MPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

oY Framework for Software Reuse over Open Networks

Glédson Elias da Silveira
Federal University of Rio Grande do Norte
ges@dimap.ufrn.br

Silvio Lemos Meira
Federal University of Pernambuco
stim@di.ufpe.br

Abstract

eering research has demonstrated that software reuse can lead to higher
quality and smaller time to market. In addition, it is known that the
e when reuse is carried out across multiple systems. projects, and even

boundaries. In such scenario, where components must be delivered to
y distributed producers in short time and at low cost, traditional in-house
able components are absolutely unsatisfactory.

troduces SOS (Software Operating System), a framework for supporting on
distribution and integration of distributed. versioned, reusable components
s and users environments. The framework combines hypertext-based Web
bile code abstractions to define a transparent, distributed component library,
the basis for large scale. systematic reuse of software components during
deployment, execution and evolution of software systems.

software reuse, software distribution

ing research has demonstrated that software reuse can lead to higher
T quality and smaller time to market. It has been argued that an important
Of infrastructures supporting reuse is the existence of a marketplace that
10 reuse for both producers and users [1]. However, software industry has
obilize such infrastructure of production for reusable components [2].

known that the benefits increase when reuse is carried out across multiple
Cts, and even organizational boundaries, enabling higher levels of commonality
 1eUSe cosis [3], In such scenario, where components must be delivered to

distributed producers in short time ‘and at low cost, traditional in-house
ble components are absolutely unsatisfactory.

: d. the Internet has been recognized not only as a tool for communication in
“ium but also as an environment for enabling changes in computing and
madigms. For Instance, Web-based technologies make possible new classes of
=S Supporting efficient, timely delivery of content to interested parties.

4 Context where
librarics can
based

producers are spread over the Internet, reuse-driven approaches
n)akc use of Web technologies to support a more powerful and
upon distributed component libraries, In such scenario. distribution

163

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

issues play a fundamental role and possibly will radically change the conception, deplos
and maintainability of software systems. In such approach, distribution means the efl
automatic delivery of components to interested parties, including producers and users.

Handling software systems as monolithic entities. current reuse infrastructures instal
whole set of components comprising applications, even when users require just a
portion of their functionality, In distributing settings. such approach must be radi
changed since transferring enormous applications strains storage and bandwidth utilizatic
even more severely so when dynamic management of updates 1s required.

As commonality across software systems is predicted on the order of 60-to-70 percent
reuse infrastructures based upon distributed libraries must intrinsically support distriby
capabilities for retricving individual, high granularity reusable components according
needs and on demand. Such capabilities reduce storage and bandwidth utilization and
supporting notions like customizability, adaptability, extensibility and evolvability - al 0
them essential to extend and adapt software systems in order to meet changing user needs.

This paper introduces SOS (Software Operating System). a framework for supportin;
demand, dynamic distribution and integration of distributed, versioned, reusable compor
on both producers and users environments. The framework combines hypertext-based |
concepts and mobile code abstractions to define a transparent, distributed component libr
which defines the basis for large scale, systematic reuse of software components du
development, deployment, execution and evolution of software systems. Like the Web, v
moves distributed reusable resources to clients, SOS allows software systems to ¢
retrieve, install and execute remotely available reusable components on user desktops.

In such scenario, cataloging, publishing, retrieving and executing distributed reu
components are easily and efficiently achieved by adherent platforms, which allow produg
to register software components in a distributed component library and users to acqj
software licenses and have them automatically installed and running. Therefore, SOS is a |
way for manufacturers to provide genuine plug-and-play software systems.

The remainder of this paper is organized as follows: next section presents a comparison
related work. Sections 3 and 4 present the architectural framework and the operational mo
respectively. In section 5, implementation issues of a prototype environment are presentt L
Section 6 in conclusion presents some final remarks. pointing out practical results. '

2. Related Work

There is a number of technologies that promotes software reuse, including COM+ |
ActiveX [5], CORBA [6], RMI [7], Java Beans [8] and EIB [9]. Those technologies ena
software reuse exploring two different approaches: distributed objets and component lib
Distributed objects promote reuse of executing components, which are running or can
activated on remote servers. Although powerful. distributed objects can not be applied to al
kinds of software systems, being suitable for ones based upon distributed architectures.

