obligation is (0 < # A 2 SuA(r41P>u)= (2 <uAlr+ )
is a Lautology, since a« A b = b, The second proof obligation requires us to g
(22 < aAO<zA(r+ 1)* < n A x = 1) implies that (> + 1) < w, which isin the a
Lo that 0 <z + 1, which holds by 0 < #, that 0 <t — (r+ 1)%, which follows from (#
and finally that o — (r + 1)? < o — 52, which holds since (# 4 1)* > 2* aud & =&
The tactic is used as il were a single (very powerful) refinement rule. All that ﬂ
its application is to refine the body of the iteration in the standard way Lo intros
assigiment ¢, 13 = ¢+ |, - — b, :

Tactic replConsByVar  Another comumon way of choosing an iteration invariant is
a constant in the specification posteondition by & variable. This strategy is caplun
lactic replConsByVar,

This tactic has five arguments: the variable declacation newl” = T the coustaiit L
argutnents taken by the tactic takeConjAsInv. It applies Lo any specification w : |7
to introduce an initialized iteration whose invariant is post[newl feons) A ineBownd i
variant is eariant. The initialization is bst Ve := fsi1ul. T Uis tactic the p:mlical"ﬂ

states the range limits of the new variable new|” which is used as a indexing v
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..-‘ geplConSB)'V"-" (newl 2 T, cons, ineBound  (fstVar, st Val), cariamnt )
1€ .t.o A [p”:,pt:sf] :
e 3 - T
w varlnt(ueci . "y :
— Postunm‘[urwi [eons] A new!” = cous); ‘
= ::;:i:t:akl‘ConjAs[lw(frmr'”uuruf.(!sf'-’ur.fx!im’). rariant ) II'

sbligations :
ob! fﬁ:ﬁl‘f"l'-)'r"‘"""] A neel” = vous) = post
L(pos I"ftwnx] A newl’ = cons A inrbound ) =

2 g

si[newV [cons] A newl” = cons) ' '
B o] A ineBowalt Yol V]
- generated
new) : T o
It Var += st Val;

- do = newl = cons — ' _ L '
newV w : [post[ucw)’ feous) A incBound A = new)” = cous,

post[newV feons] A ineBound A variant)

od

first introduces the new variable(law varInt), then it SLI?:‘[L!.[Lht“I 15 the pual.mml}—_

substitute the constant by the new variable. Afterwards tll.us tactic calls Lhe tactic

nj! v Lo introduce the iteration. The prool obligation | is generated by the law
; _,and the others are generated by the tactic takeConjAsInv.

| application exanple we use the progrant v :[a = 0A b = 0.0 = o \\'hl.l('h ‘ma.k«:\ .l.]lp
& - receive Lhe value of a. The idea of the algorithim we wanl to derive is to use a
i like & counter from 0 to b, This variable is initialized w':t_l.l .0 and - is initialize
Int-a::h step of Lthe ileration » receives Lhe value » « a and » 15.uu:u.ﬂnmubml b l:'l].lt'_
DOps ends when = = b. We apply the tactic replConsByVar with arguments = : Z,
i ‘le whicli is used to substitute the constant b in the second arguient, 0 ‘_C.J.‘ < b, the
linits of . {({r,r},{0.1)), the intialization of r aud r, and b — 2 Llle.\'u.l.'lat.l‘lt of the
o, The result of applying replConsBy Var with these avgnments is as follows

[var +:Z o
#ori=0,1;
do J‘#b——ﬁ
rair=a"A0L<sr<bAr#Db
P=a"A0< s <HhAO<hb—2r<b—un) 0d]

m(ﬂ)lig&timm{r =" Np=ly=p (r= aYand (r=a"Ae=bA0 S’ x £ b) implies
=" A - = 1), which are tantologies. A third prool obligation is (a =20 A b > 0)
B that | = a°, which Lolds by a propetty of the power operator, and that 0 <0< b,
s e antecedent,

M, the sefinernent, of (e body of the iteration is standard. We only lave 1o apply the law

Y0 get the avtrimtion - = r a0+ 1.
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e tactic takeConjAsIny embodies what is probably the most commonly nsed s
the developments of iterations. It is used iu the more elaborated Lactic above, whiely
nsedd iu the following tactic. From these examples, it is clear that tactices not ol
developments but also dociment techniques.

Tactic strenglny  Sometimes we cannot sim ply replace a constant by a variable in the
condition of the specification to determine the invaciant. First, we lave to change (s
the postcondition.

