XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

searching for Expressiveness, Modularity, Flexibility and
Standardisation in Software Process Modelling*
Josep M. Ribo!, Xavier FranchZ

I Universitat de Lleida
C. Jaume 11 69, 25001 Llcida (Catalunya, Spain)
fax: +34.973.70.27.02
josepmaieup.udl.es
*Universitat Politécnica de Catalunya (UPC).
¢/ Jordi Girona 1-3 (Campus Nord, C6) E-08034 Barcelona (Catalunya, Spain)
fax: +34.93.401.70.14
franch@lsi.upc.es

Abstract:

Although an important rescarch effort has been carried out in the last decade in the field of
software process modelling (SPM), some crucial issucs still remain as challenges to the
community. The expressive power of process control-flow descriptions in most current
approaches is still not optimal; their capabilities to provide a flexible process model in which
it is possible to perform "on-the-fly" modifications in a safe manner are often insufficient and,
usually, their modularity features are limited. Furthermore, the research community has not
succeeded in finding a standard process modelling language, which has clearly impaired the
development of the area. In this article we propose some objectives fo be accomplished
concerning the above-mentioned aspects and we provide an overview of some different
approaches to these issues that have been al ready developed. We compare them and we stress
both their strong points and their limitations. As part of this analysis, we outline the
PROMENADE approach to software process modelling, aimed at solving these limitations
while keeping the strong points by means of the use of a complete set of control-flow and
modularity constructs. To enhance standardisation, PROMENADLE constructs are defined in
terms of UML: UML constructs support also specialisation and flexibility of process models.

Keywords:
Software Process Modelling, Process Modelling Languages, UML

1. Introduction
A model for a software development process [DWK97] (i.e.. a software process model) is a
description of this process expressed in some process modelling language (PML). The
process can be viewed as the execution in a suitable order of a set of rasks (e.g.. requirements
elicitation or module testing) intended to develop some documents (e.g.. specification or test
plan). These tasks are developed by some agents (e.g., people or hardware media) with the
help of some rools (e.g.. editors or debuggers) and using some resources (e.g.. data bases or
computer networks). Hence, the definition of a software process model must state all the
elements just mentioned, and also the way in which this model must be executed (enacted).
The systematic description of software processes not only helps in understanding software
development, but also makes feasible the construction of systems for supporting automation
of the process up to an acceptable level. centered on the PML

An important research cffort has been made to define well-suited PMLs (see [FKN94],
[DWK97] for a survey). As a result, some important features have been attained: object-

* This work is partially supported by the spanish research program CICYT under contract T1C97-1158.

UFRGS

e Instituto de Informatica
giblioter?



XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE :

orientation has been introduced as a natural way 1o model the structural part of the
while achieving a certain degree of reuse and modularity: several different parads
emerged leading to a wide variety of different approaches. which have shown their
(from process programming languages to graphical notations, from proactive o
control paradigms, from document-oriented to activity-oriented systems...); the af
level of systems has increased, which has made them easier to use. and so on.

However, there are several aspects involved in the act of modelling a software
using PMLs that seem to need a more detailed study and which remain as challen
software engineering research community.

We feel that some of these aspects are the following: most of PMLs are difficul
describing fine-grained processes while keeping a high-level notation: although some
are widespread in the community. none of the existing PMLs has emerged as a
language for modelling software processes; most of process models seem 1o be too

x1v SIMPOSI

O BRASILEIRO DE ENGENHARIA DE SOFTWARE

order to deal with some deviations and decisions taken at enaction time, Finally,
that the modularity and reuse abilities provided by current PMLs are not powerful
deal with the modelling of complex software processes.

This paper studies these limitations in more detail and presents some of
representative attempts to deal with them. Although we focus mainly on SPM. this pa
contains some relevant results (addressed to these issues) achieved in the related
workflow management. For each one of these aspects we present our own
PROMENADE (PROcess-oriented Modellization and ENAction of software DEvelopi

PROMENADE is a PML for modelling software processes designed with
improving the above-mentioned issues (standardisation, expressiveness, flexibill
modularity).

In order to model the structural part of a process, PROMENADE extends th
metamodel with some process-specific metaelements. Concerning its behaviol
PROMENADE: 1) allows the composition of partial models to construct new ¢
models in a modular way; 2) supports hierarchies of activity refinements which alls
selection of a particular way of performing an activity at enactment time (hence,
the flexibility of the process enactment); and 3) defines a twofold control-flow wi
control (based on triggers) and proactive control (based on precedence relationships b
activities).

A more detailed description of PROMENADE can be found in [FR99a, FR99b, Fi
RF00].

2. A general classification of PMLs

A comparative study of existing PMLs arranges them into three groups depending on
the central element of their modelling. Following this idea, we can find document-or.
goal-oriented and activity-oriented approaches (see table 1).

In document-oriented approaches, processes are usually modelled in terms of the
the documents that take part in the process. Activities often play a secondary n
operations associated to documents. The ¢nactment of an activity leads to the change i
state of some document(s) involved in that activity (e.g. the state of a document
generated by the activity may change from not-yer-completed to completed). TIW
involved in the process are assigned a workspace which shows the activities (associ
documents) that may be performed at a given instant.

260

activities [AO%4
'Ml’i!:;eng at modelling time (they model how the

[ araeleristi Draw backs | Example
Characteristics Advantages SR |MER_L|N
s modelled in|Full oo approach Too basic ac O 3
pmce:::f the states of the | High level of concurren- | Process is not explicitly | [ 2,
m
::r:'ulvbd documents cy re_presmled i
Activities are basic 0pS. | Workspaces assigned | Difficult 1o model comp
associated 10 documents | 16 roles nawrally. me-fﬁw: s
[The mo ' ative and [ No detaile riptic P
e mo:!itl el :'::tr:acl f:ﬂ:;c: the whole process available | [C LM95,
is to be done S
aciment time, an ) . . S
:tldexsﬂf'hc activities 10 | Model evolution easier. | E is more difficult [;:;;;61
reach that goal is decided ol ___
odel describes fenv | Leads to precise process Maodels are too presenplive o
;I:::c ";;rocess is to be|models and too static JIL[P;_;s]
developed. Allows # detailed des- ‘ E3[J L
cription of the whole| \yoge) evolution is more | SPADE
The ordering of activities | process difficult |[BFG‘)-1]
is given at ling time. | Easier 1

i ifferent modelling strategies.