On the other hand, component libraries promote reuse of executable components, which :
made locally available during installation of their respective software packages on

versions of the same components. However, current technologies have adopted limited
approaches to address versioning. As effect of the lack of versioning support, it is very
common to install a new software package and something previously installed breaks [1 _
Besides, component libraries are fulfilled with the entire set of components referred to b

164

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

fware systems, not regarding which ones are really activated by users during runtime. In
g0S, differently, components are just installed based on user needs.

without laborious and complex programming efforts, none c!‘ those Fcchnulogiesl [4-_8] has.
capabi!ilics to support on demand. transparent downloa_d‘,_lnslailgnqn and activation of
components on user desktops. SOS supports such‘ capahﬂ_me_s enriching both a[)proachcs,
distributed objects and components ll_branes_ It defines a (_!rstrr})uled component library that
dynamically and transparently maintains local component Ilblranes on bu_th user and pmducer‘
desktops. Besides, it adopts a versioning mechanism c:nabin_1g appllcalmns_to make use of
different versions of components. Although SOS does not directly address issues related to
distributed objets technologies, it let components activated in user desktops make use of such
technologies, playing the role of either a client or a server object.

In spite of being designed without software reuse purposes. several environments support
aspects explored by SOS, like programming languages supporting code on demand and

content delivery and software distribution systems allowing dynamic distribution and

updating of digital resources. Java [11] loads locally available classes as they are requirpd.
Besides. Java applets [12] and extensions [13] download remotely available classes during
runtime. Although powerful, they suffer from problems resolved by SOS. Java does not allow
applications to share different versions of classes. Applets and extensions can only download
classes from the remote host that they came from. Based upon URLSs, like the Web, they have
referential integrity and location transparency problems which are well known. Since
extensions are not installed locally, each time applications are activated, extensions have to be
downloaded once again and, occasionally, before finding classes, all referenced extensions
must be downloaded. In SOS, differently, artifacts are downloaded just once when referred to
during runtime, being available thereafter for all applications sharing them. Besides, SOS
locates and retrieves exactly the artifact specified by the application.

A number of recent content delivery and software distribution systems based upon Web
technologies are available nowadays, including Castanet [14], WebCasting [15]. Netcaster
[16] and NetDeploy [17]. Employing URL-based models and representing applications as a
set of files to be reproduced on user desktops, those systems fetch files from URLs and
automatically check and update changed files on a regular basis. Instead of files that are justa
Storage abstraction, SOS manages the post-development application lifecycle exploiting a
compositional model based on identifiers. which solve problems related to URLs.

None of [14-17] can cope with inner composition of applications in a fine-grained way. The
closest technique is used by Software Dock [18] but, as all other proposals, it deals with
monolithic software systems, distributing complete applications even when users require just
asmall portion of their functionality. Therefore, in a context where producers are spread over
the Internet, trans ferring enormous applications strains storage and communication resources,
€ven more severely so when dynamic management of updates is required.

3. Software Operating System

SOS (Software Operating System) is a framework that provides means to deal with software
'€Use over global open networks. The framework employs the power of distribution and
EXecution models of already-existing Web technologies for supporting a distributed
Smponent library which allows registration and on-demand, dynamic distribution and
INegration of reusable components over the [nternet.

From he producers' perspective, SOS simplifies the development, registration, distribution
and Management of software systems, designed using distributed reusable components

165

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

available on the network and possibly developed by multiple and geographically
producers. From the users' perspective. SOS provides easy access (o software
available on the network: what users need is to get software licenses or to connegt
devices and, thereafter, using them immediately, Upon registering soflware licenses g
enabled devices, whenever fine-grained components that com pose software systems g
drivers are referred to at the first time. based upon a code on demand approach, they
individually, transparently and dynamically located and downloaded from the di
component library. Upon that, they will be installed, loaded and linked on user envirgy
or devices. Therefore, the framework acts like a dynamic networked marketplace for aj|
distribution and reuse of sofiware com ponents.

Loading executable code over open networks is a well-known security risk. To deal with s
probiem, SOS provides integrity and authenticity based upon a public-key infrastrucyy

Supports an open and wide distribution of components. in which they can be made ay.
freely and without restriction but are protected from modifications.

3.1. Compositional Model

SOS is based upon a compositional model in which software systems are composed of a
individual metacomponenis distributed over the Internct. Metacomponents are rg
software entities that wrap and describe other software entities, embedded components,
in turn can be components of any specific component model [Figure 1]. For ins
metacomponent can wrap a COM+ [4] or JavaBeans [8] component.

Distnbution
Interface

Embedded
Component
Interface

Metacomponent

Externalized e

Interface — > Embedded

Component
Figure 1 - Metacomponent

The metacomponent model, detailed in [19]. defines the architecture of metacomp
specifying the structure and operations of their interfaces and mechanisms by which
interact with others. Besides, metadata describing metacomponents are presented in [19

another contribution, [19] presents guidelines to design metacomponents that can
together to form larger applications.

The purpose of metacomponents is to specify distribution issues related to their embedd
components. The distribution interface addresses such distribution purposes only, not deali
with features related to technologies employed to develop embedded components. Howi
the distribution interface defines operations for extracting embedded com ponents, granting.
visual builder tools and runtime services the ability to manipulate and activate embedd
components. As access to embedded component makes visible their interfaces, the model
regards such accessibility as a virtual interface, called externalized interface.

