v SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE
— T S < .

A

A Modular Approach to Animation
of Simulation Models*®

enbe L0304 .00-L %,
R. Bardehl ', C. Ermel ', L. Ribeim 2 Lép

J
! Technische Universitit Berlin, Gerinany f\
2 Universidade Federal do Rio Grande do Sul, Brazil

Abstract

mulation within software development has as main aims to validate the
as to recognize performance agpects. A simulation model includes the
[the behavior of the systems, but also intended animation strategics (fo
mulation) and statistics collecting/evaluating procedures. In this paper
‘modular approach for animating simulation models. Both the system’s
d its animation are modeled by graph grammars, a formal, yet intuitive
fication technique. The simulation of the system as well as its animation
by tools. We discuss the integration of the tools PLATUS. designed to
simulation models, and the tool GENGED, designed for the development
£8, in order to obtain an environment in which animation modules can
(from GENGED) and used (in Pratus), Moreover, due to the modular
animation can be exchanged easily, and can be also reused by other simu-

_ nulation Model, Animation, Graph Grammars, Visual Languages.
uction

Serete simulation aims at validating and recognizing behavior and perfor-
S of a systen. Although it is possible to perform tests on real systems,
ical problews, especially during the design of safoty critical system
e ”t’ore, testing and validation of system properties during the software

'S¢ reduces costs and safety risks and helps to detect specification or-
= ise of discrete simulation allows to build controlled environments where
188 may be tested while searching for the best solution.

‘a’_l" Supported by the German Rescarch Council (DFG) and by the projects
nany, and CNPq, Brazil) and PLATUS (CNPq, FAPERGS)

133

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWA v SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

The first step to do a simulation of a SYSEetn is to constinet a mode]
be simulated that represeuts the specific system elements under investigati
as possible. A simulation model is composed of wany parts. The ain
the behavior of the system, others are concerned with collecting data for
visualizing the simulation of the system. There arve many interactive de
vironments for simulation. botl conunercial ones such as MicroSaint,
and ModSim IIT. as academic ones such as VMSS [KN96), SMOOCHE:
VSE [Bal97] and SIMOO [Cop97]. In most of these environments, the he
model, together with its animation and statistics components, is deserilyed
written in various programumning langnages. Describing the behavior of i
of a simulation system by programs Las some serious drawbacks: 3

he specification of the behavior of a component is clearly separated
EATUS',) “Ii' the animation strategy chosen to visualize the simulation of
Piﬁmhon"o : Il o nse a library of animation modules. Oue open problem
g ;1.[10“-12!:!. ‘:\"if.ll a suitable way of constrneting animation modules, and
mﬂd{‘];} I}l; these modnles to the simulation madel. This is the topic of this
- ol "i1r-"|.111111at.i011 moclules we will use an approach called GENGED
. thdtl,lir G‘E‘.NGED envivonment. (short for Generating Graphical Editors)
I faf tﬁ:‘.h:*isnul definition of visnal langnages. Here, we use it to (-,m:s.,'f.rit.t..
! l los. Aunimations will be described by gm.pl} Eralnmars, t.hf}t are t (..
o a_l_m. 1 for the description of visual languages in GENGED. We deseribe
{?rn:c-[fa]:x‘-s are necessary for the integration of the PLATUS components
. " .tf:io.u modules defined by GENGED {ar\“ F.igm'c' 1). The @l\-'mai;{:gn%. olj
ar approach are twofold: on the practical side, ‘t.hr- user t‘I(!i?CFs on lylts it
L method in order to specify the]Jt'.]lﬂ.\-’il)!‘ a.ml‘t.lm mu_uml-]on of his H%m fl‘ 5; 01:
stical sicde, the uniform representation gives rise to simpler and more e cgant
it are easier to analyze and to use for furthier development.

