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Abstract. Huaskelly is a parallel extension Lo lazy functional language Haskell. The sequen-
ial part of programs is declared using standard Haskell. This reduces code development costs
and increases its reliability by reusing existing and previously tested (or formally verified)
Haskell modules. The structure of a process network (of possibly heterogencous processors) is
defined by Haskelly Coordination Language (HCL), also used for task-to-processor allocation.
In this work, we present an environment for analyzing formal propertics of the communica-
tion structure of Haskelly programs. This enviromment contains a compiler that translates
an HCL program into Petri nets, a well established family of formal specification techniques
for modelling non-deterministic concurrent systems, Petri nets allow the analysis of a wide
spectrum of properties, such as liveness, boundedness, and deadlock-trap.

1 Introduction

The concept of what is a functional language has evolved with time, but its main feature
is that a program is a set of definitions of higher-order functions — functions are not only
passed as parameters to other funetions, but can also be the result of the evaluation of a
given function. According to this definition, LISP [16] was the first functional programming
language.

Two other features are also uscd to classify functional languages: the existence (or absence)
of destructive assignment and their evaluation mechanism. If a language has no destructive
assignment, the value of any sub-expression is static, it is said to be “pure” or to enjoy the
property of referential transparency. If the arguments to a function are passed by value, i.c. all
the arguments are cvaluated before the function itself, it is called “strict”. Non-strict languages
may be implemented using cither a data-driven (also known as dataflow) or a demand-driven
approach. Demand driven languages evaluate arguments as required by the function. If the
tesult of the argument is recomputed cach time it is needed, this evaluation mochanism is
called call-by-name. Conversely, if the result is shared the evaluation mechanism is called call-
by-need, and the language is said to be lazy or procrastinating. Non-strict langnages have the
advantage (hat only expressions which must be evaluated to give the program result actually
are evaluated. They allow the use of infinite data structures, such as infinite sets and lists,
Which are deseribed by a formation law. These structures can be scen as intensionally defined,

LISP and SML [26] are examples of strict impure functional languages. HOPE [5] and
OPAL [7] are strict pure functional languages. While Miranda' [37], Haskell [14], pH [29], and
Id [23] are instances of pure functional languages.

An overview of the relationship between parallelism and functional programming is pre-
Sented in [25]. The recent book [10] presents research directions in parallel functional pro-
Efamming, The idea of parallel functional programming dates back to 1975 when Burge [4]
Suggested the technique of evaluating function arguments in parallel, with the possibility of
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functions absorbing unevaluated arguments and perhaps also exploiting speculative evaluas
tion. In general, the parallelism obtained from referential transparency only has fine granu
ity not yielding good performance. The search for ways of controlling the degree of parallelisny
of functional programs by means of automatic mechanisms, either static or dynamie, had littla
success(12, 19, 21]. On the other hand, explicit parallelism with annotations to control
evaluation demand of expressions, the creation/termination of processes, the sequential
parallel compesition of tasks, as well as the mapping of these tasks onto specific processorg
have been proposed by many authors 6, 13, 32, 36]. |

If compared with compilers that exploit implicit mechanisms, such a strategy produe
better performance levels. However, it has two main limitations:

1. they are geared towards shared memory architectures, which brings problems of portability;
2. the computation and communication structure are intertwined nof allowing the understanding of
these elements in isolation [3]. b

In order to overcome these difficulties, we developed H askelly[24], a parallel extensi
to the lazy functional language Haskell[14], which offers a process hierarchy on top of com
munication structure and sequential computation components. These two levels, are defin
at independent stages of the development process. The computation of sequential tasks i
declared using the standard Haskell functional language, which makes possible a reductios
in the cost of development and an increase in reliability because of the reuse of existing 4
previously tested or formally verified Haskell modules. The structure of com munication net=
work (of possibly heterogeneous processors) is defined by means of the coordination langu
called Haskelly Coordination Language (HCL), also used for task-to-processor allocation.