To facilitate software reuse, a metacomponent can be deployed independently and is subj
to composition by third parties. Composition enables metacomponents to be develop
integrating and using services provided by other previously available metacomponen
Hence, multiple metacomponents can be combined and interrelated to rapidly build
application or to create a new metacomponent, more comprehensive or specialized.

SOS handles metacomponents using mechanisms based upon metacomponent identifiers.
Every metacomponent has its own identifier. which is universal and unique on the Internet.

166

X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

. istinguis i locate, retrieve, install and activate
- v SOS to distinguish, discover,) _ o8 M v
jgentifiers am:mctacompmcms, An identifier has the following syntax: N/, where N and

> g make
Pond":f, and the version of the metacomponent. Together, these terms
‘he name ¢

mponents unique in the world and over time. . _
el ing namespace authority, SOS arranges the namespace as a hlera‘rcmsc:lﬂ\l:;:é
s ¢ metacomponents and. internal nodes are domains representing :
where leaves darmai" is a named collection of metacomponents and, pos;;tbly, other doynfl;ps
P"Oducers‘|?u1:jerncatl1 it. Each domain is controlled by a producer, which has authority for

: jate Ry :
‘mﬁfg:m« metacomponents and creating sub-domains.
reg =

i identi similar
5 describes softw th a hypertext structure of identifiers simi

; eh. SOS describes software systems wi e s e
LII‘SI;]]LZ\A;:ICI'I hypertext structure is defined by composition t(;t metgrf;'olzjl;;c;nzﬁ,elﬂi?:a[; ;f
w : i identi low metacomponents to be specifie ‘

iffer fi Ls in that identifiers allo _ ‘ (
differ "(‘Thliliame of a metacomponent is unrelated to its location, m aking pos‘mble o n::}:c
Immm?{catc metacomponents without affecting or _brcakmg cxlstmgr n:’:t::trocr:ec;;:::3) w'ili;
or f‘_’r-: -rs) to them, which is not possible using conventional URLs. Identi |er;i 0g i
:g:“r[::sgll-uion mecﬁanism supported by SOS. solve the problem of referential integrity
jocation transparency that occurs with URLs [20].

3.2. The Architectural Framework

i its ositional
§0S defines a high-level architectural framework [I*agiurc i;_!] that g:(fl(:éuﬁ :]J:; cc;msomp“am
i f metacomponents. The framew pil
B i nents and users to install
' develop and register metacompo s tall
middleware that allows producers to regi Qi Ao
1 ; ffect such activities, producers a 3
and execute software systems. To e ‘ e g e
i ich interacts with the middleware gh wel
use-driven automated tools, whic _ g
:;lcrfaccs. It must be stressed that reuse issues are spregd lhrouglluul L:hr: ?ntl{l:inlllm.ycl
software systems - from development and registration, to installation and execution.

= erwork
Yigure 2 — High-'LeveI Architectural Framework

On the producer side, a set of automated tools are employed hlf produc_tlztrjs tcti (:)T: lﬁ‘na.l clz\;lgg
and register metacomponents. Developntent environments are v:syal bulb ;:] cl; s
reuse-driven design and development of metacomponents. allowlngdem Ic r:ien[.-
be codified and wrapped in metacomponents. In such process, a e\::t Opfor 2 e
automatically generates metadata describing the metacompone “. A al.idatc
composition. When generating metadata, _devclopmem environments e e et
dynamically and transparently the composition of a metacomponent, assuring

already available metacomponents only.

167

X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTH xIV oJMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

_ - ces conferring independence between them. Such independence allows the
iTm;lrmcrization of each tier to be performed in an autonomous way provided that
e

d implem ology employed to implement the interfaces.

retrieved from the middleware. Handling embedded components, a develdp exists on the techn
|

becomes dependent on the technology employed to develop them.

In order to be available, metacomponents must be registered in the middle
producers employ management environments that allow administering nam,
Such environments have capabilities that allow producers to manage domaing
metacomponents. Working with metacomponents, a management eny
dependent on the technology employed to develop embedded components,

On the user side, the application manager is a visual tool employed by use;
post-development application lifecycle including installation, execution. updat
removal. Execution environments are runtime services that execute on
providing an application context for metacomponents. In practical terms,
on demand approach, it provides an operating system process or
metacomponents are dynamically loaded and executed. For instance, a slightl
Virtual Machine (JVM) [21] can be the execution environment for metacompor
Java classes. During execution of applications, execution environments
metacomponents only when they are referred to at the first time.