¥

e Although the model is a specification of the systen to be construetad,
tion is too low level to be used as a specification for the further doye 0
systent. Morcover, typically the programs describing the models inel
and animation procedures and it is hard to extract the behavior m
program (statistics and animation are only interesting for the simuly
for the developuient of the systom);

PLATUS Behavior Graph Grarnmar]

e It makes it hard, if not impossible, to make proofs of behavioral prop

Interface
systemn;

e The reuse of simmlation cotmponents/animation procedures in other s

GENGED ‘ Animation Graph Grammar
wodels becomes more difficult; 2

e If the platform /implementation language changes. all existing models

) Figure 1: Modular simulation and animation environment.
or have to be adapted / re-implemented in a new langnage. A

| '-‘mi‘vl’ is organized as follows: Scetion 2 iy an informal i.ni.I'Odl}(‘.tiOn to graph
1o overcome these problems we proposed in [CK98] that a simulation 5 a8 they are the basis formalism nsed in onr approach; Sections 3 :L—ud 4
should have the following characteristics: : : bthe basic concopts of the simulation environment. PLATUS a.m! the GENGED
respectively. In Section 5, we show how to construct animation modules for
‘models. Finally, in Section 6 , we review the main rosults of this paper and
her developments.

1. Use a formal specification langnage to describe the situlation models.
fication, besides being an abstract, implementation independent; des
systein, can be used as a basis for verification and correct imnpleme

2. Separate the aspects Behavior. Statistics and Andémation thronghont ths
process. This separation allows flexible combinations of components (1
the selection of different animation views) when simulating the syste
Morcover, the analysis of system properties and the later software
steps then can be performed based on the Behuawvior component only, in
of animation or statistics details,

aph Grammars and Graph Transformations

S play an important, role i many areas of computer science. They are espe-
piul in analysis ane design of soffware applications like database systems or
Systems. Prominoeng representatives for graphical notations are entity ro-
rams, message sequence charts, Petri nets, antomata and all kinds of UML

These ideas served as a basis for the definition of the PLATUS envit
CMRO0]. This environment. allows a component-wise construction of simula
based on the formal specification technigie graph. grommars [Ehr79, Rozd
grammars are quite infuitive even for non-theoreticians. The basic idea is
states as graphs and state changes as (graph) rules where a rile shows part. of
a before /after style. This allows a clear and vonsistent. description of events
the system behavior.

= Wewill recall the concepts of typed graphs [Kor95, CMRI6] and illnstrate those
ple. A graph is given by two disjoint sets (graph objects), ealled nodes
) And diroctod arcs (edges) from a source node to a target node. Every graph

Wped over » type graph. Figure 2 () represents a typed graph with three
BEIVO arcs. The nodes are of type Elevator, ButtonSet and press and the arcs
30lid line and dgsheq line. The corresponding type graph is shown in Fignre 2

134 135

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWA

SIMPC)SIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

(b). Here, the nodes and arcs are the types themselves, whereas the pray = — o W
1 £ & a o . c 1ncte v . 1 ¥ 3 . gt 5 o0 {
Figure 2 (a) can be seen as instances of these types. Nodes and arcs may he :mx _ 4 go |

labeled by attributes that are used to store data together with the praph gl
paper we will only use attributes for nodes. Attributes will be denoted in t]
by an arc carrying an attribute name connecting a node to its attribute 3
the instance graphs this attribute are will connect & node with the current y
attribute. In Figure 2, the type graph (b) specifies that an Elevator node
an attribute named state of data type State= {stop, up, down}. In the i
(a) the value of this attribute is stop. The press node contains no attriby
as attributes abstract data types, that is., we consider not ouly the sets of
also operations on these types. In particular, the use of abstract data type
use variables and terms as attributes (by choosing a term algebra. as attril
This is very useful for a high-level specification of behavior, as we will yee

' {stop,up down} stat
stop gaw@._@ 0. 51— Elevatop
LEC floor
(a)

(b)
Figure 2: A graph (a) typed over the type graph (b) |

! _—

) el stop state Elwmh—@

Figure 3: A Graph morphism of attributed graphs

hich do not have an image via - in K are deleted; graph objects in R
1 in L are ereated, and graph objects in L which are mapped to R by r

tion of a rule to a graph (7 (derivation) requires a mapping from the
nd side L to this graph G. This mapping, called mateh, is a total graph
: L — . A match marks the graph objects in the working graph that
in the rle application, namely the graph objects in the image of m. The
on itself consists of three steps. First, the graph objects marked in the rule
~are deleted. Thereafter, the new graph objects are appended to the graph.
all dangling arcs are deleted from the graph. The graph transformation
transformed graph H.

an abstract representation of behavior, rules often use variables and terms
- Using attributed graphs, the attribute values or variables of the rule’s left-
we to match as well. An attribute variable is bound to an attribute value in
1 graph object by the match. In the transformed graph. the attribute valies
-depending on the rule’s right-hand side and result in a constant value.