The tactic strenglnv lias seven argnments: a variable declacation newV| : T lya
streng and the rest of the argnments are Uie same as those taken by the Lactic replCo
This tactic applies to a specification statement o : [pre, post] 1o introdnes an ing
eration whose juvariant is (post A streng)newV 2/ cons] A invlonnd and variant js
The initialization is Ist Var := IstVal. Iu this tactic the predicate invBound stabes ‘
limits (typically 0 and cons) of the new variahle newV2 whicl is used as an indexing
of the interation. The new variable new!l’| is used as an anxiliary variable and the
streng is used Lo make a link between the new variable introduced and the data used iy
specification.

Tactic strenglnv
(neaV' L T1 streng, newV2 2 T2, cons, ineliownd. (Ist Vi, Ist Val). variand)
applies to w : [pre, post]
do law varInt(newV | : T'1);
[var] law strPost(post A streng); ]
tactic replConsByVar(newV'2 : T2, cons. invlound, (Ist Var, st Val), vari

proof obligations
L{post A slreng) = post
2 (pos A streng)[newV 2 fcons] A newV2 = cons) = {pos A streny)
3 (pos A sleeng) newV2/cons] A newV'2 = vons A inclionnd) =
((pos A streng)[newV2/cons] A newV2 = cons)
Lpre = ((pos A streng)[newV'2/ cons] A ineliound Wit Vad flst Var]
program generated
[var newV1:T1le
[var newV2:T2e
st Var := Ist Val;
do = newV2 = cons —
new VI, newV2, w: [(post A streng)newV2/ rons] A
intlflound A = newl" 2 = cons,
(post A streng)[newV2feons] A
inrBound A variand)
od]]
end

The first step of Lhis tactic is to introduce a new variable whichd is nsed o cliange (st
en) the posteondition, Theu, this tactic strengthens the posteondition and calls the
replConsByVar.

For example, consider r: [n >0, r=#{i,j: N [N<i<i<unflil<0 A S = 0}
counts how many pairs (7. /) there arve in the sequence, sucly al [lI1<0Aflilz0Ai<h

124

xIv SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

Jerive il algorithm that makes a linear search in the sequence {15511;},‘ a tew variable,

; tf” er'l Le sequence. The algorithin uses a new vanable s, initialized with 0, 10 count

e ltiih'.\'cl- l;ul!.ibt‘l.‘b lLiave been found iu Lhe search. Onece the searcli finds a non-

Mﬁ;ﬁ;: algoritlun increments r by the wunber of non-positive numbers that have
e 5

{his algorithm from the specification we use the tactic streng{.nv wil,.h arguments

? b which counts the number of non-positive numibers found in the linear search.,
ﬂf‘-‘ mtfﬁez i< oA fli] 0}, the specification of < whicli is used (o strenghten the post-
g ’{ L Nm H f{ the integer which is used to index the sequence in the searcl, n, the (.'Qllbi-ftll‘i
| I-I be replaced by m, 0 < m < », the bound limits of m, ({m, r5),(0,0,0)), the iui-

o ; ﬁ tion of the variables, and » —m, the variant of the ileration,

m application results in the program

s:Zoe
[varm : Zoe
m, s, = 0,0,0;

do m #n — . _
r=#{ 0L i<j<mAfli] SOAS] 20} )
s=#i:N|0<i<mA[[{]<0IADESMmEnAmFEN
ros m .
) r=#{i.j:N|j0<i<j<mA[f[i]<0A[][j] =0} )
s=#{i:N|0<i<mAf[]<OPAODEn—m < n—mg
od

At this point, the tactic application of the tactic lias already finished, we ouly need to refine

the body of the iteration to the program

if flm]<0—skip; [| flm]=20—ri=r+s fi
if f[m]>0—skip; | [[m]|<0—s:=5+1; f

m:=m++1;
This can be accomplished using the laws fassig. seqClom. alt, skipIntro, and assig2 -

Tactic taillnvariant This strategy is used when we waut Lo develop au algornitlun involving

B iteration whose invariaut is based on  function defined using tail recursion.