Figure 3 — Middleware Architecture

- ication Repository Service (Repository): composes a universal distributed
mrﬁpunem library for storing and retrieving metacomponents.

ipplication Directory Service (Directory): builds a distributed name service for
istering, locating and retrieving metacomponents, ‘
plication Management Service (Manager): locally manages the lifecycle of
metacomponents on User environments. o
ilable, metacomponents must be registered by producers i_n the directory, whlch_ in
tly stores them in the repository. The di_rccmry |mpl?n1cnts a rcst?!ultmn
that translates metacomponent identifiers to their corresponding storage locations
0 itory, which holds packaged data describing cac!'s and every metacomponent
employ management environments to manage the d_lrectory and the repository. In
ities, the directory transparently manages the repository.

enables metacomponents to be dynamically retrieved and integrated on the
at runtime. It offers services that guarantee support for_ every phase of the post-
- application lifecycle, which includes installation, activation, update, upgrgdc
- The manager allows users to acquire a software license and get the application
running, enabling the availability of genuine plug-and-play software systems.

ted services, entities playing the role of the directory and lh_e repository are onl_y
d in the subset of devices employed by producers to register and _store t_hfm‘
HOnEnLs. On the other hand, as the manager is a locally granted service, entities
is activated in all participating devices (user desktops), enz_ablmg on demand,
ieval of registered metacomponents at runtime and automatic management of
© of the post-development lifecycle of metacomponents.
Cation Repository Service
TY 1S a universal distributed database composed of a set of distributed entities,
iners, responsible for managing the storage and retrieval of n1cl?cump0nent5
‘Lontainers are accessed by container names, which designate iocam_ms of hosts
1€ Service. The framework does not specify any syntax to container names.
3 m“‘_‘“‘-”mponem can be replicated in several containers, the repository does not
Y replication control, which must be regarded by upper tiers.
' UFRGS

Instituto de Informatica
169 Biblioteca

previously installed. Such capabilities are provided by including in each m
identifiers of other ones that it depends on. Since an identifier specifies the
metacomponent, execution environments can activate the correct one, P

In fact, execution environments extract and instantiate embedded
metacomponents to manage the dynamic loading of other metacompone
embedded components can be codified using different technologies, at
execution environment is only able to work with metacomponents Wi
components share an equivalent technology. To assure compatibility and
runtime, such constraint imposes that a given application must
metacomponents whose embedded components are based upon the
However, at least conceptually, using an approach similar to COM+
environment can be language-neutral. being able to handle embedded
using any technology. In such case, the execution environment must de
data formats used by different technologies. The tradeoff of technology
added complexity. As described in [19], a metacomponent has an attribute
operation that allows identifying the type of execution environment to be a

The user API and the producer API define a collection of operations
middleware enabling development environments, management environ
managers and execution environments to interact with the middleware to ac
goals. Such operations will be concisely described in section 4.

The middleware composes a distributed component library and name service
dealing with distribution issues, enabling on demand. dynamic delivery
metacomponents to user and producer environments. Indeed. it is a set of distrib
communicating services composed of instances running in participating de :
upon a network infrastructure that allows communication. Such services are re
registering, storing, locating and retrieving metacomponents. Figure 3 Sm“s
architecture of the middleware, where tiers define services with specific functio

168

(510 BRASILEIRO DE ENGENHARIA DE SOFTWARE

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWA SIMP

o them. In addition. each registry has a registry manager, which is an
petwee :

Application ible for managing the list of authorized domains.
Repository erson re;ponstbl ;
Service
. b
= /_,
Domain
Registry
: v - Manager
) 3 '
Container — Metacomponent w.ngulhDﬁIBd Domainz;. s
Figure 4 - Application Repository Service 4 ~ " (NameJ Public Key) X
. - - - ~ - . 2 et
Containers define relationships with a set of elements [Figure 5]. On beha ,/ i
domain can be authorized to store and remove metacomponents in several Registry — :

Figure 7 — Registry’s Relationships
v a domain is an entity authorized to work with a set of registrﬁes and
dition. a registry and a container can assist severa!_domams. Figure 8
-lationsh,ips among a domain D and its registries and containers.

Domain o —— Registry

other hand, several domains can be authorized to manipulate metacompone;
In order to control access, each container keeps a list of authorized donic
their names and public keys. Furthermore, each container has a container
an institution or person responsible for managing the list of authorized doma

List of Authorized Registries

' ; . © {Reysiry Name / Public Key)
Domain | 1
; P : : il Authonity ———=Z) L
List of Authorized Domaimns _ - Application
\asue - Pashe ey i List of Authorized Containers . Directory
 (Container Name / Public Key) Servive

Container —~ - : ; e N Application
Figure 5 — Container’s Relationships M i cormince R;.:ur:iilcn:y

3.2.2. Application Directory Service)
Figure 8 - Domains, Registries and Containers

by several registries and containers, a domain k.eep;; a list of‘ aurhorr.fed
| a list of authorized containers. identifying registries where mt"ormai'lon
domain is kept and containers where metacomponents of the don}mn can be
ries and containers are identified in those lists by registry and container names,
their respective public keys. Each domain has an authority, whl_ch is an
person responsible for managing it. An authority has permission to register sub-

The directory is a universal distributed name service composed of a set of

communicating entities, called registries, responsible for managing the
domains and metacomponents, the resolution of metacomponent identifiers @i
of metacomponents [Figure 6]. In a way similar to containers, regisiries
registry names, designating locations of hosts supporting the service, and the
not specify any syntax to registry names.