The development of Haskelly suffered strong influence from Occam’s[15] computatis
model, a language based on Hoare's CSP (Caleulus of Sequential Processes)[11]. The decisi
to follow Occam’s computation model, had as its goal to make possible the automatic anal
of formal properties and, thus, to help the programiner to reason about the application und
development. In this work, we present an environment for analyzing formal properties of
communication structure of H. askelly programs. This environment contains a compiler th
translates an HCL program into Petri nets, a well established family of formal specificat
techniques for the modelling of concurrent and non-deterministic systems. It was first inte
duced by C. A. Petri[31] in the 1960’s to model and analyze communication systems. S
then, Petri nets have been studied extensively (e.g. [30], [34], [27]) because of their w
applicability in several areas, such as, computer science, electronics, chemistry and busine
management. Petri nets have many advantages, including their well-developed mathematie
foundation; compact representation of system specifications; several tools for both qualit:
tive and quantitative analysis; and graphical “nature” that aids the understanting of comple
systems, The formalismn behind Petri nets makes possible the analysis of a wide speetri
of properties, such as liveness, boundedness, deadlock-trap, etc[27]. In particular, our con
piler translates the HCL deseription into the format of Petri nets used by the computation:
tool INA[35], capable of simulating and automatically analyzing the formal properties of th
systems maodelled by Petri nets.

A Haskelly application contains a number of instances (processes) of conventional H
modules, which cooperate for perform a given activity. Figure 1 depicts the Haskellg p
gramming environment, After the program development, there are two possibilities: either &
generate the executable code; or to translate the HCL program into Petri nets. In the forme
situation, the system will execute in a high-performance environment composed of hetero
neous loosely coupled processors. In the second case, in order to identify the formal propert
and help programmers to reason about the specified topaological network structure, the res
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sulting Petri net model is simulated and /or analyzed through the computational (ool INA.
Haskelly provides an integrated environment, for execution and analysis of formal properties
of distributed systems.

Haskell# Program

Heterogeneous processors

Huskellg
Compiler

Translation of

Programmer

= =3 Formal
Prupertivs

Figure 1: Haskell, Programming Environment

2 Haskell

Haskell is a general purpose, pure functional programming language incorporating many
recent innovations in programming language research, including higher-order functions, non-
strict scinantics, static polymorphic typing, user-defined algebraic datatypes, automatic garbage
collection, pattern-matching, list comprehension, a module system, monads, and a rich set of
primitiw; datatypes, including arrays, arbitrary and fixed precision integers, and floating-point
numbers[14]. Haskell has now become de faeto standard for the non-strict (or lazy) functional
programming community, with several sequential compilers available. H askelly uses the Glas-
gow Haskell Compiler (GHC)[9] to implement the sequential pieces of Haskell code.

There are two other parallel versions of Haskell: Concurrent Haskell[20] and GUM][36].
Concurrent Haskell is a Concurrent, extension to Haskell, which provides a more cxpressive
_Substratr: to build sophisticated 1/ O-performing programs, notably ones that support graph-
ical user interfaces for which the usefulness of concurrency is well established. The goal of
the designers of Concurrent Haskell is to obtain implicit, semnantically transparent parallelism,
but the version available now uses explicit parallelism. GUM is a portable, massage-based
parallel implementation of Haskell using PYM(8] communications harness. GUM is available
for both shared-memory (Sun SPARCserver mltiprocessors) and distributed-memory (net-
Work workstations) architecture. GUM’s performance figures demonstrate speedups relative
10 sequential compiler technology.