5
e 1, rule

pressButtanin)) !
__..::..

Note that, using a graph as type system poses additional constraints
instances: for example, in no instance graph a press node can be conn
node via a solid line because such a situation is not, present. in the type

2 (b).

A relationship between graphs can be expressed by a graph morphi
the nodes and arcs of the first graph G to nodes and arcs of the secon
respectively. The graph objects in & are called origins and in H images.
have to be type compatible (nodes and arcs are mapped to nodes and ar
type) and compatible with structure (the source/target node of an are is
source/target node of the arc’s iiage}. A graph morphisiu ¢ between the
H is denoted by g : G — H. Figure 3 shows a graph morphism. The at
also have to coincide. Note that the press node and its adjacent are are n
We call such a morphism partial. Morphisuis mapping all objects in the
total.

Graph transformation defines a rule-hased manipulation of graphs'. i
can be used to capture the dynamical aspects of systemns. The resulting not
grammars (consisting of a start graph and a set. of graph rules) gen
grammars fromt strings to graphs. The start graph represents the initial
system, whereas the set of rules describes the possibles state changes tl
in the system. A rule comnprises two graphs: a lofi-hand side L and a ri
R, and a graph morphism r : L = R between the graph objects of L

i ' — =

Figure 4: Application of a rule

shows

A rule application. This rule models the event. of a button being

1 + hie y i ino g i o W o 3
We here follow the Algobraic Single-Pushout approach to graph grammars [Low93. , Yeaction to tle message press the elevator receives a message to go to floor

an overview of the main approaches see [Roz97).

136 137

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SO

1. The floor mumber n is given as rule parameter. It is bound 1o a value |
sitnulation controller when the rule is appliecl. In this example, n is bound ta
5. Note that there are two possible matches for this rule because there are
pressin graph G. We have indicated the chosen mateh by corresponding

3 The PLATUS Simulation Environment

In the PLATUS environment [CK98, RC00, CMRO00], a simulation mode] iS5
as a composition of simulation components. The first step to specify a
to describe its internal structure as a grapl. Then one can specify its
graph rules and an initial state. This gives raise to the BehaviorG@ of
we are constructing a simulation model, we now have to specify how t
shall be animated. But, in order to obtain a flexible model, we will y
animation concretely within the specification of the component, but onl:
shall be sent, to the animation module and when these messages must he «
this specification of animation is an enrichment of the BehaviorGG by
messages (and mayhe attributes, if necessary). This resulting graph graj
called AbsAnimGG because it, is a very abstract description of the an
coucrete choice of graphical layout for this specification will be done
an animation module to interpret the corresponding messages. An analog
gives raise to the AbsStatGG, a graph grammar that describes abstractly
for statistical data collection/analvsis used in this component. The it
discussed in Section 5 .

Interface Rules

_ - » ——

AbsANIMGG AbsStaIGG

" Behavior GG

Figure 5: Simulation component

Now we will give an example of & component modeling a very simple
Figure 6 we can see the type graph of this component. For a first app
consider the dashed elements. A node Elevator has as attributes state (th
elevator) and floor (the current floor the elevator is in). Moreover, this co
known by another component called ButtonSet. representing a button set.
fication of this component will not be shown here). We will represent tﬁé‘
actions by message nodes. The elevator shall respond to the message go and
set shall respond to the message press.

The reaction of the elevator to a message go is expressed by rules goUp, &
depicted in Figure 7. Rule goUp specifies that, if the target. floor (n) is hig
current floor (1) then the elevator goes one floor upwards, sets its state to U
dmessage to itself in order to trigger the application of the same rule, ouce
reaches the desired foor (the triggering message is always consumed by the
of the rule). The other rules behave analogously,

138

SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

Bunoose
‘_/
M=o .
anim
P g
Animation=<----- -
ol ! L it total-n V!

Figure 6: Elevator type graph

__Elevator<- anim -?{n_}n_aa_li:oh

floor P !
H o o« Amimlip |
iy’ L

gollp !

_i o I

¥
. Up ~=state i Dreiil=ay
o o Elevaio<- 12 irimaic

floor

EEseTE =3

:An.ir;fjrmn:
ki retiiode

golown .