&Sﬁzﬁf:;" metacomponents beneath its domain and, it is also responsible for controll?n g the
Service rized registries and containers that serve its domain. Moreover, an aut_honty can
X several domains, representing that a producer can maintain several domains.
- ity and uniqueness of metacomponent identifiers are granted by uniform
_resolution processes enforced by interfaces of registries. The registration
Reg‘my

€5 the binding between identifiers and container names. Registries implement the
‘-‘_‘lﬁple binding in which a single identifier can be resolved to several container
g multiple locations (containers) where replicas of the corresponding
- ; €Nt are stored. On the other hand, the resolution process translates identifiers to
Registries also constitute relationships with a set of elements [Figure 7] e Mg container names,
producer. a domain can be authorized to register metacomponents in several e
other hand, several domains can be authorized to inscribe metacomponents 73
cach registry keeps a list of authorized domains. identified by their nam
Registries must implement consistency control, assuring that the information ao

Figure 6 - Application Directory Service

hold only bindings between identifiers and container names, activating operations
ontainers to effectively store replicas of corresponding metacomponents.
IS are not stored in all containers serving their domains, allowing frequently

170 171

MPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOF v SI

referenced metacomponents to have more replicas than rarely refere
registration, producers select the subset of containers where replicas must
registering a metacomponent, producers can change bindings using
environments that indirectly request containers to store or remove the meta

2] Guidelines: a Sketch

' ilities through well-defined interfaces specified by operations. which
o3 = 1:cc:]sm(::::;ratic:rlagll model. In order to protect producers and users, SOS
i and integrity using digital signature supported by a public-key
...i;t:ddcd in 1hg framework. Due to space limit, the operational model is
e;'lf;ed below, abstracting away issues related to authenticity and integrity, and

e issues, It is presented using the symbols defined in Table 1.

Based upon replication and consistency controls, the collection of regis
assisting a domain provides backup to each other. Further, they improve
performance of the resolution process since processing load of queries is
registries, and accessibility as access via each registry and container pro

path. Therefore. the greater the number of registries and containers of a dq
available is the domain knowledge and the more efficient is the resoluti

[&ss;fnibdl Description

M Metacomponent

processes. Besides, distributed aspects confer high-level of scalability to the I | Identifier of the metacomponent M
The framework is not dependent on specific technologies to implement reg) D [)om'aln' .
containers, as long as those technologies offer facilities to support the operaf PlUp | Public key of' me‘dt::mdam D 5
the interface of the directory and repository. The World Wide Web, for one, Pp | Parent domain of the domain
technology. In such scenario. URLs can be used as registry and containe; R Registry

Pl |Public key of the registry R
Rp Set of registries serving the domain D
G, Container
PU¢ |Public key of the container C
Cy Set of containers storing the metacomponent M
(@7 Set of containers serving the domain D
Table 1 - Symbology of the Operational Model

seripts [22] or Java Servlets [23] can be developed to implement the operati
3.2.3. Application Management Service

Differently from the directory and the repository, the manager is a local
activated in each and every compliant device. The manager supports cap
users to manage all phases of the post-development application lifecycle,
installation, activation, update, upgrade and removal.

The manager is composed of a set of entities [Figure 9]. The cache is an i
installed metacomponents. The engine implements the user APl enabling.
managers to request the installation, activation, update, upgrade and remo
and execution environments to request the load of required metacompone
engine has internal capabilities that support both the dynamic update and re
systems. The engine is responsible for managing the cache assuring that;
Just installed after being referenced by previously installed metacomponen
a metacomponent is installed when it is shared by several metacom
versions of a metacomponent can be installed. The explorer is the only
that interacts with registries, being responsible for retrieving metacompol

between explorer and engine is just formal. In order to achieve better
explorer can be integrated into the engine.