3 Haskelly Coordination Language - HCL

This scetion presents Haskelly Coordination Language (HCL), developed for instantiat-

: aud distri buting processes over the physical nodes and establishing a connection between
em through unidirectional, point-to-point synchronous channels,

3.1

ing

Functional Processes
th H askelly processes are instances of Haskell functional modules. It is possible define more
"o one instance of a particular Haskell module, that will }::-m“ﬁﬁﬁiw behaviour. All
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processes are created at the start of the Haskelly program execution and finish together ay
the end of the Huskelly program execution. 4
Because functional processes are instances of simple Haskell modules, it is necessary
provide an interface (communication port) from which they can send/receive messages to/fra
other functional processes. In Haskelly, each communication port is strongly typed.
addition, it has strict semantic on communication. As a result. the types of ports are restric
to ground types, such as basic types (integer, float points etc.) and structured types in he
normal form[18] (lists, trees, arrays ete.). Functions, 10 operations, channels and other po
are not valid types. Eventually, a port declaration shonld define the direction (input or output)
of communieation, ¥

A functional process is defined by means of a module declaration, which defines the in-
stances of a given functional Haskell module and its respective input/output ports. Figure.

presents the syntax for functional module instance definition. According to the syntax, i
port names of a given module declaration are shared by all instances defined in its scop
There is a direct correspondence between the order ports appear in the input/output decl;
rations and the type of main finction of the Haskell module. For instance, the declarations:
input a by, {b, ¢} oty duty
output e ty, f g

define the input and output ports of a Haskell module, in which the type of main function

is given hy: 4, — 13 — I3 — TO(ty,t;5) In this case, the main finction should recei
three parameters with types t,, t, e t; mapped, respectively, onto ports a, (b ), e d of
input declaration. The function should return an IO operation that, whenever executed,
produce the tuple (44, #5), from which the first component is mapped onto output port e, while
the second, onto port f. It should be noted that port b and r are associated with the sa

input parameter (£;). This indicates that both ports are waiting for the second parameter of

the main function.

The declaration of inpnt /ontput ports are optional. Based on these declarations, it is possible

Syntax Comments

odule —+ module mod input output instances
inpui —+ input portsl input ports declaration - optional
output — output ports() output ports declaration - optional
instances —  instances processes functional modules instances declaration
mod -+ id funetional module name
portsl —+  port , portsl set of input ports

| portNDs , portsl

| port

| portNDs
ports - port , portsQ) set of output ports

| port [
port = id 1z types type port definition
portNDs = { portND } :: types type ports definition
portND — id , portND port for non-deterministic choice

| il
Processes  —  process processes

| process
process -+ i name of a functional process instance
id —  Huskell function identifier
type —  Haskell data type

Figure 2: Syntax for functional module instance definition

to classify functional processes into four categories:
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1. conventional processes: contains input and output ports; their execution start only when other
processes provide the input data they expect:

their execution terminate as soon as other processes consume the output data they produee;

2. root processes: contain no input ports; their execution start together with the global program;
3. terminal processes: contain no output ports; they have no restriction for terminating their
pxecnflon;

4. root and terminal processes: join the features of rapt and terminal processes.

Applications containing only root and terminal processes can be thought as a set of parallel
independent processes. whereas applications without any terminal or root processes can be
seen as a network of cooperative processes. At this point, one can deduce that if conventional
PrOCESSES have no autonomy to start, then applications that coniain only conventional PTOCESSES
will always enter in deadlock. To avoid this problem, the start declaration was included in
HCL. It defines which processes have autonomy to start their execution. The start declaration
also provides the initial values to processes with input ports. It is important to emphasize
that root processes should be declared in the scope of a start constructor. F inally, the set of
start declarations define initial state of the system. Thus, only one start declaration should
appear. The syntax of a start declaration is presented in the Figure 3.

3.2 Communication Channels

Similarly to the Occam[15] model, Haskelly channels are point-to-point, unidirectional and
synchronous. In addition, the strict communication semantics of H askelly restricts the values
exchanged between processes to those already evaluated.

The concept of channel is related to the concept of communication port, which represents
the interface of functional processes. A channel is statically declared through the connection
of two ports of the same type, opposite direction tising the connect constructor, The syntax
of & connect declaration is defined in Figure 4.