Table 1: A comparison between di . , .
oriented and goal-oriented approaches provide a dynamic ordering o{; p:joce.::

but. while in the case of the activity-oriented approach that ordering A
e process will be enacted, hence the nai:ne;:

¢ jptive). goal-oriented approach models only the objectives thals ::c:! St?h::‘e t!;;lr“:jlg,lzﬁj myglaﬁ
W : : e is re

1 opposed to the how). The enactment engin ,
.;nmwty g?:e:?:g'aigﬁl at achieving the proposed objective. [AO94] shows the advantages
" draw a ks of both approaches. . . . ‘
.mdin pml::cc-e most ap:roaches for process modelling are activity-oriented which ensures

s to have an explicit description of the process

~ somethi important for human being _ ;
bein """gﬂ;::il:zrylr:n;ggitinn model enactment becomes easier. These approaches have intended

to overcome the drawbacks of the activity-oriented stralcgy‘providing mc.}ans t:t :lcal t::g
;aeess evolution and describing processes in a more ﬂ§mble way. 1;:1 ortnr;ndei.of >
solutions have not been completely satisfactory, as we will show in the re

paper.

* Both activity-

3. Expressiveness and comprehensiveness of process de:“"'::iggcr
i"“ need for an expressive and comprehensible modgllmg of process ounuo(;-_mol\;; : afl o
with the ability to define new control-flow dependencies, has been recognizec d out (see, for
years in the field of workflow management and some rescarch has been ;ame licted in the
instance, [JB96, RD9S, JH99]), but, in our opinion, it has been somewhal neg

related area of SPM. : i

ot very nature of software processes (which involve a loose cqnuoélzgf:lg t‘:ﬁ{:

degree of collaboration) most of existing approaches lead to very pres_crlpl:feh b
few basic control-flow constructs which do not conform ot e hv_v :cads to a great
actually developed (some complaints about this are shown in [Km98])'f Tl i,i: sections we
difficulty in the modelling of detailed and complex processes. 8 ‘Lhe - {‘)ronn%ents (PSEE)
oulline some limitations of process-centered software engineering envi

Tegarding expressiveness and comprehensiveness of process description.

3.1 Initia/ Proposals "
first few serious attempts to formalize and enact the process of software construction
Were developed in the early-nineties (see [FKN94]).

261




XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

Among those initial process-centered environments, document- and goal- oriented
approaches suffered from the problems outlined in the previous section. For instance, in the
case of MERLIN, although it exhibits a high degree of cooperation and concurrence between
participants, its activities are very simple and cannot be decomposed. Furthermore. the
process is not explicitly represented. With respect to goal-oriented initial approaches, process
description and comprehensibility of the process control-flow were not good enough.

SPADE [BFG94], ADELE [FKN94] and APPL/A [SHO95] are some examples of initial
process-centered environments which followed an activity-oriented strategy. All of them use a
formal, enactable and low-level underlying formalism: SPADE uses Petri-nets. ADELE is a
reactive approach based on ECA-rules (event-condition-action rules) and APPL/A defines a
process-oriented extension of Ada (with relations. triggers and consistency management
statements) to create its own process programming language.

A recurrent criticism that has been addressed to these preliminary approaches is that
models built with these kinds of low-level formalism are not very intuitive and
comprehensible for humans. Sometimes, this criticism has been accompanied by empiric
evidence [ABE97]. The undctlring idea is that the modelling of a process by means of formal

and usually textual languages' (i.e. not graphical) is not the best way for humans to gain an
understanding of the whole process.

3.2. Second generation of PMLs

Ten years after his seminal paper Software Processes are Software too [Ost87], L. Osterweil
identified several problems in the existing approaches to SPM and proposed a list of goals to
be reached by new process languages (ease of use, semantic richness. composability, clarity
through visualization, multiple paradigms...) [SO97]. He called second generation process
languages to the ones that met (most of) these requirements.

One way in which these requirements have been addressed has been the provision of a
high-level and intuitive (usually graphical) language for modelling the process and a mapping
from that language into a formally defined one that allows reasoning about the process and
also enactabilty.

An example of transition from first to second generation is APEL [DEA98], a heir of
ADELE, which also uses ECA-rules as underlying formalism. It provides a graphical
language that allows a higher-level process definition. A model written in this language is
translated into a lower-level one based on ECA-rules. Unfortunately, the APEL control-flow
is very basic. It is limited to the usual end-start transitions which impairs the achievement of a
high degree of expressiveness in modelling processes. For example, in the context of
component-based software development. the following modelling situation does not seem
very realistic: the implementation of a component C will start once its behaviour has been
completely defined. It seems better to overlap to a certain extent both activities:
Implementation of a component C should begin some time afier its behaviour has begun to be
defined, and should finish after the end of this rask. But this requires some control-flow
constructs other than the end-start transition.

3.3 Workflow management approaches

Approaches to model processes that supply more powerful control-flow constructs do not
come from the field of SPM but from that of workflow management. For instance. [JB96]
recognizes the lack of expressiveness of traditional sequence, paralle! and branchimg control-
flow constructs and not only proposes more powerful control-flow constructs (which are

" Although Petri-nets provide a graphical language it is still quite low-level and unnatural.

262

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

o a formal semantics by mapping them into Petri-nets). but also‘ they suggest that
gn?]lmg formalisms should allow the definition of new control-flow constructs. e
(v e =
mﬂ]‘hc kinds of control-flow constructs suggested by [JB96] are ;;ansmunr::;l ;é::f;z ai‘l z:.: }:I
i i ity : cecuted next 2
s to describe what activity must be execule r .
B erwe: ' ivity). We believe that transition-oriented
¢ to execute an activity}). We
-quirements are necessary in order ute y)-\ _ sy
rLil::otl-llow constructs lead to more prescriptive and less ex pressive process models (?;;: 3 5]‘1
- [JH99] takes a similar approach. They recognize the ner:n:ss:'q;1 of ::j munée:g::s ET;]:y
[ i i ' trol-flow depen :
i including means to define new control-| . :
b del processes, which is mapped into ECA-rules
only a high-level graphical language to model processes, ¢ into EC
s e i t of basic, useful dependencies is given. On
ic formal semantics). However, no se g . 2
e s i dencies is very low-level (they must
f creating new dependencies i 3 (they
s s 1vi d i s to suffer from some
i i f - tivity states) and it seems
scribed in terms of ECA-rules and activity : .
jf;i":f;uliies in order to generate several Kinds of precedences (e.g. start or weak preceden

See 3.5).

jrements on expressiveness _
ij aii(::;;:ence of the resfarch results that have been_ attained, gg TcaJan(;;s::f;‘;ga} S‘;;}}AL
should provide the following features regarding express!veness [SO97, 2. .
Support for modelling heterogeneous processes of different granulant}‘.
Definition of built-in expressive and high-level control-flow consfn.u;ts.
«  Support for both proactive and reactive control in process modelling
« Definition of new control-flow constructs in a high-level mann‘cr. . . il
« Decomposition of complex activities into simpler ones (which, in their turn, cou
i ite or atomic). ‘
elill:: :-:s(:il-:::):; process model should be .comprehtnsible. The construction of the model
should be intuitive. Some graphical notation may be helpful.
ject-ori -flow constructs. .
) }(r):rjrﬁ;:: ::T:::dx:: ;::l carried out in prev ipus subscc_rinns. we conclude that it seems not
to exist any PML that meets all the above-mentioned requirements.