on Repository Service

rt two kinds of interfaces. The first, authority management operations, allow
15 (producers) using management environments to control the list DT:
omains. The second, fumetional operations. allow registries, on behalf of
domains. to store, remove and retrieve metacomponents, Authority management
mpose the portion of the producer API that directly interacts with the repository

thorize a container C to handle metacomponents of a domain D, supplying D
anager of C activates the corresponding authority management operation to
the list of authorized domains. Once D is authorized in C, registries can activate
Tations to store, remove and retrieve metacomponents of O. To cancel the
; the manager of ' removes D from the list of authorized domains, To do that,
= e manager activates the corresponding authority management operation.

qf.ﬂ‘mewcomponenl M from a container C in Cj, can be requested by any
Providing /. activates the corresponding functional operation. On the other
Tage and removal of a metacomponent M of a domain D are restricted to
_[n'-ﬂrder to store M in a container C in Car, supplying M, any registry R in R
m'_“'-spﬂnding functional operation. Similarly. to remove M from a container C
2 Ay, any registry R in R, activates the corresponding functional operation,

Ation Directory Service

Figure 9 - Application Management Service four interfaces. The first. authority management operations, allow registry

NS managemen; environments to control the list of authorized domains. The
~ managemeny operations, allow authorities (producers) using management

172 173

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SO

SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

nagement Service

provided by interactions between the engine and the explorer. The
. an interface that allows retrieving a metacomponent and verifying if a new
_.FT_S mponent has been released. To retrieve or verify a metacomponent M, the
mim::pmmr supplying [y The explorer directly activates registry’s functional

environments to define registries and containers assisting their domains. The
operations, support registration and retrieval of metacomponents, identj
versions of metacomponents, and resolution of metacomponent identifi
replication conirol operations. internally ensure consistency of domains repl
registries. All operations, except replication control operations, compose the
producer API that directly interacts with the directory [Figure 3].

tion Ma
acilitics are

pmoe55ing its requests.
§0 kinds of interfaces: functional and manggement gperations. Functional
users employing application managers to control the post-development
cle. Besides. functional operations enable execution environments 10 request
acomponents. Functional operations define the user API [Figure 3].

In order to authorize a registry R for handling metacomponents of a domain
and PUp, the manager of R activates the corresponding authority manasem
include D in the list of authorized domains. To cancel the authorization, the
removes O from the list of authorized domains. To do that, the manag

corresponding authority management operation supplying D. a of an application is basically to register in cache the identifier of the

representing the application. Hence, in order to install an applic;tian M, a
Iy. At this point, the application manager requests the engine, which in turn
-quest 1o the explorer for retrieving M from the directory. Upon retrieving M,
it in the cache. It must be pointed out that only the metacomponent M is
other metacomponents composing the application M will be just retrieved when
uring runtime.
ng the application M, using the application manager, the user can activate M. The
M in the cache and activates the exccution environment, which is responsible for
nory referenced metacomponents. At any moment, the user can request the
e application M. deleting M and its internal metacomponents, not reused by

Supposing that registry and container managers have already authorized the dc
respective registries Ry and containers Cp, the list of authorized registrie
authorized containers owned by [) must be initialized with Ry, and Cj, res
to initialize the list of authorized registries. for each R in Ry, the authority of
corresponding domain management operation providing & and PUy. Similarl
list of authorized containers, for each C in Cp, the authority of D activates the
domain management operation informing C and PUe. Domain management
activated in only one registry R in Rj, which automatically activates replication m
operations for keeping synchronized all registries Ry,

The resolution of metacomponent identifiers requires that domains keep infor
registries serving their sub-domains. The authority of the domain declares
activating domain management operations. Hence, in order to register the
parent domain P, the authority of P;, must activate the corresponding don
operation providing D and, for each registry R in Ry, R and PUy. |
management operation is aclivated in only one registry serving Py,
activates replication management operations for keeping synchronized regi

ion requests to the explorer for verifying whether the application M, whose
‘specified by the user, has a new version M. If so, the engine requests the
llation of M. Again, only M is retrieved and installed. M and its referenced
. not reused by other ones, can be optionally deleted from the cache. Hence,
s are kept in the cache if other ones reuse them.

The registration process enables producers to make and cancel metacompol
managing the binding of metacomponent identifiers and container names, In
a metacomponent M of a domain D, the producer activates the corres
operation in a registry R in Rp, supplying M and the subset of contai
serving D. To keep synchronized all registries Ry, R automatically
management operations. Besides. R automatically activates functional
containers Cys to store replicas of A On the other hand, to cancel the
providing /y.. the producer activates the corresponding functional operati
Rp. Again, synchronization is accomplished in all registries Rp int
replication control operations and R automatically activates functional op
containers Cy, to remove replicas of M.

1 update, upgrade does not represent just the installation of a new version that
tead. the upgrade consists in replacing one application by another very similar
ew functionality. When the user request the upgrade of the application Af to
by their identifiers /y, and /., respectively, the upgrade operation requests to the
Irieving and installing the upgraded version M’. At this point, what happens is
the update process. It must be noted that the update automatically finds the
‘an application and the upgrade finds the version specified by the user.