Syntax Comment
start —+ start process args
args - wvalue args sequence of initialization values
| vilue
process —  id process name
value —  valid Haskell value
id —+ identifier of Haskell function
Figure 3: Syntax of a start declaration
Syntax | Comments
connect -+ connect process.port out to process.pori_in
process = id Process name
port.out = dd output port
portin = ad input port
| i = Huaskell function identifier

Figure 4: Syntax of communication channel declaration
A set of semantic errors users perform during connect declarations are detected by the
Haskell, compiler:
error 1 connection between two ports with the same direction:
error 2 connection between two ports with different types;
error 3 the same port participating of more than one connection;
error 4 conuection between two ports belonging to the same process.
on H askell, .{luw not a}llt.)w dynami.t: {Ehanne_l creation or (‘T.)mmunit'.alrimll in both directions.
¢ could argue that this is too restrictive. We want to provide a model of channel that makes
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possible to statically analyze formal properties of the process network. In addition to this, th Syntax Comments
strict rules force programmers to have a better understanding of system under developme riodes = "‘J:E nodes
and to specify precisely what the t to do. | neds
R pecily precisely what. they want to:do node —+  node_address features \n
3.3 Process Termination node_address —  id processing node address
A Haskelly application terminates only when all its processes have finished. Due to fese r :.:'f capares set.of features of procesaing nodea
synchronous semantics, Haskelly processes terminate only when all their values in the ontput id —  Haskell function identifier

ports had heen consumed by other processes.

e on T s i igure T: i i inside tl i
At this paint, it is important to present the concepts of repetitive and nonrepelilive pro- Figure 7: Syntax for declaring the features of processing nodes inside the file nodei

cesses. Nonrepetitive processes are those that start, execute some activities and termin&t.;g B Syntax Comments
Repetitive processes never reach the termination state. They start, execute some activities a altocs = alloc allocs
return to the initial state in order to perform new tasks. Note that the *actors” mn(:ept.-' ! allae
i 4 alloe —+ alloc ( features ) processes \n

does not apply to repetitive processes, because they have no memory and keeps the same be- Jesturesr. = id, foatures et of ehiiisee Taxtires
havioural pattern through different interactions. An operating system is a classic application | id
of repetitive processes. This class of processes is also nseful in monitoring and controlling processes  —  id , processes set of processes to be mapped into
activities. ", . | id o processing node

Termination is a global property, being inherited by all processes in the application. Thus, L it chhOET) fumeliom drbestifien

a given application can contain either repetitive processes or nonrepetitive processes, hut neve r Figure 8: Syntax to declare the processing mapping

both simultaneously. The termination property is declared usi ng the syntax in Figure 5.

Syntax Comments define the mapping scheme. Its syntax is presented in Figure 8. For instance, consider that a
application. —  application app_name property programmer decides to classify machines of a network according to the following parameters:
app.name = id termination application
property  — repetitive e performance: fast or slow

| nonrepetitive nontermination application s . 5
id —+  Haskell funetion identifier e memory capacity: thin or wide;

Figure 5: Syntax for declaring the termination property of a H askelly application e physical position: local (inside of the processing centre) or alien (outside of the processing

3.4 Mapping of Functional Processes center);
The execution environment of Haskelly applications is composed by a network of possibly
heterogeneous processors. HCL allows programmers to define the configuration of the machine
required by a group of processes. If more than one machine with the required configuration
is available in the network, the compiler selects one of them. Thus, programmers informs
the machine configuration required by a group of processes, hut say nothing abont machines
physical addresses. This does not. restrict programmers to make a physical mapping, by
defining machine addresses as its configuration.

A file named nodeclnsses is used to define the set of features to be used in order to load
processing nodes. This file should follow the syntactic rules presented in Figure 6. There arg
two or more features in each category. For instance, the category speed conld have fast and
slow as its possible features, The features of a particnlar processing node is specified inside
a file called nodeid according to the rules presented in Figure 7. Processes to Processors

Using these parameters a programmer could, for example, define that processes with little
memory demand but with heavy performance restrictions will run on a fast and thin machine.
The programmer could also define that coarse grained processes ought to be mapped onto an
alien machine.