3.5 PROMENADE , -
| i i del a SP by stating in a
> contribution intended by PROMENADE to this matter is to mo ‘ _
I::]a(}grtlit\rr::buw;g the various){cinds of precedence relationships existing bcl\_'vc.cr;‘ Ilhc I:llt’ft;r;::;
activities taking part in that process. A basic set of such precedence rda“?)n:déﬁ;q[g; e
identified for this purpose (szart, end, sirong, fee:b:;ek eSl::"iofg!niepsz}c'!chi[:cd gt b
‘i high-level notation to define new precedence r '
f:::;?\f;:k ;i::cessﬁd!-:nd-end and grouping in table 2 are :xamp!:s %id;n;iigrg?ic:z:c;zh
' xample with the definition of the weak precedence | _
;i])”el’lllscl;:flwgl\?xgﬁ arso defines a formalism to describe d‘!namlc2 ?rcccdc:;:“ ;;:;
: ly at enactment time. See figure for an le).
cismhaiak i o ; di which describes the behaviour
ite tasks may have an associated precedence diagram | ey
f);)':l]nl;ofask in 1crms} of the precedence relationships that exist between its subtasks. Such

i i ' 3 2 task A
* Proactive control allows the enactment of tasks according to some predetermined prcucdclsc.: zuelte:1:!c‘ﬁ5k &
should finish before the end of task B) whereas reactive control shows the enactment o A C.m“ml :
reaction to the rising of certain events (i.c. it is an cvent-driven approach). Somefimes proa

modelled at low-level in a reactive way (e.g. using ECA tules [ECA]).

263



XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

subtasks may be both atomic and composite. A precedence diagram is shown in figure 3

section 6.
Type Notation Muning
start st f may start only if s has started previously
end st +may finish only if s has finished previously
strewg L Ee P f may start only if » has finished successfully
previously
Jeedhack 5.1 ' may be reexecuted after the unsuccessful end of +
weak st I may start only if x has started previously and 7
may finish only if s has finished previously
Swecessful <{51,820.05a ), Each task of {s), 5;..., 5,] must he successfully
end-cnd kb, Vsee™ finished in order to finish any of {t,, t;, . 1,,]
Growping  <(t,0,. t,). "grp"> Tasks (1,13, ... t,,] must be executed indivisibly
Table 2: Some precedence relationships in PROMENADE
precedence weak
is noted as

<"weak™,S,T,combi,parBinding>
is defined as

<"start”,S,T,combi,parBinding>

<"end”,S,T.combi.parBinding>
end precedence

Figure 1: An example of a high-level definition of a derived precedence relationship

for all op in ¢ operations

ImplementComponent TestOperation

[op — operation]
Figure 2: A dynamic precedence relationship in PROMENADE
In our opinion PROMENADE provides a more expressive and comprehensible approach
than other presented systems. In first place, the use of precedence relationships instead of
transitions provides a more declarativi » high-level and less prescriptive approach. Also, it
allows the definition of dynamic precedences (which we have not seen in other PMLs),
Furthermore, although [JH99] also allow the definition of new precedences, in the case of

PROMENADE, this definition is performed using a high level notation more than with low-
level ECA-rules.

4. Flexibility and evolution of software process descriptions

A software process is prone to change due to the evolutionary nature of both software and
software processes. There are many causes that may lead to a SPM evolution. As it is stated in
[NC96] new and better methods and paradigms to develop software may arise; a SPM may be
incorrect or should be optimized: delays in software development may be produced...

Changes may be introduced at three different levels of a process model; at the template

model level, at the enactable model level and at the enactin

g model level. Usually, changes in
the first two levels are considered to be static. whereas those performed at the enacting model
level are dynamic, since they are carried out during model enactment (sometimes they are

called changes on the fly). Usual changes in models may involve inserting/deleting tasks or

264

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

. . ) ) -
ther model elements (at the type or the instance level), inserting/deleting control or data flo
0

jements into a task description (e.g. a feedback relationship)...
L=

: rt 1o define new
Kind of | Underlying Kind of  control-flow f::ml.ﬂw e
e approach formalism construces
ADE Activity oriented | Peiri-nets Petri-net transitions. Low-level | No
. (low level) . =
FiopLA | Activity oriented | Process  program | Proactive control (adn contr
s {low level) Ada extended with | elems.) .
Iriggers.. Reactive control (triggers)
"MERLIN Document  and | PROLOG Proactive cun!rula Roles have | No
kil role oriented activities ass to docs
lPaaie Goal oriented Ad-hoc  formalism | Conwrol-flow  decided  at|No
e 1A planning techn. enactment time - -
08 Goal oniented Ad-hoc formaism. |A | Control-flow decided at | No
il planning techn enactment time -
it o
|APEL Activity oriented | ECA-rules End-start II'II'ISHIDH_S
o hi, Jévd) Proactive and reactive controls
L Activity oriented | Translated  into  a | Proactive and reactive control No
J (high level) programming  lan- | 4 control-flow constructs and 4
guage (Julis-Ada) | event categories :
€3 ivity ori Proactive control with | No
= a:‘l_:lmlly Drlmm' precedence  relationships. Jz
(high leve s gl
o i level definition of
i i edefined set of control- | Yes Low-level defini
L e i TE ::wprcoensmm defined, al- | new constructs using ECA-
(B lovs) though many may be defined rules.
i No
ivi i he-rewritin A set of control-flow constructs
[RESM ':_‘"V':::';MM aciiiza il ¥ty
{ '. ity oriented | ECA-rules Different kinds of basic. deﬂ'u{ed Yes High I;ve!i::guasr:cl:
ol i and dynamic precedence relatio- | define ) eri ph :
thabiow) nships. New precedences may be | dences in terms of the basic
defined. Proactive and reactive | ones.
controls

Table 3: A comparison of different systems concerning It:xpressivengss:. i we
It is important (o notice that changes may involvhe {i?c{;nmsul::cliism(;al ::sst ::sf :]r:e w:;em
Ay g 5
i ads to a deadlock situation or that is not reachable from _