Management operations internally control the automatic update and removal of
The !!'It;mal update process keeps applications up to dated by automatically
I, In any desired time interval, to verify whether new versions have been
INtervals are predefined by producers during developing of applications but
The metacomponent retrieval can be requested to any registry. In ord _ configured by users. The internal removal process supports a lease approach
metacomponent M of a domain D, supplying /y,, a requesting entity (explorer) © Intervals specified by producers. Upon interval expirations, the engmne
environment) activates the corresponding functional operation in any registry. '_l'em(wes Applications and their internal metacomponents, not reused by other
cooperative resolution process, R’ discovers the registries Rp and send_s 3 and lease intervals are attributes of applications [19].

registry R in Ry, for fetching M. Since all registries Ry, know the set of conta
any container C in Cy and requests the retrieval of M. Upon retrieving M, R
which in turn returns M to the requesting entity.

] .
. ﬁfgri:uzxcculmn environments are responsible for loading metacomponents in
6 se; desgmnem-bascd_ software systems to get correctly assembled and
i lops at rul_mrpc, Ex‘plormg composition, execution environments
ading and linking of metacomponents. Whenever an executing

174 175

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE sg

'SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

metacomponent A refers to another metacomponent M’ not loaded in 4
executing environment sends a request to the engine. First, the engine veri
locally installed. If so. M is returned and immediately loaded in me
engine forwards the request to the explorer for retrieving M Upon retrie
stores it in the cache and returns it to the execution environment,

nning in a server available in the local network, for storing and
: ::gnl s. However, the available implementation of the mtgrfai;c stores
set Of'dircclurics and files generated using Java object serialization.
s@asa

. execution environment that supports execution of mctacomponcr}ts
cm'degms al1The execution environment extends the default Java class loader _fur
omponents to the engine. In the present, capabilities provided by application
. environments and management environments are implemented as a
_opmenrl‘c package for each capability. For instance, on the user side, Fherc are
mszali;ig. activating, updating, upgrading aqd removing :lava appl?calmns. On
= there are packages for managing registries and containers serving domains

The retrieval mechanism installs metacomponents only when they are refe
time. However, since network infrastructures can introduce significant g
users to adjust the retrieval mechanism enabling a prefetch approach.
performed by users changing a metacomponent attribute [19], which id
composition levels whose metacomponents must be retrieved in advang . F
attribute is cqual to 1. every time a metacomponent M is referred to a |
engine immediately retrieves and installs the other ones directly referenced
M refer to any of those metacomponents, they are already available.

.'melacomponcnls,

g Remarks

‘means for dealing with software reuse over the Internet. It is_ not, at first sight, a
d. But it is clear, by comparison with other, already existing appr_oach_cs that
forward a new way 1o manage software reuse, that may cause a serious impact
solving some hard problems and Uvercomling critical limitations. What
al unique is its support for software reuse ufggcred by prodqccr and user
upon Web-based development and computing models, whu;h take into
it features of software systems such as composition and commonality.

- composition in a fine-grained way, SOS defines a rcus?-drivcn approach
distribute, execute and evolve software systems comprised of reusable
- Indeed. from the producers’ perspective. SOS enables a component-based
ach that uses metacomponents available on the network and developed by
graphically dispersed producers. From the users’ perspective, SOS manages
~development application lifecycle maintaining a local component library
s are individually and dynamically installed triggered by user needs.
framework acts like a dynamic networked marketplace for allowing reuse of
nents based upon a code on demand approach.

5. A Prototype Environment

In order to validate and evaluate SOS. a prototype middleware, called
developed for Java applications. A detailed description of CoDelivery can
where a study case based on a simple Java application is also presented den
carried out by producers and users, for releasing two versions of an applic:
executing and updating them.

CoDelivery employs the power of already-existing Web technologi
integrating and executing Java applications over open networks. Co
metacomponents wrapping Java classes. Compositions of metacompo
terms of runtime dependencies between Java classes. Dependencies an
references to other classes: extends and implements clauses. class 3

parameters and results. CoDelivery does not handle classes in default
metacomponents so far, only those developed by producers.