This tactic applies Lo a specification statement w : [pre, posi] W introduce an initialized iter-
alion whose invariant is invl ‘onj A incBound and variaul is ecariant, and a final H&higll!{lrnt-
IstVar, = 14 Valy, whicl typically is an assigmnent of au element of a sequence illt‘ittlﬁl_‘.(l
al index found iy the iflm‘a.t.iou body, 10 a variable, The initialization of the iteration is
Vary = lu\ aly. Tuside the ileration body this tactic includes an alternation.
This Lactic has ten arguinents: e first two arguments ave variable declarations, which are used
a i“‘]ﬂillg variables i the ileration. The uext argunent is a predicate meBound. 1t is used to
ta conjunction witl the next argument, nof Guard, whicli is also a predivale and represents
“Hegation of the guard of the iteration. Tlhe next argument is a pair (Ist Vary, st Valy ), where
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IstVary is a list of variables and st Val, is a list of values. They are used in the initiali
the iteration. An integer expression varian( is the next argumnent and represents e
of the iteration. The next lwo arguments guurdslist and taelieslist are used o call
alternation, wlich generates au alternation with the guards given as argument aind 2
Lactics £ of the list of tactics also given as arguinent to the corresponding guarded
Its definition is very simple and is omitted for the sake of couciseness. Final Iy we lia
(Ist Vary, IstValy), where IstVary is a list of variables and lsiVals is a list of values, 1
used in the final assigniment after the ileration has finished.

o eoam element ol a sequence AL The himetion # {n_ ) returns the maximum element
k- A n its nth and mth clements. We apply the tactic taillnvariant with arguments
of A bpt:t"!" . which are the anxiliar indexing variables /'(r, y) = F{O,n) A0 <o <y < g,
: Né;:hejc;mjunrts which [orms the invariant of the iteration, » = y. the negation ol the
“'m' ion gllﬁ.r{[. true, because we do not need to bound the values of the indexing variables
= the iteration invariant, ({4, (0, n)), the initialization of the iteration, y — =, the variant
i h(; iteration, (Afr] < ALyl Ale] > Alyl). the list of guards of the alternation. the list of
- e % {assig2((f>-(-’ + 1)).assig2((y).(y — 1))). used in the tactic alternation call. and
ﬁl‘lﬂui’ ( (‘.}‘{_.][-_;.-])). the final assignment. The application of this tactic results in the program

Tactic taillnvariant
(earl : T ear2: T2 meConj, nolGuard  inelound , (Ist Vary  Ist Val, ).
variant , guardslist lactiosList, (Ist Vars, (st Vals))
applies to w : [pre, post]
do law varInt(earl : 71, car? : 1'2);
law seqCom(ineConj A nolCluard);
(tactic takeConjAsInv(ineBound, (Ist Vary st Valy), cariant );
{skip[;][do] tactic alternation(yuardsLisl. tucticsList fed)))

[varz : N: y:Ne
ey =100k
do r#y—
if Alr]<Aly] = w=a+1;
DAL] > Aly] — p=y—1;
fi
od
E} re= Al
law assig( lst Vary, Ist Vady ): |T_] i
proof obligations
L{eneConi A notCluard A ineBound) = (ineConj A nolGuard )
2. pre = (ineConj A ineBound Y[IstVal [Ist Var]
3 (ineConj A ineBound A = nol Guard ) =\ guardsList
doeneConj A nolGuard = post [1stVal [ sl Vﬂ-r‘]
program generated
[var carl : 7'1; var car2: T2 e
IstVary == lstValy;
do = noiCiuard —
if (T gquardsList; —
(laclticsLisl; w : [guardsList; A ineC'onj A ineBownd A = noll
ineConj A ineBound N0 < varian! < rurin

with prool obligations which are long but simple.

The strategy presented in [10] for the development of programs involving procedires is not
;.éﬁﬁ'iré_l_.l_v hased on laws, especially as [ar as recursive procedures are concerned. Moreover an
inconsistency has been found in that work [3]. Therelore. we consider the approach of (2]
where a set of rofinomant laws to deal with procedures is presented. These laws, however, are
wery simple (see Appendix A) and the development ol programs usually requires the use of
several of them. The following tactics capture commonly 1nsed strategies.

‘Tactic procNoArgs I'he tactic procNoArgs introduces a procedure block that declares
A procedure with no parameters. It has two argnments: the name of the procediure which is
introdiced and its hody. This tactie applies to a program p, introduces the procedure, and

‘makes one oF more ealls to if, depending on the program p.

od )

Ist Vary == lst Valy; Tact.ic proeNoArgs ( procName, procliody)

applies to p

do law procNoArgsIntro( proeName, proclody);
law procNoArgsCall;

Program generated [proc procNume = procBody e p(procBody \ procName]]
end

I

end

The tactic taillnvariant first introduces two variables (arguments carl ;7 and rar2 s
Alterwards it splits the body of the variable block into a sequential composition of fwo
specifications. The first defines the initialized iteration and the second the final assig
t. The tactic applies the tactic takeConjAsInv to the first program using the i
(IstVary  dst Vah ) and variant arguments. The tactic also applies the law assig to the
program using the argument (1s! Vary, fst Valy). Inside the iteration body, the tactic appl
tactic alternation nsing the arguments guardsList and tacticsDist. The prool obli
and 2 are generated by the tactic takConjAsInv. The prool ohligation 3 is generated b
law alt, and finally the proof obligation | is gencrated hy the law assig.

fl‘h‘nr program p|proclody\ procName] is that obtained by replacing all oceirencies of procBody
Mpwith procNume.