—_— !

| ! L, st

. BRI e i A A nimation)
. atapie-==10 Animation) sz
LR
(AnimStop|

Mmmq ===

e -l*\jnimntiag\l

Figure 7: Elevator rules

UFRGS

i
139 Lo Biblioteca

ituto de informatica

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

The initial graph Tnid is shown in Fignre 8.
elevator must be in the gronnd foor (0), in the state stop. Morcover, the b
has a trigger press. Note that the specification of the hutton set includes

pressButton(n), as shown in Figure 4. When this mle is applied, a message
generated on the elevator starting the elevator movements.

| ;Jfl',\'.\ |

stop —_state kit)
floor

It specifies that, in the beginnj

Tani

i
:anim
S rez o ofleor,
Animationre- - -1 -

Figure 8: Elevator initial graph

The dashed messages and compouents in Figures 6 8 represent graph objects
are net. present in the BehaviorGG of the clevator but ouly in its AbsAnimG@.
example, in the rule goUp it is specified that, besides the behavior deseribed al
message AnimUp shall he sent to the animation component. The message Init in
initial graph Ini describes that, in the beginning, the animation module will
this message with parameters 9 (representing the total number of floors in the buil
and 0 (representing the current floor). This message is used to generate the anim
picture that is modified by the application of the other rules.

More details about PLATUS and its architecture can be found in [RC00, CMROO] .

4 The GENGED Environment

The GENGED environment [Bar00, BNS00, BTMS99] is a visual environment, suppor
ing the visual definition of visual languages. The result is a visual language specificati

which is the input of a graphic editor that allows us to edit diagrams over the lan
specified. Here we show how GENGED can be used for the visual definition of animati
modules; we consider each module as a visual language. Based on these descriptio

in Section 5 we extend the GENGED approach by allowing the generation of seve
animation modules.

The GENGED environment implements its underlying concepts. Similar to form
textual languages, in GENGED, a visual language is specified by a. visual alphabet and
visual grammar. In contrast to textual langnages, a visual alphabet, comprises not on
the symbols of a language but additionally the links between symbols, because in vis
languages we have to deal with two-dimensional expressions whose positions and sizes:
must be taken into account. As we model visual grammars by graph grammars, al
grammar of a visual language consists of a start graph and a set of graph grammar rules.
Like graph grammar rules, also visual grammar rules may be context-sensitive such that
GENGED supports the visual specification of a broad spectrum of visu

a vis

al languages.

140

X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

GeNGED we distinguish between two svntactical description li‘\‘t'l!*i: .uau'u}elf. -Lh‘e
o qntax level and the concrete syntax level of visual languages. . Ihg- abstrac t.-
abstre” hf\v*'hm the language’s elements (e.g. the names for symbols and links). whereas
e dt"b‘.” -;\'-ut.n..\.c describes their layout. The layout is given by the (Ire:script-imf of
g m‘-‘nmﬂf';“{-w and graphical constraints between the objects. In general, graphical
: Phw'al t-})Iu]' 1.1‘9'-1«' relations between graphical objects coneerning their positions a.l“l
wustﬂlll_“-" L'.)-‘xth; .n(}ﬁun of constraint sudisfoction problem [DvB97] in order to define
o “P, Ih-Ll rilijl.lt- variables correlating with certain object properties (positions and
g L(lm-r‘ 1.;-1l' ions (graphical constraints) over the constraint variables. The problem
gizes).'m;t-H-lulil'rim; for all the constraints. For example. we ean specify that a ('il‘.(:lP
g !dxz-:l ilu;ai{le a box by a constraint. Then, if the box is moved. a constraint
i 0 % - L.;i'ul)lt'lm has to be solved in order to calculate the new position of the circle.
barilsfd::l‘i:;e} a lot of solving algorithms can be found; we use the mu.-sl-ra_iut- h(.}}.\'ill:pn'
:ljtg‘;ritl!,hm (and the corresponding co.nst.ra.inr. solver system) described in [Gri96] that is
able to find the most adequate solution.