CoDelivery's services are implemented as Java RMI distributed obij
repository objects are activated in a subset of devices. which offer their
network infrastructure. On the other hand, as a locally granted service,
activated in cach participating user desktop. To protect producers and
provides authenticity and integrity based upon digital signature supported by

C€ment in its own, given that no prior proposal could show the following
ic distribution of versioned components: on demand. progressive
ponents: automatic update of software systems: and dynamic remqval of
] . based upon a lcase approach. In addition, performance analysis and
Containers and registries are RMI objects accessed by URLs. For instance, a ¢ ical results are encouraging, as we implemented the support for: location
have a container name like rmi://zeus.enginz.com/sos.container, representing 2l d referential integrity of metacomponent identifiers; reusability of
host and the name of the RMI object. Containers and registries store ' » Scalability and resiliency based on distribution and replication features:
authorized domains and their metacomponents in an abstract storage devi supporting on demand usage of communication and storage resources: and
interface. Such approach enables different implementations of the storage evolvability triggered by user needs. Seccurity concerns are also taken care
make use of different technologies to store information. For instance, di ; Producers and users based on a public-key infrastructure.

file system or interacting with a database management system. During :

producers can define a Java class that implements the storage device int _
there is only one implementation of the interface. which stores information
directories and files generated using Java object serialization.

¥SEs and practical evaluations were performed using a set of small
ch one designed for assessing different features of the environment. In order to
s nalyses, scripts were developed for simulating a high number of queries

The engine is a local RMI object accessed by a URL and provides facﬂ
managers and execution environments. The explorer is just a Java oh__iect
engine. The cache is also an abstract storage device defined by a Java inter
implemented using different technologies. Such approach allows users 0__‘_"
share metacomponents. For instance, an implementation of the cache inte

Practical evaluation of the prototype environment is under way to assess SOS

1on domains, including a real-life test with tens of thousands of users
Wide in Bragi|. Interesting work remains to be done, including the
f a GUI-baseq development environment, management environment and

176 177

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE Sopm

application manager, Besides, SOS can be enriched with extensions 1o con
model and mechanisms allowing search engines to find, evaluate and select.

7. References

[11 Kontio, 1. OTSO: A Systematic Process for Reusable Software
University of Maryland. Technical Report CS-TR-3478. 1995,
[2] Cox, B. No Silver Bullet Revisted. American Programmer Journal, »
[3] McClure, C. Reuse: Re-Engineering the Software Process. Exten
1994, < hltp:ifwww.rcusability.comfpapers?.html>
[4] Kirtland. M. Object-Oriented Software Development Made Simple wiy
Services. Microsoft Systems Journal. November, 1997, J
[5]1 Microsoft Corporation, How to Write and Use ActiveX Conirols Sfor A
CE. June, 1999, <http:f:’msdn.microsoﬂ,comf’library/techan!activexe& '
[6] Object Management Group. CORBA/INOP 2.3.] Specification, Octob
(71 Sun Microsystems, Inc. Java Remote Method fnvocation (RMI),
<http://java.sun.com/products/jdk/rmi/index_html> -
[8] Sun Microsystems, Inc. JavaBeans AP/ Specification - Version 1.01. Iy
[9] Thomas, A. Enterprise JavaBeans Technology: Server Comp '
Platform. Sun Microsystems, December. 1998,
(10 Szyperski, C. Greetings from DLL Hell. Software Development. Octobe
[11] Gosling, J. and McGilton, H, The Java Language Environment: A W
May, 1996. <hup:ﬂwww,javasoﬂ.ccnﬂdocflanguage_environment>:
[12] Campione, M. and Walrath, K. The Java Tutorial Addison-Wesley. |
[13]) Campione, M. et al. The Java Tutorial Continued: The Rest of the JD,

[14] Marimba, Inc.. Introducing the Castaner Product Family.
<http://www.marimba.com/products/castanet-intro htm>
[15] Microsoft Corporation. Webcasting in Microsoft Internet Expl
September, 1997 <hltp:ﬁwww.micresoﬂ.conﬂie/prcss/whitcpape i
[16] Netscape Communications Corporation, Netcaster Developer's Guide
<http://developer, netscape.com/docs/manuals/netcast/deveuide/index |
[17] Open Software Associates, NetDeploy 4 Technical Specifications.
<htlp:;‘/www.csacom!docsflssftssowb,phtmb
[18] R. S. Hall et al., The Software Dock: A Distributed, Agent-based
System. International Conference on Distributed Computing Systems. |
[19] Elias, G. and Meira, S. L. 4 Metacomponent Model 1o Support the
Evolvability of Networked Applications. TOOLS USA 2000. August,
[20] D. Ingham, S. Caughey, and M. Little. Fixing the Broken-Link P
Approach, Computer Networks and ISDN Systems, Volume 28, N°
(21] Lindholm, T. and Yellin, F. The Java Virtual Machine Specificatio
Addison-Wesley. 1999.
[22] Gundavaram. S. and Oram, A, CGJ Programming on the World W,
Associates. April, 1996,
[23] Sun Microsystems, Inc. Java Serviet Specification, v2.2. December, 19
[24] Elias, G. and Meira, S. L. CoDelivery: An Environment Jfor Distr
Components. TOOLS Europe 2000, June, 2000. France.

o

178