::r nn“‘_"'x“ml’“" wet consider the program which orders three integers in an increasing o

[, e can specily such a program as pogor:[p<g<rA s g r] = [pos @ 1n]]. where

We,f;;J- E[f'-‘bl)-L{h. . 1y) ) is the Dag with elemients p. ¢ and r (rosp. po, g and ). Fir::l...

tin le::“ e thiy EJI‘Dgl'Eu‘u to p,g = pMy, v Uy gori=gMecqUr poy = v Mg, pUyqg. We

aud ., :PP].\' the tactic procNoArgs with arguments sord, the name of the procedure,

[DI‘OI:‘ :U“ PTg.p U g, the body of the procedure, and get as result the procedure block
Sl =gigii= pg pUge sorls g, r = ¢ gUr sort].

As an example we nse a program that returns the maximum clement of an integer segi
We have the specification statement »:[n 2 0, = I'(0,n ), which assigns to o the ¥
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Tactic procCalls Before deseribing a tactic which introdnces procedures witly gpi
is useful to define a tactic that introduces parameterized commands. The tactie
takes as arguments two lists, The first is & list of parameter declarations ane |
is ‘'a list of argnments. The declarations Lave the form k # : 1" where k defines
argument. is passed, by value(val), by result(res) or by value-result(val_res), » is the p;
the argument, and T its type.

This tactic wies to derive an application of & procedure call with the given parame
given arguments. With this purpose, this tactic tees to apply each of the laws that inf
paramieterized commands. If one of thent succeeds, the lactic goes on with the vail of
else, the tactic behaves like skip and finishes. .

Tactic procCalls (pars. args)
applies to w : [pre, porsl]
do (law callByValuel(/irad’ args head” pars):
[val] tactic proeCalls(fail pars, lad args)) ‘
(law call By Value2( head' args, head' pars);
([val] law hideFrame(/eud’ pars));
tactic procCalls(lail pars, lail ar 5)) I
(law callByResult(head’ args. head' pars);
tactic procCalls(tuil pass, lail args) |
(law callByValueResult(head' args, head' pars):
tactic procCalls(tail pars, tail args)) |
skip
end

The function head” applies 1o a list, and gives anotler list that contains just the head
given list, or is empty il the given list is empty. This tactic is recursive and can
applications of parameterized conunands whose bodies cau include further applicat
example of the nse of this tactic is presented below.

Tactic procArgs Now we can define the tactic procArgs which introduces a par

procedure in the scope of the program and makes calls to this procedure. Here the ar
pars is a (possibly multiple) parameter declaration. We ke nse of the lunetion sey !
convert args. a i-separated sequence of arguments declarations, 1o a list of declarations.

Tactic procArgs (procName, pars, bendy. args)
applies to p
do law procArgsIntro( procName, pars, body):
tactic proeCalls(seyTolList pars, args )i echaust{law multiArgs) m, !
law procArgsCall 4
end

This tactic first introduces a procednre with argunieuts using the law procArgsIntro.
the tactic nses procCalls 10 introduce applications of paranieterized conunands with par
ters pars Lo argunients args. Finally, the tactic uses the law multiArgs Lo nested applica
of parameterized commands,
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we nse a program which substitutes the value of & \'a.ria.hie_-l by its square
exanple Afication of such a program can be r: [0 < roa? = n). We use the tac-
e spﬂ-"ll" ld.; muents sgrt. the name of the procedure, val a: RB: b: R, the pro-
cArgs \\1l._1 b -70 < a,b* = a], the body of tha procedure, and < >, >, the argu-
: mfwt’t:m ;rr;rr‘rlﬁm call. The tactic lirst introduces the procedure using the law
= Ltn ¥ "‘L‘Ilmm the tactic calls procCalls and the body of the procedure is relined to
3 RSI:l{::; h:Reb:[0< ab?=a])r))r). The nest step, the application of the f.af.'.—
‘. law multiArgs), results in (val o :R.res h:Re b: [0 <a. b®=a])ix.r). Fi-
t <o ‘:'r applics the law procArgsCall to the wholo procedure block and we get the
me[.;::o::q;d‘ =(val n:R,res b:Reb:[0<a,b?®=ua])e sqris(e,r) ]

recProcArgs This tactic is useful when we want. to develop a recursive procedure
save to introduce a variant block with a parameterized procedure. Its definition is