In

The visual specification of visual languages (VLs) 55‘111?]1(.!??.(-!.([!)}‘ GENGE}-D is asl
application of algebraie graph transformation [Bar00]. This is sumlm: t{_). lihu. LIL))I:::])T.:
of typed graph grammars introduced in Section 2 but tere c:;m{ﬂ.ei mi: (}1}1? t]-:[w\ b
the graphical objects used for the lu.ymzl.: and l'...ht‘_. l:u_i‘rt-lal.mn o t‘})_](-‘l pzal i 1, \.._iwal
constraint variables oceurring in constraint sabaslgteLlun problems. 1"051‘11 v af t gl
alphabet is given by an algebraic graph structure signature and a mnmimmt sit,:al T .1? |
problem. This means that a visual alphabet is irltt&l'}]l'ﬂi.lf'tl as a type'p,{"a.ph: ! d {1L m;;:
access operations on graphics define the constraint variables. All l.Il.‘:ab‘clJ.lL(:'b { : (] .—,
grams, both sides of grammar rules) are typed over the alphabet and moreover ,ft- |I'tl}
satisfy the corresponding constraint satisfaction problems. F‘m: the l:lerl.va,t-ml} r.n r .m-
p,l'am.; we follow the concepts mentioned in Section 2 together with graphical constraint
solving [Gri9a).

According to the constituents of a VL specification, the GENGED cfn\'irrl}nmen_t. E:min:
prises an alphabet editor and a grammar editor. The alphabet e.fln-rfr :-.-upzm{l‘l-h I;-l{.
editing of visual symbols for both, the abstract syntax and the concrete ~.\ nt-c.mx.-rile-
spectively, The abstract syntax of visual symbols is lﬂ})r(’&ent,ed by node types. J u;
node type attributes represent the concrete syntax of visual S}’mbnl_s.l Once the v 15.1:;1
symbols are established. the links between these symbols can be defined. On the)-
s},r;uzl. syntax level, the definition of links establish are types hel;wet:e.n the symbol nlpm
For mnlnet:l.illp,‘ the corresponding symbol layouts, the user can deh:}e several g:r_ap 111.:'
constraints. The alphabet is the input of the generic grammar nrlu..or SUpPPOT t‘-mg t' E
visual definition of the visual grammar over the visual alphabet. “[.!ue msultlr is a .\
specification that is the input in the intended generic graphic edimr.lm' a specific \'}h{u{t{
language. The grammar rules are used as the language-specific Bdil: mmnlumcls. .Ifhl!.s
means that we have language-generating rules but also la.ng'iEage—:umurn_:latlu g 1'1‘11&» (tr,‘
&8 the deletion of some symbols. The transformation of diagrams in the g{anu?m:i
editor as well as in the graphic editor is supported by the gl‘a;.:hleru;ﬁ;rmat,lou sys-
tem Ace [TER99); the constraint satisfaction problems are satisfied by the praphical
constraint solver PARCON [Grid6].

[the following we concentrate on our example, namely the spt!(:lhf'm.lcm‘ of an ‘;nln-
Mation view for an elevator. In Figure 9, several visual symbols and visual links of the

141

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFT

E 7 SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

corresponding visual alphabet are shown. There we have two lexigal
and Anirmation. These symbols are equipped with attribute svmbols
and Messuge, respectively. The Elevator is illustrated as part of 4
several floors. The total number of foors depends on a conerete pup
TotalFloors. The Animation is illustrated by an elevator cabin wh
move between the floors of the building. The Floor attribute is usec
current floor of the animation view, On the layout level (concrete sy
Floor number is not visible but is represented by

v drawing the elevato :
responding Hoor of the building. The Message attribute symbol is used

movement of the elevator between the Hoors, The layouts of the correspo

elevator currently is (f). From this message, the animation view is built
e ele ' :
o hand side of the rule.

—— =]
 TotalFloorg s X _Floor x-=f |

T T N s anim s =
P Animati s JEg
/| IF‘ \ Elevator ™ ‘3‘: 3 :\ Message -~ = Stop
Init] =)
— 1

¢ 11

ation data type are given on the conerote syntax level. We do not visy :

init nor the stop state but the directions wp and down (illustrated |

down). 0 !

[! ¢ Floor " - = Nat 8 E Figure 11: Rule supporting the initialization
R anim 4 : -——- b
Nat= - = IQT_F!QDI ‘?: ﬁe;s;éé,— - = [init, up, down,

r to the [nit rule, the rule for the Angmationlp movement is modeled and

| ‘[jgure 12. Tn its left-hand side we require the existence of an Elevator and

1.4 ol which are connected due to the alphabet. Furthermore, we expect a

: 'I . AndmationUp message. This message triggers an upwards movement of

Y icated by the floor f + I in the rule’s right-hand side. On the concrete
the up movement is illustrated by an arrow beside the elevator.