Compiler can detect the following errors in alloc declarations:

1. mapping into a machine with features that does not belong to the execution environment;

2. the number of machines required exceed the number of existing processors in the execution
environment,

4 Translating HCL into Petri Nets

This section describes the mechanism used to translate a program written in Haskell Con-
figuration Language into Petri nets. The translation is uscful to analyse the formal properties

Syntax [ Com & of the communication structure of Huskelly applications. The behaviour of individual pro-
Jeatures l" ;w::m Jeatures | set of node features tesses are not considered here. In addition to this, we assume that the required resources
it e r x z 3 = "
feature = id, feature features belonging to a category exist. The process mapping does not.taifc part in zhc. translation scheme, because the absence
| id\n of resources is detected during compilation (see Section 3.4).
id —  Haskell function identifier 4.1 Punctional processes

Figure 6: Syntax for declaring the categories of machines belonging to a network At the abstraction level HCL programmers work, the internal behaviour of individual

Processes are not relevant. Process interfaces (input and output ports) are the important

mapping is performed statically. Therefore, functional processes are mapped into a processing clements here. Therefore, processes are represented through their input and output ports.

node of a network when the application starts until it ends. The alloe declaration is used to.
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Due to the absence of proeess behaviour in the Petri net model, the time consumed i
process exceution is null. Thus, after receiving the last message through its input ports,
process gets ready to send its first message through an output port.

The leftmost ports of an input /output declaration have higher priority over right ost,

ports. There is no dependeney between ports in a nondeterministic choice and they get ready
to receive simultancously, Together, these ports can depend on events related to ports iy
other processes. We call dependency graph the directed graph in which nodes are proce
ports and vertices represent the dependency between them. Ports connected to the vertie
target depend on the ports connected to its source (Figure 9). The ports of processes
74)
", [
(Pr iy |
module  Name = [ :
input i, (i, i,1,) i A (P4
BLhir et Dependency Gruph \ 4 ulE
output a; &, B /
instances P,

Figure 9: Generation of the dependency graph of a functional process

modelled as places in Petri nets. In its turn, ports in a nondeterministic clioice are translated
into an individual place. It indicates that they will be ready to receive simultancously, Places
arc labelled according to the following rule: process_name.port_name. Place labels are of
practical use and have no formal meaning, ]

Figure 10 preseuts the compilation scheme for translating Huskelly processes into Petri
nets.

4.2 Communication Channels

Haskelly communication chanunels are point-to-point, undirectional and synchronous,
These features should be observed in the generated Petri net. However, differently from
Haskelly, channels in the resulting Petri net model have no type. Two reasons can justify
this decision:
1. for communication modelling and analysis using Petri nets the values exchauged (or their types ;
are not important, only the flow of data is taken into account. i
2. Due to the static type checking performed by Haskelly compiler, HCL are considered to be type.
correct.

Synchronous communication will be modelled in Petri nets as a transition in which the
input arcs are connected to places representing the input and the output ports of the commu-
nication chanuel. In their turn, the output ares of this transition are connected to the ports
that follows it in the dependency graph of the two commuuicating processes. In repetitive
applications, after sending its last message, processes return to the initial state and a new
iteration is triggered. On the other hand. all processes in nonrepetitive applications reach a
termination state after sending their last message.