H{I:\I: ha:cmsk instance which was being executed has tr::hanged...]. Hence, some mechanisms
| i i odification.

should be provided to enforce consistency after am
Finally, another related issue is that of ﬂexib;‘lim A p:'ocesrsonclﬁesl ;:jt[;l?‘ ;oll)c I:n; ;?nop:z::;t;

iptive. A software process is complex and a complex prc s |

E;i:sziclzgtl;:fore er.lacuneart. There should be means to refine lt_durmg enac‘:_tm?nl. Thl;err:l:::

involve changes to the model as we have stated or different choices (or realizations) w!

activity is to be executed. _ . _

In c'mlcr to cope with evolution and flexibility in a suitable way the following features
should be provided:

* A melz[:model for the PML should be given. Its metaclements should supply the structure

i ify them.
of model elements and supply operations to modify ) _

s The PML should be able to generate a model, both for the produchoq p_ruc;:]ss (ﬂ:: erﬂr;o?‘;:
for the production process is the SPM) and for lh_e metaprocess (this 1s thcogrme & it
changing a SPM). Notice that, while the production process is the resu

=

265



XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

enactment, the metaprocess will use it as data to be modified. Therefore, the PML shoul,
be reflective. I

¢ The metaprocess should be explicit.

* The PML should support changes in the three above-mentioned levels: template, enactab)
and enacting.

¢ The PML should supply tools for checking the resulting model for consistency ang
correctness. Moreover it should only allow changes that kecp consistency and correctne 38,
Within the family of activity-oriented systems, EPOS and SPADE were pioneers in the
incorporation of evolution support for process models.
In order to achieve model evolution, EPOS relies on reflection and on the definition of g
hierarchy of types which contain both metatypes and normal types. 1t allows changes-on-the-
Ay but it is not reported how they are checked. On the other hand, EPOS defines an explicit
metaprocess to create and evolve SPM. Unlike EPOS. more recent approaches (e.g. UML)
separate clearly the metamodel and the model levels,
SPADE also relies on the existence of a metamodel and reflective features in order to
provide model evolution. SPADE does not define a metaprocess and does not report how to
make changes into the process that deviate from the model.

Changes in all these systems are seen as something necessary to be taken into account b ]
not necessarily an everyday operation. In some other systems changes and flexibility in model
cnactment are considered to be a major feature. This is the case of Peace+. in the field of
SPM and of DYNAMITE and ADEPT-Flex. in the field of workflow management.

Evolution process in Peace+ [ALO96] is based on reflection (both the process and the
evolution process are expressed in the same formalism and their execution is supported by the
same engine). Constraints are represented and checked by means of consistency graphs which
simulate the consequences of a change in the process regarding consistency. Two kinds of
inconsistencies have been considered: strong (they cannot be tolerated) and weak (they can be
tolerated temporary).

The high degree of interconnection between task enactment and task modification is one of
the main achievements of DYNAMITE [HIK96]. Therefore, model evolution is performed
continuously and incrementally during model enactment. A process model in DYNAMITE is
very basic at the beginning. It will be refined progressively by the dynamic incorporation of
new control and data flows (in particular feedback relationships) and also new activities. This

evolution was performed initially by means of graph rewriting rules (using a formal graph
rewriting specification language called PROGRES). In a latter version DYNAMITE uses
ECA-rules to perform change operations. These ECA-rules are responsible for checking the
validity and possible inconsistencies of the changes they perform. Some consistency and
correciness  properties are not checked (e.g. deadlocks). In our opinion, the inexistence of a
well-defined process model constitutes a drawback of this approach. For human beings it is
important to have a (may be not fully detailed) description of the process to be followed.

The idea of graph rewriting is also used in ADEPT-Flex [RD98] approach for workflow
management. It defines some correctness and consistency properties which are taken into
account to ensure model correctness after dynamic changes.

PROMENADE

PROMENADE is a reflexive PML. This is based on the facts that both the model and the
metamodel are described in the same formalism (UML. See section 6) and that a metaclement
(SPMetamod ) which instances are SPMs has been supplied to its definition. Therefore,

266

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

JMENADE is designed to support a metaprocess definition and also llr) allow process
it n. However, neither aspect has been implemented in thg Iangu.j:gc yet. .
cvo_lulm her hand, PROMENADE is also designed to provide a high degree Qf flexibi |:y

i 'm e!r ent t;y means of fask refinements. Intuitively, a task rcﬁnc_ment n.s a con}:r_c e
i u;ac na task. A bit more formally, a task refinement of a composite task clenssk is ;
e 1‘0 I:")cru‘:zl::.nl:xprn:s-;es; one specific way in which 7 may be decomposed into subtsafns aqm
:ﬂikphr]eacs:dcncc rclatii-:mshtps that should be kept among them at enactment time. ce,

ible to think of several ways to perform a task, it makes sense to define

sral, 1L IS possS _ ’ ey
ff::::l task rf;)'mcmems for a specific composite task. Any of these refinements
L=

selected at enactment time, OF even @ new one could be defined.

i onsistenc
— Explicit metamodel Reflec | Flexibility in Levels of change | Eh“kjng’ y_|
e ; tive | enactment
PML =
i Very limited for
l-oriented | Template, enactable and ery
| PO T“i‘ ntn : Tne-eil“cé::l?:itl e I"::LGN ¥ enacting models, on-the-fly ;h.l.nucs cnn-the-
n level. :
‘ td:;!;n;:r‘:cess wiven and changes on- changes allowed Iy
the-fly
N the-fly
: SPFADE Yes Only one metamodel Yes No :’:::;I::el_" o -
definition level. No explicit owed
e etam Template. Enactable and Yes
[MENDE odel Yes Yes, changes on- empl :
MENDEL Yes. Only one m ! % o ST R
| de-finition level. No explicit ity Ny ) .
o ble and Yes By means
Yes. Goal-oriented | Template, enacta By mean
| Ponee? IRET v PML and changes | enacting nrt:;?-mm_t
ent-the=fly .
i i h
Dynamic model evolution. | Yes. By grap
| pYN tamodel Not Yes. Several task \ By gaph
R fc‘l F‘l'nl)r im:lm;lo lici ep realizations and :;n;
i o d incremental mo-del .
I L i construction during
enactment
{ i -th-Ty. Yes. By graph
Not Yes, Changes wr- | Changes oo i Mo 0
| ADEPT-flex | Not reported W by s
| d
I i d enuctable
PROMENADE | Twao levels of metamodetling | Yes. \’u:.rl;lae:::-:::’of ;:n:zlhl.e an
(metamodel and reference TN
A allowed

Table 4: A comparison of different systems concerning ﬂexibility. anc! evohln;:c.u:t;smps
Task refinements are modelled in PROMENADE by means of gencrahz;:;u:u brz : a;ses A
between a task class and the set of task classes that refine it In llnls w?y, S g oy
task class 7 represent its possible refinements. Hl_erarchle‘s of task re |n:q1e deisbaging
l‘gilice that we generalize [JH99] since any task s in the hierarchy rooted in a spe
may be considered as a f's refinement.