String, 12pt
Helvetica

Figure 9: Visual alphabet for one animation view of an

. Floor -->f+1
Not only the symbols as shown in Figure 9 are important for the ===
Additionally we expect some messages triggering the movement of the _
messages concern mainly the abstract syntax level. ie.,. the animation
language. Therefore, we extend our alphabet by some symbols and links
for the messages. These messages have influence on the animation which

rules later on but the messages should not, be visualized.

I AnimUp i“‘“—h-._h, ; imSt SEDTES h
i .z floor —= Nat

0 ——— T el .
AnimDown -_ lotal-fl —= Nat

:Message: b=z up

AnimUp
—

Figure 12: Rule supporting the up movement

Figure 10: Extended visual alphabet rules, g, for stopping the elevator and for the downwards movement,

; bo that, of Figures 11 and 12 and will be therefore omitted here.
Now we have defined the visnal alphabet of our visual language for
example. Based on this alphabet, we define some rules according to thi
expect. to receive and which trigger the animation. Figure 11 illustrates t
Initialization of the animation view, In the left-hand side we expect the
holding the amount, of available Hoors in the building given by the var

section we have shown how to use GENGED to describe one specific
VIEW for the slevator example, giving raise to one animation module, The
&t & library of such modules that can be reused by many components.

142 143

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

5 Animation of Simulation Models

Up to now we have defined how to specify a component of a simulation and how
construct animation modules. In this section we will discuss the integration betw
these two. In Figure 5, we have the basic structure of a simulation COLLPONENt.,
interface of such a component is composed by rules that specify import as well as e
actions. An imported action is represented by a rule whose left-hand side specifies
message that triggers that action (sent to the corvesponding component) and the i
hand side specifies the message that this component is expecting when this action
completed (if this is the case, if not, there is no message in the right-hand side). 4
example of an imported action of the elevator would be a rule having in its lefi-h;
side a message press sent to a button set and on the right-hand side a IMessare
sent to the elevator. Export. messages are analogous, just that in the left-hand sid
message handled by this component is shown, and in the right-hand side the niess
sent in return (if it exists). As the rest of the component, the interface is organi;
into behavior, animation and statistics interface, whereas the animation and statisti
components co not have any export rules (because the animation and statistics mod
do not depend on the behavior module). Tn the following we will stick to the anima
interface.

In our example, the corresponding interface are shown in Figure 13. Rule u
states that the elevator may send a message AnimUp to its animation module and y
expect nothing in return (no message as an answer). Actually, it would be quite LS|
to expect answers from such messages because this would mean that the animation cou
affect the behavior of the elevator, what is not desirable.

—— total-f1 | inis-inn
| (If.levator 5 Animation = ' ul —
|

floor

(Elevator Amimation !

T — T |
e pe=(ri (Ei :)

evator Amimation §
-l tevator = An |

Hp-int

Elevator Animation AnimUp
oSttt

O — =
| Elev nlnr{)—e—-—@(—@

Figure 13: The interface

Nleyp-int

"—/—_—__\-‘-\"‘\ " . I

Each animation module also have an (export) interface composed by rules. describi
which are the messages that are treated by this module. For our exatnple, this interf:
would consist of four rules that are the inverses of the four rules of the animati 1
interface of the component (inverse rule neans to exchange left- and right-hand side)-

When constructing a simulation model, the user must choose the components bl
he/she will use, and also the animation and statistics module for each of these col
ponents. A consistency check must be performed to guarantee that the chosen anin
tion/statistics modules are able to treat the desired messages. Note that this consistern
check is the same that is done for unporting/exporting other components (behavi

144

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

Thus. we have achieved a uniform way to deal with behavior /animation /statistics within
the simulation model.

6 Conclusion

[n this paper we have presented an approach to construct animasion modules usin g the
tool GENGED. The idea is to use this tool to construct a library of animation modules
that can be used to visnalize the behavior of a simulation model. Here we used graph
graiars as the basis formalism to describe both, the animation and the behavior of
the system to be simulated. The integration of the simulation model with the animation
models is done via an interface consisting of rules.