 Tactic recProcArgs o } _ s
qh {Pmn:\’ﬂm o, Arps, varin niName, rgﬂmn””'"rp‘ fmd.y_ parsl?roc k', g-um'r!x!. sl faelicslis )

lies to p ) . )
.zp law variantIntro(proeName, args, varianiName, variantExp, body);

tactic procCalls(seqTolist args, varsProck’);
crhans! (law multiArgs); [I]:

law procArgsVariantBlockCall;

DD L] 4 ) )
law absAssump; tactic alternation(guardslisi, lactieslisl); m;

law recursiveCall

I end

This tactic first. introduces a variant, block using the law variantIntro. 'l"h.an, as in Tlhp
t vious tactic, it uses the law procCalls and the tactic exhausi(law mu!tlArgsj to in-
‘Nﬁﬁlﬂ’ an application of a parameterized comumnand.  Afterwards, the tactic ust‘:.s the la.v:\'
E!i'f-'*‘w‘l‘-E'SVB-l'iiu‘llt.BlockCall to introdice a procedure call in the main progra of the vari-
ant block. The next step of this tactic is to reline the bodv of the procodure, Mirst, the i-fl.f:-lvlf‘.
Te law absAssump to move the asstumption that delines the variant, to the prm‘.m‘)(ht.ion
f the specilication. Then, the tactic applics the tactic alternation. Finally the tactic uses
the law recursiveCall to introduce a recursive call to the prograu,

As an exatple, suppose we want. to develop a program which caleulates the factorial of an
Wl‘ . Its specilication can he f: [f = n!l. The idea is to use a recursive procedure
Joet. We only have to apply recProcArgs with argiuments foel, the name of I.l:c_ proce-
dute, val 1 : N, the argiment of fael, V', the variant name, m, the variant itself, f : If = ml],

body of fact, < n >, the argiunent. of the call in the main program., < m =0, m > 0 >, the
Bards of the alternation, and a list of the tactics law assig((f), (1)) and the sequential com-
Position of law strPost(f = m «(m — |}!), law callByValuel(< m.k >, < m — |, m+k >),

and [val] (law weakPre(() < m < V); law absAssump). This application generates the pro-
Bram

[pmrf.q.r_»; . [val m:Me if m =|]—-'.";‘-_'— [[I m >ﬂ—-»f:—_- mtfm"-'[m — |] ﬁ}
variant 1" is m e facl(n) ]

A few proof obligations are generated but they are simple.

RGS |
t}: ge \nfom\aiica

itu
Insti S plioteca
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5 Conclusions skiplutro s - h.,,-t-_p.p‘.-j] C skip provided w = uy A pre = pos

__eNoArgsIntro(pn, pi) p2 = [procpn = py o pu] provided pre is ot free in p
;ucNOMgsCall [[proc =g e P:[Pr]] = iPl‘OCfﬂ-‘- =mne Psi!-""]l

. scArgsIntro(pu. par.p) p2 = [procpu = (par e pi) » pa]
iﬂﬁl p is not free in p

! : Call
miﬁ o pi) o pallpar @ pi)(a)]l = [procpu = (par e pi) o palpu(ai]]

IByValuel(/,«) w : [prelf \ al, posi U‘n-'q'\ aya]l = (valf e w : [pre, post])(a) pro-

¢ pot in w and @ is not [ree in o

We have presented R1L., a langnage suitable for the delinition of relineent. tact
RTL we can speeify commonly nsed strategics of program development and use ¢
formation rules. This not only shortens the developments, bt also improves theip

Furthermore, we have defined a number of refinement, tactics that capture stand.
gies for the development of iterations and more recent formalizations of strate
development of procedural abstractions. These strategies have already been pig,
the literafure mainly by means of examples, but as far as we know. they have
formalized and expressed as a transformation rule.

cal
/ . | |
callByValue2(f. ) w : [_m't:{.'r\ al, pasf[}u\ a] = (val [ o w, [ : [pre, post])(a) provided
g@.‘ o e and w is not [ree iy post

callByResult([.«) w,a : [pre, post] = (ves [ o w.[ : [pre, postla \ [T))(a)