5. Modularity and reusability

3 ! it makes sense P
woftware processes are software 1oo, it m _ e
It:z::{r:;:rmp the most challenging issues in SPM in the last few years has been the ability

bining existing ones. This leads to a
me modularly) construct a model by combinin 2 0 e
Lﬁi:mﬂ::al:gpgoach that so far has not been completely attained by existing systems

to apply the notion of reuse to SPM. In

} mic (on-the-fly) changes
"This column explores whether the system checks the consistency of dyna

267



XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

Several levels of reuse in SPM can be considered:
components, (2) derivation of model components and (3
models. Clearly, the last is the most challenging one.

Model reuse raises several problems like name consistency [EHT97] and also constragp
consistency [EHT97] (the constraints stated by

a model or a model element may not
fulfilled anymore when reused clements are incorporated). Finall ¥, another problem is ho
find a component to be reused from a specification.

The features that a PML should accomplish regarding model and model clement reuse
the following:

* It should allow different levels of reuse (from primary component reuse to model reuse)
It should also allow model and com ponent derivation.

¢ It should provide means for consistency checking of the model which has reu
elements,

(1) Reuse of primary mpge
) composition-combination

¢ It should provide a well defined component and model speci
fragment to be reused is what is needed.

* It should provide intuitive and high-level operators in order to combi
This feature would lead to a powerful w

meaningful combination of existing ones.

fication to ensure that 1

ne existing models,
ay to construct models incrementally by the

5.1 Reuse of primary model components
The first step to construct SPMs mo

dularly is clearly the reuse of primary model components
such as documents, activities or rol

es in several SPMs, As we have stated. this idea can be
extended with the notion of derivation. That is, the creation of new components (even entirg

models) by the modification of already existing ones on which they will be based. This
derivation may be performed by means of inheritance, redefinition of some component
constituents and definition of new ones. Reuse and derivation of model components requires
consistency checking of the new created model.

This first step of reuse may
oriented PML.

For the sake of an example we mention E3 [JPLOS, Jace96, JS00], a fully object-oriented
PML which aims at providing some degree of reuse. It takes advantage of the object-oriented
features to provide reuse of primary process components, template models and also the
construction of new model components by the derivation of existing ones. What these systems

do not provide is the ability to reuse and combine existing models to construct modularly new
ones,

be achieved in a straightforward way by using an object-

A challenge of component reuse is the proper specification of reusable components in
order to be sure that the reused components conform to the model that is being constructed.

[Kal96] provides a formal approach to solve this situation based on the existence of a common
reduct of two specifications.

5.2 View-oriented approaches

To our knowledge there are not many app

roaches that aim at constructing models modularly
by defining some methodology to reus

¢ and compose (integrate) submodels. With the
exception of [Chr94), which gives some guidelines (o define operators to combine models; al|
the approaches that follow this direction we are aware of rely on the notion of view. In

general, a view may be considered as « Projection of a process model according to a well

268

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

isti view Is
d characreristic [AC96). Usually, the characteristics based on which, the
deﬁf’ﬁ’ cted are roles, activities, products... R
el : st a top-down approach to SPM: i.e. they seem a good way 1 g
Jicas:ies ler ones in order, for example, to restrict the part of the process .
sl & how a more comprehensible model by focusing on one ol 1 , “Di
st om‘musl be derived from an existing model, we believe that they are

er. si iew ich i arly a
However, since views to perform model composition from submodels, which is clearly

the most natural way
g g [ ) is one of the most
bOle"“oiz l}I)1I: view-based approaches, we think !:“Iﬂl OP;LS{!‘:;CI‘)?I]“ (l::egs tr:' At
i i icws which may o 1
i . It is a system based on views pr -
Cm“pm“'wt{lmtf:scd formzlism_ OPSIS uses views for sc_\'crall purpo:.cs.l on \t‘l?: e
” a-F-":L:;Tnaging the complexity of a model by partitioning it |n‘is‘;t‘3l\r§:a;x\urzsse.d g
mm; ‘ilts '1:1”10!’5 claim that model evolution may be made ca.su.r :‘ l‘ ru“dpm sk b
han in;tcad of in terms of the whole model. Finally, views arccd sopumjon gl ke
. [ sing existing views. Compos 3
5 1odels by adapting and compo ws. : 2 g
. cmlhmtl'c[alncomposi)ﬁana]:)perawr which defines some functions to connect p
means 0 )
s, o foms o bctfompaiulisting model. Therefore, composition cannot
SIS, views always come from an e ; “ RIS e
Inl\ofl) ?}lli'e bottom-up approach to construct complex models from simpl (
supply

Wi d < n o ()“ L IIEI || Yiew CGIII[JDSIII 5 lllllll\.d
I h(- mor nalural our {)pl n} hc ot ﬂnd. oni o a
Vo

u osit of existing view! Nil} W¢e (I =-lICV' er blne VIEWS |
Ptrp on I g EWS. e po riu] an h]gh I eI Op ators to com
S n

Spc Ways “Ould tx \"aluﬂble. I “la.“y ()] .;IS dnes not ()“l::l I k -5
| 5 consistency chec ng [c £,

‘;p citic £ -
ﬂblc d ]|0I“"S []l Ouﬂ m 0 wWo v W-hﬂsﬂ a|1['lIDaC|l to n IllOdci reuse

(IEHT97] and PYNODE [ABC96)).