Figure 11 presents the compiling scheme for translating communication channels into Petri!
nets for a nenrepetitive application. Here, the communication between ports Py and Pr.oy
are deterministic, whereas ports Pyiz and P.iy are waiting in a nondeterministic choice for a
message from port P.op and Py.op, respectively, Since the application is nonrepelitive, all its
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Py iy Py P iz
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" module Name : ’W { {9
T s S \_/
input & (i, &, . G} .. 6 M e g
output 0, 0y, . 0, v b g, Prg, ’}_q{
Cinstances P, P, B () £y ()
bl . o e N ?
Pio Pio Pro,
by '
|
& 8 0
Gy Fa R,
i}ﬁ () ()

Figure 10: Translation of functional process into Petri nets

processes have a termination state defined by places labelled according to the following rule:
process_name. final.

Figure 12 presents the translation of communication channels into Petri nets in repetitive
applications. Note that final states are replaced by ready to restart states. It is indicated
by return places labelled according to the following rule: process.name.return. Restart action
is represented by a transition. Tts input place is the return place and its output place is
represented by the root node of dependency graph.

We emphasize that labels attributed to places have no formal meaning, being only of
practical use.

application App_Name nonrepetitive |
mudulf Namel L ’::_g\, :
input i, {i iJ ti0) { )
instances P, — ,>—'
module  Name2 ~ r’
output o, o, ﬁ
instances P, ) PLo P \_‘ Py |
module Nameld — | } L) ; ‘\} |
output o, % N A
instances Py Sa N
| » " .___| I:l
[ commeet Proy top g, Py final -~ Iy final ™~ D finat
| connect Fio, to LN [.ﬁ,l ?H"\T .‘_‘*.l
N S >, L
connect Pru, to P = o =

Figure 11: Translation of communication channels of a nonrepetitive application into Petri
nets
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(application App_Name repetitive

module Namel Pty P;_.fy
input i; [i; i} {1 . J
instances Py e >l
3

maodule Name2 ™ ¢
|output o, n, &
instances P, PLo, Rt~ .\“-"Px,ﬂz
module  Named — { ) () [-”:“) \
outpul o, /’\“ﬂ\ Py A 7
instances P, _ \ e L 4
connect P,‘,,! io p“;] '_'Y_I\ P % s /_:’f

b ? G
connect o, 10 P, -\{/—(}/ ?"{ fi\),*
conmect Py o Py Py.réfurn p‘,_&,,;,m B

Figure 12: Translation of communication channels of a repetitive application into Petri nets
4.2.1 Initial State

The initial state of a Haskelly application is given by the union of the initial states of all
processes. start declarations (see Section 3.1) define the processes which have autonomy
start executing. Since, at this abstraction level, processes consume no time, processes in sco
of a start declaration will be initialized in one of the following states: '
1. processes with output ports will be initialized in state ready_to_send_first_message;
2. processes without output ports in a repetitive application will be initialized in state ready. to_redng :
represented by the refurn place:

3. finally, processes without output ports in a nonrepetitive application will be initialized in s
finalized, represented bu the process.name. final place.

Other processes should wait for the input messages in order to start executing. As a resul
they are initialized in state ready for receive first messuge represented by the root node ¢
dependency graph.

The state of a process is modelled in Petri nets by means of a token inside the places
to represent process ports and its final state (in nonrepetitive applications) or its ready to refni-
tinlized state (in repetitive applications). In a given process, only ports in a nondetermin
choice can be simultaneously ready for use.

Figure 13 (a) describes the compiling scheme for translating the initial state for the possi
type of processes in a repetilive application:

- Py belongs to the scope of a start declaration and has output, ports;

- P; does not belong to any start declaration;

- Py belongs to the scope of a start declaration and has no output port;
Figure 13 (b) describes the compiling scheme for the three cases above in a nonrepet
application.