Here we have settled the first concepts that shall serve as a basis for the corresponding
implementation of interfaces. But still a lot of work has to be done in order to obtain
better animation strategies. One is the construction of animation for complex models,
like the ones composed of various components. In this case, we may need to give
a graphical layout for the composition operators (to see, for example, two elevasors
within the same building). Another improvement would be to consider richer interfaces,
containing, for examnple, some information about relationships among messages (like,
message AnimUp is opposite to AnimDown) This could be useful to assure that the
visualization is in a way compatible with the semantics of the model being simulated.

References

[Balo7] O. Balci et al, The Visual Simulation Environment, 11th European Simula-

tion Multiconference, SCS, 1997, pp. 61-68,

[Balﬂﬂ R. Bardohl. Visual Definition of Visual Languages based on Algebraie Groph
Transformation. PhD thesis, Technische Universitit Berlin, 2000. To ap-
pear.

[BNSU(J] R. Bardohl, M. Niemann, and M. Schwarze. GENGED A Development

Environment for Visual Languages. Application of Graph Transformations
with Industrial Relevance, LNCS 1779, pages 233-240. Springer, 2000.

[BR-MB%] B. T. Barcio, S. Ramaswamy, R. Macfadzean, and K. Barber, Object Ori-
ented Analysis. Modeling and Simulation of a National Air Defense System,
Sirnulation (1996).

[BTMSO‘Jj R. Bardohl, G. Taentzer, M. Minas, and A. Schiirr. Application of Graph

Transformation to Visual Languoges. G. Rovenberg, editor, Handbook of
Graph Grammars and Computing by Graph Transformaitons, Volume 2:
Applications, pages 103-180. World Scientific, Singapore, 1999,
[CKE}E] B. Copstein and L. Korff, Specifying Simulation Models Using Groph Grom-
mars, ESS'08 10th European Simulation Symposium. SCS, 1998, pp. 60-64.

145

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

[CMR96]

[CMR00]

[Cop97]

[DvBY7]

[EHK*97]

[Ehr79]

[Grioe)]
[KN96]
[Kor95]
[Low93]

[RCO0]

[Roz97]

[TER99]

A. Corradini, U. Montanari, and F. Rossi. Graph Processes. Fundame
Informatica, vol. 26, no. 3-4, 1996, pp. 241 265.

B. Copstein, M. Méra, and L. Ribeiro. An Environment for Formal M

and Simulation for Graph Grammars, 33rd Aunual Simulation Symp
2000.

B. Copstein, SIMOQ : Plataforma orientade n objetos para. simulacio g

reta multi-paradigma, Ph.D. thesis, Federal University of Rio Grande
1997.

R. Dechter and P van Beek. Local and Global Relational Consisteney, T
oretical Computer Science, 173:283 308, 1997. 4

H. Ehrig, R. Heckel, M. Korft, M. Liswe, L. Ribeiro, A. Wagner, and A,
radini. Algebraic Approaches to Graph Transformation 1I: Single Py
Approach and Comparison with Double Pushout Approach. In [Roz07

H. Ehrig. Introduction to the Algebraic Theory of Graph Gru
V. Claus, H. Ehrig, and G. Rozenberg, editors, 1st Graph Grammar \
shop, LNCS 73, pages 1 69, Springer, 1979.

P. Griebel. ParCon - Paralleles Lésen von grafischen Constraints, Ph
thesis, Paderborn University, February 1996.

T. Kamigaki and N. Nakamura, An Object Oriented Visual Model-bu
and Simulation System for FMS Control, Simulation (1996)

M. Korff. Generalized Graph Structures with Applications to Con
Object-Oriented Systems, Ph.D. thesis, Techujsche Universitiit Berlin, |

M. Liwe. Algebraic Approach to Single Pushout Graph Transformation. Th
oretical Computer Science, vol 109, 1993, pp. 181 224,

L. Ribeiro and B. Copstein. Compositional Construction of Simulation
els using Graph Grammars, International Workshop and Symposium
TIVE - Applications of Graph Transformation with Industrial Rel
LNCS 1779, pages 87 -94. Springer, 2000.

G. Rozenberg, editor. Handbook of Graph Grammars and Comput _
Graph Transformaitons, Volume 1- Foundations. World Scientific, Si
pore, 1997,

G. Taentzer, C. Ermel, and M. Rudolf. The AGC Approach: Laz

and Tool Environment. G. Rozenberg, editor, Handbook of Graph G
mars and Computing by Graph Trausformaitons, Volume 2: Applications
Languages and Tools, pages 551 604. World Scientifie, 1999,

146