€
o PRgJﬂigAglﬁws reuse both at primary component level and at mgg{e{lul)egeils. :lrul]l:y
PROMI': nent level, reuse is a consequence of the fact that PROMd e g
Erbljfti?):;?::’; PML. [n‘panicular, it allows comg:lmi::( e{la“gRa(])i?iFf:lL ; [}5 it
iuheril_ance. In ord"";c‘: plrig;'?: sr;:;: (:lr i§°e|$fenm) related with modulalfily:.r?ner:ﬁﬂ;
e 'Hpa‘:: Refinement operator allows model transformauons: . zn:IIQws
i i I?mﬂ'pm;f a ﬁame substitution on a model. Finally, model cnmpu;g:; e A
e~ lca; ” ew SPM by the composition of some already constructed SI;M e
!ht’._ t:fmslruc;ﬁn . a|a lr':e seen as partial models or as particular views of 4 colgglc[le s w =
they have f S “11 syof SPMs. The approach PROMENADE has taken in order oora g
lhefl l-;averr:hes!;;?()ﬁ consists roughly in building a model m from tl_'le com pnsmon
::gdilsc?mf,’.(.}..m,.l and a set of precedences {ay....dn} in the following way:

The static part of m is the superposition of the gencrah_sallor; h}ﬁfﬁ:;l’.:h;ﬁs of m,
’ mgf:l;cr wil:h the union of their association and aggregation relations ;lp ] o
The dynamic part of M is built by combining the maintasks of each mo -
¥ -
ith the precedences |a,.....a,1. o _ NP -
H :elli:)ur a?aproach to model composition is not based either on ‘::;::: I(i‘fdiq zhmadcls_
’ilrai:l:cdlprcviously from an existing model or on a mere sur;rpcm wikidgiissens:
Tﬁslead PROMENADE provides an incremgma: and :n;:'oar:; 2 nfhined i
i i these simpler mode! _ . i
m simpler ones. Moreover, _ : Rt
lrn?a\c:ic(is’;];li‘ps amolzzg their main tasks, which leads to a meaningful. express g
c

UFR

sHea
. Informes
269 |nstituto de




XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

model composition, Notice that the normal approach (from-the-scratch) to model construct
is also supported by PROMENADE.

’gﬂem Primary

_’T’im or  model | Consistency i!ipﬂiﬁulinn High-level

‘ comy reuse | composition checking |ol' reusable | operators
and  component clements combine
derivation submodel
’>E3 Yes (0O  appr) | No Manually, willllNot reported No
Model instances may the help of a
be derived from mo- query ool
del wmplates | |
[FYNODE Yes Component de- | SPM is a set of role- | Not reported Notreported | No. Basic connec.

fivation not reporied | oriented  views (top-
down appr ). Views not
reusable.
[ Views are sets of

tion of components. L

OPSIS Not reported View composition | Very basic  No | Not reported No. Just view (Petri-
(applied 1o Petri Nets) | name con- nets) superposition

sistency check,
[EHT97] Not reporned View composition. | Yes. Name and Not reported No,
Top-down  approach | constraint  con.
View reuse is not clear sistency  check.

Just  view
superposition  (for-
mally based on graph

y transform. ) \

[PTVO7] [ Tasks (workflows) | No Yes ‘Nol reported | No '
may be reused Transactional |
problems | |
PROMENADE | Yes (0.0.appro) | Composition of re-used | Yes Name and | No Yes Models come
models. constraint  con- (future work) | bined by preceden-
J sistency  check ces  between main
‘ manually tasks.

Table 5: A comparison of different systems concerning modularity

6. Standardisation

The proliferation of languages and notations that we have Just outlined in this article has
hampered the wide use of software process technology within the software engineering
community. One could wonder if it is time for the community to adopt a linguafranca and, in
this case, which should be the chosen formalism. UML seems to be a natural candidate for
such a standard process modelling formalism since it has become a standard de Jacto in the
modelling of 0.0, systems,

Some recent approaches have come up that use UML as a modelling formalism in the related
fields of software and workflow processes ([AL98, McL98UML.-98-2, FR99b, JISWo9]). A
preliminary result of this research is that, although UML seems 1o be powerful enough to
address those aspects concemning the static part of a process, it lacks some degree of
expressiveness and flexibility in order to model its behavioural part. As we have seen, the
control flow of software processes and work flow processes is modelled usually in an activity-
oriented way, mainly by some sort of activity diagram that represents both the involved
activities and the transitions from activity to activity, The UML diagram that conforms with
this view of the process is activity diagram. But it can only show end-start transitions between
activities which, as we have seen in section 3 is clearly not expressive enough to deal with
complex processes.

Some work has been done aimed at using UML as a process language: Rational Software

Corporation er al. have developed a UML extension for objectory process for software
engineering [Rata)]. Essentially, it extends some metamodel classes by means of stereotypes.

270

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

asses; 1no i i nstraints
iour is gi rereotyped classes; no integrity co .
structure nor behaviour is given to those srereofype : i
Nmﬂmir' S;rdu-t;lrl\d no means 1o improve the UML features in order to dift?l .w':hl:)hc n;!:ﬂ 1
o cdeismaré provided. Therefore, this proposal seems to be insufficien
proces i)
| iy i ibes the behavioural
b i PM based on UML which describes the a
5 resents an approach to SPM bas hic At
[JSPN 1]?: lmr:)dw:l using class diagrams with stereotyped associations rolrJ ::Ewi::gm o
artt; ta flow. It concludes that, although it has some limitations, ity
s i lan ‘uagc for software processes. We believe that _lhls is not the mos s
modelU?jL asgsoclations are used to indicate that some specific msml;]ccg 11_:) ::::;1?011 ol
s:?::::mrally related to some specific instances of anothclr. H?jw;\‘r;r.atmei l;::lcs g ey
s e ! 5
not structural a
-edences and transitions convey 1S r O
E:::::‘l;dcl defines for associations are not applicable at all to them. Also, w

mentioned the drawbacks of a stereotype-based solution.

ADE N . - = . . . ‘td
Tlfo:)ﬂ::ach taken by PROMENADE to keep standardisation in process description is bas
s 1 { ing way:
idi i : L metamodel in the following way
roviding an extension of the UM - .
. F}With rcgspccl to the description of the static pz_u't‘of l]_1e process, it mcunfo:;l;:j f:;i:z g
' to deal with the elements which are characteristic of software processes: ;
roles, agents, tools.... . . owc
« With rfspecl to the description of the d¥|1:ml; or h:rhaﬁzu;::s::iu::gt iafp:]{g &IENADE_
inc to represent all Kind of preceden : ‘
E1511'*::;1)0 ;?iisc:izi::?;asaf:s modeil:ed in the UML metamodel extension as subclasses of
<
If)eﬁf::::: ‘ PROMENADE shows the associations and gencrahzationsdt_mm'ﬁ: ::cenlfl::;:
in 1111::r mctamoécl level by means of UML class diagrgms_. ?mcedinied llz:gra:n Bk e
:1" rams in which UML classes (corresponding to activities) are lin e‘ d yn s
Id.g dences existing between them (keep in mind that prcccdegccs have bee e ma
E'nfic ct' UML dependency). Figure 3 shows the pre_cedcm:c ghagram currespt;‘mn gmctm“
I"I" i?' BuildComponent in the casc study consisting in modelling the piocess (zl enw.be‘wcm
2} ;vsoyﬁware component library. Let us present, as an example, “','Fl_:."'?ﬂ re‘::l:::nce 30
the subactivities SpecifyComponent and fmpiemem‘(;;mp;:g:é Ll;gp e k. of
ifyComponent  activity must s s
}hat!e;;ﬁrcfﬁ;c;ﬂmr:fgmusl finish before the end gf ImplementC g{nﬂ{)ﬂfﬂé zi:ﬁe'r;{;led
d?:grce of overlapping is allowed between both activ:_ucs. Parameter binding
it o sd => sdoc) is also represented in this diagram. ‘
ac“;l]!“er:::ogr extensions to UML that we have outlined have bct_:n_ proposed _al.:cz re;p:;zicf
the c.;ll for revision proposals made by the language : rcwsm? GOI:I‘I;Ib ,“Sing UML'
PROMENADE also provides an alternative way of extendlqg the angquU] y
standard mechanisms (stereotypes, tagged-values and constrainis). See R !