-____,le [ is not in w, aud is not [ree it pre or post, and and f; is not free in posl

imﬁ w callBy ValueResult([, @) ‘ .

el \ o\ ol = (vaLes [0 0. e, postfn\ )0

provided [ is not in w, and is not free post

Law hideFrame(r) w.z : [pre, post] C w : [pre, post[n, \ +])

Law variantIntro(pr, pars, u. e, py) ‘
= [procpr = (par e {n = elpy)variant u is ¢ e py] provided pr and # ave not free in ¢

Our language is independent, of any particular tool of programuuing language. On ¢
hand, we are developing a tool to support. the refinement ealenlis [4] and we intend
it to provide support for RT'L. The relincment. tactics presented here are going to o
basic repository of tactics. The user is going to be able to apply these tactics as wel
new ones,

The formal semantics of RUL, along with algebraic laws that allows reasoning about
tactics will appear elsewhere. This work is based on the Angel semantics. The difl
that Angel is a very genoral language and its goals have no delined structire, For us,
called RMCwll, which is a pair with a program as its first clement and a list of proot obi
as its second element. The application of a tactic to a RMCE returns a list of RMC
is the possible output. programs with their equivalent list of proof obligations.

-

As already mentioned, to our knowledge, the only other work on relinement tachics
presented in [7], where basically Prolog is nsed as a tactic language. It is not possible
a factic recursively and there are no structural combinators. Also, only a few ex

Law multiArgs (pary /) o (parz fi)(a:))(m) = (pary fi; pare fo)(a. m)
Law procVariantBlockCall [proc pr = (par e py) variant nis ¢ e py[(par e py)(a)]]
={proc pr=(pare py)variant nisc e pellprital]]
provided pr is not recursive, » is ot free in ¢ aud ponand {n=¢c}lp C

simple tactics are provided there,

A Laws of Refinement Calculus W absAssump {pre'} e : [pre, post] = w : [pre! A prv, post]

Kmv recursiveCall [proc pr = (pare p[(pare {0 < e < }pa)(e)]) variant nis e e py]
3= [p]:uc pr=(par e p[pria)])variant nis c o p] provided n is not. free in py and mprial].
and {n = s Ep(pare {0 < e < nipy)a))

Law strPost(posty) w : [pre, posi)] T w : [pre, posty] provided post, = posty
Law weakPre(pre,) u: : [pres, post] T w z [preg, post] provided pre; = pre:

Law assig({w).(K)) w: [pre,post] T w:= K provided pre = post|w \ k]

Law assig2({w),(E}) w, o : [pre, post] T w = E provided (w = o) A e = post[w -Rﬂferences

Law fassig((r), (£))lor any term £ w,a < [pre, post] © woz : [pre, post [z \ E]; @ 3 _ :

- ﬂgslg“r} ( - ’pf SR it 1 & W .[P-‘" e [-"\ L% ['I'I R. I R Back. Procedural Abstraction in the Refinement Calenlus. Technical report.
Law seqCom(mid) lor any mid w: [pre, {m#fl C w:pr, mid]; w :[nud,fm.-‘f] D“]’N'!-lu(?nL of Computer Science. Abo - Finland, 1987, Ser, A No. 55.
Law alt({ G,y Gu}) w s [pre, post] £ 0F (7 00 — w - (€5 A e, post]) i

provided pre = Gy Vv ..V 6, 2 A C. Cavaleanti, A. Sampaio, and J. C. P. Woodeock. Procedures, Parameters, and

-S:.ﬂ)ﬂl.il.m.im, in the Refinement. Caleulus. Technical Report, TR-5-97, Oxslord University
Law iter{((/...., (Z..}, ine. 17) For any formula iue, the invariant: and any inleger exp (.-ompm.iug Laboratory, Oxford - UK, February 1997.

V', the variaut w : [pre, post] © do (7 i.(5 — w : [ine A Goine ADS V< Vi '\ upll) Ay
a b1z [prespost] E 4 ) : \ : BlA L Cavaleanti, A. Sampaio, and J. (. P. Woodeock. An Inconsistency in Proce-

dures, pil.l'u.mm.:-.rs. and Substitution in the Relinement Caleulus. Scienee of Clonputer
P"Ogl‘iluuuing. pages 33(1):87 96, 1999,

Law varInt(n : ') w : [pre, posl] © [vars: "o @, 0 [pre, post]]
provided » doen not oceurs in w. pre, and pos!
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