[,

5 An Environment for Property Analysis

After studing cxisting Petri nets tools we decided to use the Integrated Net Analy
(INA)[35], developed by the group of Prof. Peter H. Starke in Humboldt-Universitiit of Berlin.
This choice was motivated by the following reasons: ;
1. automatic generation of Petri nets for the INA format is simple;
2. a large number of properties of Petri nets can be analyzed by INA;
3.a mumber of reduction rules, allows to transform a given Petri net model into a simple one, keepin
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ET— Fi i
e f}“f. ey f’_,_&
ey Lo} / L e
PN 2 w -
Ly i Py iy Pk P
ke P EP,
application App_Name (non) repetitive P:- P'- P P:‘
module Name! (/“% £ RPN
s [ \ ./
input i, 0, i N 7 B . s P,
output @, a, a, P @y Pf_t}\, { | 'P:.o, Pi;‘t‘.-_, ( Y |
instances 7, P, (o) () '~ @O O =
o 1 =5 e Gm P8 ne a2
module  Name2 it T A [ [_j {: 3 (L
input iy i, A R T e s :
instances P, Po, Pro, P i By "@ﬁ P‘;'gﬁ P
start P, ¥ Ve L =
; L KT D G D)
. Prreturn Pyreturn P_,nqg.lm: J;, al  Pufinal  Pyfinal
BleR O ReRD
L (h)

Figure 13: Translation of process initial state into Petri nets

the properties of the original model;
4. the behaviour of a Petri net can be simulated through INA.

In order to develop a compiler, based on the strategies described in Section 4, which
translates an HCL description into a Petri net “code” readable by INA, we used Lex [23] and
Yace[17]. Users of our Haskelly programming environment can decide either to simulate, or
to apply reduction rules and/or analyze formal properties of resul ting model Petri net model
through the interactive environment of INA.

Petri net

—

HCL

| P i W= [ o™ )
L\_/\} C,j & b %
Figure 14: Properties analysis envirommnent
6 Example

This section presents the Haskelly analysis of a small HCL program. After describing
the HCL program, its translation into Petri net is detailed. Eventually, the resulting Petri net
madel will be analyzed through INA.

The example system is composed by four funetional processes. Two signal generator pro-
cosses (signaly and signaly), one filter process (filter) and a process to print the filtered
Sigual (printer). printer has two input ports, i, and iz, which wait concurrently for a signal
Sent by processes signaly and signaly, respectively. If both signals arrive together, the choico
15 performed nondeterministically. Independently of the choice performed, the filter process
applies a filter in the received signal and sends the resulting chaunel for the process printer.
Evcutually, the process printer prints the received value.
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Applications can be defined as: repetitive or nonrepetitive. Both alternatives will be s
ied. Figure 15 presents the code for both HOL programs.

Applying the compilation rules 1o functional process (Section 4.1) are generated the
nets of Figures 16 (a) and (b) for the repetitive and nonrepetitive applications, respecti
Through the rules for translating communication channels (Section 4.2) we get the Petrj
of Figures 16 (¢) and (d) for the repetitive and nonrepetitive applications, respectively. Final
appling compiling rules for process initialization (Section 4.2.1), the Petri nets of Figures 16
and (e) are generated from, respectively, the repetitive and nonrepetilive applications, F
17 presents the list of properties calculated by INA for both applications.

The interpretation of the properties calculated by INA (Figure 17) must be done adequ:
but it is beyond the scope of this paper. The property on Figure 17 shows that the repe
application is live and reversible, whereas the nonrepetitive application does not. possesses {
properties. Based on this information the programmer could decide to define the applica
as repelitive, because it avoids that the system stop after processing a signal sent from s
or signaly. In addition, it guarantees that the system will execute the following sequence
steps an unlimited number of times:
- process filter chooses, nondeterministically, a signal sent from processes signal; and signe Iy;
- the received signal is filtered by the filter process;
. filter process send the filtered signal to the printer process;
- printer process prints the filtered signal;
« return to step 1.

The example deseribed in this section showed how the properties analyzed from the F

net model can help programmer to reason about the svstem under development in ord
predict and to correct possible problems in the system implementation.