. Conclusions o S
zhisc :apcr shows the state of the art in the field of SPM concerning four main issues

i ibility i | enactment; modularity in model
1 X el evolution and flexibility in mode : e .
CKP:‘?:;\:;:::‘- sazdﬂ;gidardisaliun, We have identified some cha!lenges ‘3 lh::flsiz ::pecu. and w
f:;:c presented our approach PROMENADE and its proposals in these dire .

271



X1V SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

BuildComp

rams
18 Vo Library
¢ out G

ek

[c.Wm —+ SpecifyComponent. sd |
___________ % cimpldoc —» ImplementComponent id

\I'r.rm‘\_r (L
[sd = cspecdoc] [

SpecifyComponent

params

@l ot SepelNine

ImplementComponent GenerateTestPlans
params params
J id out ImplDoc, sdoc: in SpecDoc,
f‘ elvd ;In.bl‘mplEvaJDoc. . plans: out Seallmol TestPlan)
Y ey shrwess -

end \D\L A/c"-./mwfg
[1>1lib}] l_mm_ [ plans —» stp

params

1
!
l.' id: in ImplDoc, start
! evd: out ImplEvalDoc, } £
sto: in seal Imol TestPlan) Sedndl R
Arong
StareComponent [ id —» cimpldoc |
params
¢ out Component |
I:ifo Librarv fod

s b Figure 3: A precedence diagram in PROMENADE

¢ tables that appear in the different sections compari

_ paring several approaches show that,
In most cases, PROMENADE overcomes some of the referred limitations. PROMENADE

has been used to model the ISPW-6 software '
: ! rocess and also a ve s i
at constructing a library of software componenf:i, Y e Se)

Some work has to be done yet in PROMENADE i i

‘ in order to cope with model evoluti

(specifically to allow changes on-the Al i ificati ip in
-fly) and to provide model i

reuse. These are the issues on which . g NCu et

we are currently working.
References

[ALO96] Alloui 1.; Latrous S.: Ogquendo, F. A Multi-Agent Approach for Modelling, Enacting and

Evolving Distributed Cooperative Software Proce
: ¢ sses. In C. Montagnero (Ed.) Proc. of the 5"
European Workshop on Software Process Technology (LNCS-1149). Nancy, France. October, 1996
[AL98] Allwever, T: Loos, P Process Orientation i - i . -
weyer, T; Loos, P: i ' UML through Integration of Event-Dri
ﬁacesq Chains. Proceedings of UML 98" Workshap, Ecole Supcriocut?{:' des S%:icnces ?&pblﬁgﬂée[:mﬂ;
ngénieur-Mulhouse Université de Haute-Alsace ( 1998), 183-193 i

272

XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

i; 8 ‘ i ; iented Process Modelling and
Araboui. S.; Oquendo, F. Goal Oriented vs, Activity Orient 5
AOC‘::LM {ssues and Perspectives. in Proc. of the European Workshop on buﬂwat;eMPmccss
’?‘::hnu]og\' (EWSPT-3), LNCS-772. Springer-Verlag, Vilard-de-Lans, France. February, 1994
BE97] Arlow, J; Bandinelli, S.. Emmerich, W.: Lavazza, L. Fine Grained Process Modelling: An
E,?;pe}tmcnl at British Airways. Software Process Improvement and Practice (1997).

1oni : i =Y., 1S: A View-Mechanism for Software
g6] Avrilionis, D2 Cunin, P-Y.; Fernstrom, C. OPS >
g:;ieslcs wheih Supports their Evolution and Reuse. in Proc of the 18" Intl. Conf on Software
ENgineering (ICSE-18). Berlin, Germany. March, 1996.

ilioni : ir, N in, P- ing Software Process Modelling and
BCY6] Avrilionis, D.; Belkhatir, N Cunin, P-Y. 1mpmvm] :
{'—‘?\Iaclmé Techniques. In C. Montagnero (Ed.) Proc. of the S‘F. European Workshop on Software
process Technology (LNCS-1149), Nancy, France. October, 1996
inelli : ivCx : = irone for Software
941 Bandinelli. S.; Fuggeta, A.; Ghezzi, C ; Lavazza, L: SPADE: An Environemnt for Software
}E&cisq !é\n:lvsis. Design ar% Enactment, In Finkelstein, A; Kramer, J.; Nuseibeh, B. (eds.): S“.*Il“a"&"
pmccs:s Modelling and Technology. Advanced Software Development Series, Vol. 3. John Wiley
Sons Inc. (1994).

[Chr94] Chroust, G.: Partial Process Models. Software Systems in Engineering, PD-vol. 59 (1994)

[Con95] R. Conradi. “PSEE architecture: EPOS process models and toals™ . Waorkshop on Proces-
centered Sofiware Engineering Environmenis Archirecture, Milano, March 1995

[CLM95] Conradi, R.; Larsen, .. Minh, N.N.; Munch, B.P.; Westb_v, P.H.: Integrated Product and
Process Management in EPOS. Journal of Integrated CAE, special issue on Integrated Product and
Process Modelling (1995).

[EHT97| Engels, G.. Heckel, R.. Taentzer, G.; Ehrig, H. A View-Oriented Approach loISys{f:m
Modelling Based on Graph Transformation. In Proc. of the European Software Engineering
Conference (ESEC’97). LNCS-1301. Springer-Verlag. 1997.
' R i . Ami : ‘L: a Graphi lism for
DEAYS8] Dami. S.; Estublier, J.; Amiour, M.: APEL: a Graphical Yet Executable Forma
ll”rf.&ccss Il\dodeling. E. di Nitto, A. Fuggetta (eds ), Kluwer Academic Publishers ( 1998).
i 3 : ;5 . Principles,
DKW99] Derniame, J.-C. Kaba, B.A; Wastell, D. (eds): Software Process: :
L«‘[ethodnl]ogy and Technology. Lecture Notes in Computer Science, Vol. 1500. Springer-Verlag,
Berlin Heidelberg New York (1999). l A
< I 1 : 3 i Modelling an
FKNO4] Finkelstein, A Kramer, J; Nuseibeh, B. (eds) Software Pror:'ess
ITe¢.‘.hnolt])g\r. Advanced Software Development Series, Vol. 3. John Wiley & Sons Inc., New York
Chichester Toronto Brisbane Singapore (1994).
i : Process
99a] Franch, X., Ribo, JM.: PROMENADE: A Modular Approach 1o Software T ]
]lLﬁF{ff]i:"?I]‘lg ;n:]c Enaction. Research Report L81-99-13-R, Dept. LSL Politechnical University of
Catalonia (1999).

[FR99b] Franch, X.; Ribé, JM. Using UML for Modelling the Static Part of a Software Process. In

Proceedings of UML *99, Forth Collins CO (USA). Lecture Notes in Computer Science (LNCS), Vol.
1723, pp. 292-307. Springer-Verlag (1999).

i i ing Processes. In
FR99¢] Franch, X.; Ribo, JM. Some Reflexions in the Madelling of Software
E’mceed]ings of the International Process Technology Workshop (IPTW-99) (Villard de Lans, France).
January 1999.
[HIK96] Heimann, P.; Joeris, G.: Krapp, C. Al Westfechtel, B. DYNAMITE: Dynamic Tgsk Nets fpr
Software Process Management. In Proc. of the 18" Int. Conf on Software Engineering. Berlin,
Germany, 1996 pp. 331-341. :
JRO96] Jablonski. S Bussler, C.. Workflow Management. Modeling Concepls, Architecture ana
Bmp(elu‘nrurmn. ISBN 1-85032-222-8 International Thomson Computer Press (1996)
[Jace96] Jaccheri, M L. "Reusing Software Process Models in E3", IEEE International Software
Process Workshop 10, Dijon France, June, 1996,

273



XIV SIMPOSIO BRASILEIRO DE ENGENHARIA DE SOFTWARE

[JPL98] Jaccheri, M.L Picco, G.P; Lago, p.: Elieiting Software Process Models with the g3
Language. ACM Transactions on Software Engineering and Methodology 7(4) October, 1998,

[J500] Jaccheri, M.L. - Stilhane, T. Evaluation of the E3 Process modelli ng language and tool for the
purpose of model creation. submitted 1o NWPER'2000.

[ISW99] Jager, D., Schleicher, A : Westfechtel, B.: Object-Oriented Software Process Modeling.
Proceedings of the 7th European Software Engineering Conference (ESEC), LNCS 1687 Toulg se
(France), September 1999 3

[JH99] Joeris, G: Herzog, O Towards a Flexible and High-Level Modeling and Enacting of
Processes. Proceedings of the 1[th. Conference on Advanced Information System Engineering
(CAISE), LNCS 1626, pp. 88-102, 1999,

[KD96] Kaba, A B - Derniame, J.C. Modelling Processes for Change: Basic Mechanisms for Evolving

Process Fragments, In Proc. of the European Workshop on Software Process Technology.
(EWSPT'96), 1996

Information Resource Reuse in Megaprogramming, In Proceedings of the Third International

Workshop on Advances in Databases and Information Systems, ADBIS 1996, Moscow, Russia,
September 10-13, 1996,

[Kru98] Kruchten, P: The Rational Unified Process. An Introduction. Addison-Wesley, 1998,

[mCI98] McLeod, G- Extending UML for Entreprise and Business Process Modeling, Proceedings
UML 98 Workshop, Ecole Superioeure des Sciences Appliquées pour I"Ingémeur-Mulhouse
Université de Haute-Alsace (1998), 195.204.

[NC96] Nguyen, MN.; Conradi, R. Towards a Rigorous Approach for Managing Process Evolution,

R.
In Proc. of the European Workshop on Sofiware Process Technology (EWSPT-5). Nancy, France,
October, 1996

[Ost87] Osterweil, L, Software Processes are Software Too. In Procs. of the Intl. Conf. on Software
Engineering (ICSE-9), 1987

PSWO92] Peuschel, B Schafer, W, Wolf, §. A Knowledge-based Software Development
nvironment Supporting Cooperative Work. International Journal of Software Engineering and
Knowledge ENgineering. Vol 2. N, | (1992) pp. 79-106.

[PTVO7] Puutsjarvi, J - Tirry, H: Veijalainen, J. Reusability and Modularity in Transactional
Workflows Information Systems. Vol 22N, 2/3 pp. 101-120, 1997

[Rata] Rational Sofiware Corporation: UML  extension for Objectory Process for Software

Engineering, http://www rational.com/uml.

[Ratb]Rational Software Corporation ¢r al.- UML Semantics. http://wwyw.rational.com/um|

[RD98] Reichert M, Dadam P: ADEPT-flex Supporting Dynamic Changes of Workflows Without
Losing Control. Journal Of Intelligent Information Systems, 10, 93-129 (1998). Kluwer Academic
Publishers.

[RS97] Reimar, W : Schaefer, W.: Towards a Dedicated Object-Oriented Software Process Modelling

Languaffc. Workshop on Modeling Software Process and Artifacts, held at 11" ECOOP, Jyvaskyta
(Finland) (1997),

[RFOO0] Ribo, JM: Franch, X. PROMENADE: A PML intended to enhance standadization,

expressiveness and modularity in SPM. Research Report LSI-00-34-R, Dept. LSI, Politechnical
University of Catalonia (2000).

[Wis98] Wise, A - Little-JIL 1.0 Language Report. Technical Report 98-24, University of
Massachusets at Amhers;. A pril 1998,

[SHO95] Sutton S .M. Heimbigner D.; Osterweil L J - APPL/A: A Language for Software Process

Programming, ACM Transactions on Software Engineering and Methodology. Vol 4. N. 3, July 1995,
221-286.

[SO97] Sutton, S.M.: Osterweil, L.J.: The Design of a Next-Generation Process Language.
Proceedings of ESEC/FSE ‘97, Lecture Notes in Computer Science, Vol, 1301, M. Jazaveri and H
Schaure (eds ). Springer-Verlag, Berlin Heidelberg New York 1997), 142158

274