L

application Signallrocess (non)repetitive

module Signal
output ot
instances signaly, signaly

module Filter
input iy, a2t
output o) :f
instances filter

module Printer
input i;:t
instances printer

alloc thin signal,
alloe thin signaly
alloc thin printer
alloc wide filter

start signal;
start signaly

connect signaly.o) to filter.d;
connect signaly.oy to filter.i;
connect filter.o; to printer.i;

Figure 15: A small HCL program
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Figure 16: Trauslating HOL program of Figure 15 into Petri nets
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Properties repetitive | nonrepetitive
ordinay yes yes
pure ves ves
conservative yes o
static eonflicts free nn o
dynamic conflicts free no o
maked graph no 10
state machine uo no
free choice no 10
extended free choice 1o 110
satisfies the deadlock-trap property yes 1o
covered by place invariant ves ves
covered by transition invariant yes 1160
litnited yes yes
atructurally bounded yes yes
reversible yes no
dead transition in the initial state 1o 1o
live Ve no
hve e safe VES | no

Figure 17: Properties of Petri net of Figures 16 (c) ¢ ()
7 Related Works

In this seetion we present an account of two works related to ours.

7.1 Haskell-Coloured Petri Nets

Coloured Petri Nets (CPN) are a high-level form of Petri nets, in which transition inseri
tions in some programming language operate on individual tokens, i.c., tokens attributed
values of the inscription language. Claus Reinke presented in [33] a variant of CPN n
Haskell-Coloured Petri Nets (HCPN) and show that they have a simple m apping onto Ha
HCPN can thus be used for system modelling in preparation of system implementation
Haskell, following a process of stepwise refinement in which all intermediate specifications ar
exccutable Haskell programs. Similar mappings can be used to introduce funetional Petri n
as graphical specification languages on top of other functional lanpuages.

The focus of Reiuke’s work was to stimulate functional language programmers to nse P
net models during the development of their programs. The relationship between commmun
tion and computation is not exploited. It would be important to isolate these two cleme
and get a better understanding of cach of them. Besides that, there is no concern on
analysis of formal properties of the systermn modelled by HCPN.

7.2 Coordinating Functional Processes Using Petri Nets
Claus Abmann proposes in [1] a coordination language, named K2, based on a variant
of coloured Petri nets, which primarily defines process systems with deterministic behaviour
but also allows for controlled forms of nondeterminism, According to Abmann, net-b
specification of cooperating pracesses combine the advantages of an underlying caleulus (whick
facilitates formal analysis and verification of a sequential system behaviour) with graphi
representations (which clearly expose structural dependencies amongst systen componen
There is an interactively controlled simulation mode that allows for stepwise execution and t
possibility to display intermediate states of token distributions. The K2 environment includ
compilers to convert specifications into exceutable code.
A functional language named kiR[22] is used to speeify processes behaviour. In his works

Abmann docs not clarify the reasons for choose KiR. On the other hand. in Huskelly, we
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extend Haskell, a de fucto standard pure functional language for describing process behaviour.

In K2 places are used to hold tokens (values) to be exchanged between processes. The
communication structure is represented by directed ares. Processes behaviour are modelled by
petri net transitions. Each transition represents a funetional program, in which the behaviour
is associated with the Petri net, modifying its behaviour. Although Abmann asserts that his
approach yields a process hierarchy, this hierarchy is weaker than the one offered by H askells.

K2 establishes a finite synchronous distance? between communicating processes. A process
is enabled if there exist enough tokens in its input queucs and enough free space in its output
quencs. This mechanism makes K2 communication asynchronous. Similarly to Oceam|15],
Huskelly adopts a synchronous communication model.

§ Conclusions
This work presented an environment for analyzing formal propertics of the communication
structure of Haskelly programs. This structure is defined by Haskelly Coordination Lan-
guage (HCL), a language also used for task-to-processor allocation. This environment contains
a compiler that translates an HCL program into Petri nets as specifyied by INA[35], a tool
capable of simulating and automatically analyzing several formal properties of systems.

We believe that this hierarchical approach to concurrent system development brings the
ability of reasoning about programs and better chances of proving their correctness.
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