Robotic-supported Data Loss Detection in Android Applications

Davi Freitas
Federal University of Pernambuco
Recife, Brazil

dsf3@cin.ufpe.br
ABSTRACT

Smartphones have become integral to modern life due to their di-
verse applications. However, the development of applications for
these devices faces significant challenges, primarily due to two
factors: (i) the diverse hardware and operating system versions
that require testing across multiple configurations; and (ii) the im-
perative activity of testing the smartphone in a non-invasive way
(similar to an end-user interaction), which is expensive, tedious
and error-prone as it is usually carried out manually. In this con-
text, robotic automation has emerged as an effective solution for
addressing the diversity of smartphone systems and versions, and
in performing some testing tasks non-invasively. In addition, auto-
mated robots facilitate quick, accurate, and repetitive testing, thus
enabling developers to validate their applications across various
configurations effectively. This results in a less invasive verification
and in a significant reduction in time spent on manual testing, thus
accelerating the development cycle. Our work proposes R-DLD
(Robotic-supported Data Loss Detection), a robot-assisted infras-
tructure for data loss detection in Android applications, offering
less invasive and more realistic tests by interacting directly with
smartphone sensors. The robot is constructed using cost-effective
materials, facilitating its adoption in testing environments. In our
empirical evaluation R-DLD successfully identified 341 data loss
issues in 77 randomly selected apps from an Android store. All
reported bugs received responses from the developer, with 89.55%
confirming the data loss problems, while 35.82% have being subse-
quently fixed.

KEYWORDS

data loss, automated robots, testing, android, non-invasive testing

1 INTRODUCTION

Smartphones have become an essential tool in peoples lives due to
their portability, easy-to-use, and the availability of applications
and features that enhance daily life in various dimensions (work,
entertainment, shopping, education and communication). However,
developing high-quality applications for smartphones presents sig-
nificant challenges in testing. One of the main challenges is the
great diversity of hardware and operating system versions, which
requires developers to test their applications in multiple configura-
tion environments [30]. Another challenge is the imperative need
to run test cases in an environment that closely mirrors the pro-
duction setup. This involves using real physical devices, exploring
sensors, and ideally, conducting non-invasive testing procedures.
For addressing these challenges, test automation emerges as a
practical solution. Testing frameworks such as Robotium [27], Ap-
pium [16], UIAutomator [28], or even the direct use of Android
Debug Bridge (ADB) [12] are very useful for automating the testing
process and enhancing efficiency. However, despite their usefulness,

Breno Miranda
Federal University of Pernambuco
Recife, Brazil

bafm@cin.ufpe.br

Juliano Iyoda
Federal University of Pernambuco
Recife, Brazil
jmi@cin.ufpe.br

they are invasive approaches that simulate screen touches and ges-
tures by sending events via software, under the hood. While these
methods offer valuable insights into the functionality of Android
applications, their invasive nature may overlook issues that could
arise in a non-simulated, physical interactions with the device and
its sensors. Non-invasive testing, on the other hand, if conducted
manually, is expensive, tedious, and error-prone.

In this context, one promising solution for addressing the chal-
lenges of diversity of systems and invasive testing involves the
deployment of robotic arms. As robots are employed in an exten-
sive range of applications and in numerous repetitive tasks, there
is a growing interest in their adoption in the context of software
testing [6-8, 11, 24, 29, 32]. In particular, Mao et al. [20] advocate for
the use of robotics in mobile device testing, asserting that it offers
a form of black-box testing that is “more black-box than anything
witnessed” thus far. Using a robotic arm greatly emulates real user
and mobile device interaction without requiring any changes to the
source code of the application under test.

Recently, Riganelli and colleagues [26] introduced Data Loss De-
tector (DLD), a technique for revealing data loss defects in Android.
In Android applications, data loss occurs when information is acci-
dentally deleted or when state variables are inadvertently assigned
to default or initial values. Data loss problems are directly related
to the life cycle of the Activity component, which is responsible
for implementing the application functionalities through different
states. Depending on the amount of resources and the type of event
received, the Activity can be temporarily destroyed in order to free
resources, and can be later rebuilt. Such events, called stop-start
events, occur frequently and can result in data loss issues. As an
example, a rotation of the mobile phone that changes its orientation
from portrait to landscape produces a stop-start event.

Inspired by DLD, and motivated by the need to test mobile de-
vices in an environment that is as close as possible to the produc-
tion setup, this paper introduces a robot-assisted infrastructure for
data loss detection in Android applications called R-DLD (Robotic-
supported Data Loss Detection). Unlike DLD, which simulates sen-
sor inputs to induce device screen orientation changes, R-DLD
takes a less invasive and more realistic approach by exercising the
actual mobile phone sensors for the orientation changes. Our in-
frastructure was constructed using affordable materials, including
an Arduino board, a stepper motor, a power source, and a chassis.
This design choice aims to facilitate other testing teams interested
in replicating our setup.

In order to evaluate our proposed approach, we conducted a
conceptual experimental replication of the original DLD study [26]
by adapting the research questions to our new context with the
robotic infrastructure.

The key contributions of this work include:

https://orcid.org/0009-0000-1419-5206
https://orcid.org/0000-0001-9608-9393
https://orcid.org/0000-0001-7137-8287

SBES’24, September 30 — October 04, 2024, Curitiba, PR

e The introduction of a robotics-supported approach for de-
tecting data loss in Android apps, extending the Data Loss
Detector (DLD) technique [26].

e An evaluation of the proposed approach structured as a
conceptual replication of the original DLD evaluation.

e The discovery of 341 new data loss defects across 67 apps,
with 89.55% of them being confirmed by the developer, and
35.82% of them being fixed by the time of this submission.

e A comprehensive replication package that includes all arti-
facts produced during our work, aimed at facilitating inde-
pendent verification and replication of our results!.

The paper is structured as follows. Section 2 provides background
information on data loss defects in Android apps. In Section 3, we
introduce the proposed robotics-supported approach for data loss
detection. Section 4 outlines the methodology employed in our
study, while Section 5 presents the analysis of the results of our
empirical evaluation. Section 6 discusses the feasibility of robotic au-
tomation for data loss testing. Section 7 addresses potential threats
to the validity or our study. Section 8 explores related work and,
finally, Section 9 summarizes the findings and concludes the paper.

2 BACKGROUND
2.1 The Activity Lifecycle in Android Devices

An activity is an entry point for the interaction of an Android
application with the user [2]. Typically, an application has multiple
activities: a main one that is initiated when opening the app, and
secondary activities designed to perform different actions such as
configuring a feature or accessing an external service.

An activity is a component with a well known lifecycle. From the
moment an application is launched until its destruction, instances
of activities transition through various states and execute spe-
cific callbacks. The Activity class provides a set of seven callbacks:
onCreate(), onStart(), onResume(), onPause(), onStop(), onDestroy()
and onRestart().

Each callback performs specific tasks appropriate to a particular
change in the application state. Implementing the callbacks cor-
rectly avoids disrupting the user experience with crashes, data loss,
or performance issues. However, it is not necessary to implement all
methods in the lifecycle. While implementing onCreate() is manda-
tory, implementing other methods depends on the complexity and
behavior of the application. As the activity enters a new state, the
system invokes each of these callbacks.
onCreate() is triggered as soon as the system creates the activity
and enters the "Created” state. This callback must be implemented
and performs the basic initialization of the application. It receives
the parameter savedInstanceState, a Bundle object containing the
previously saved state of the activity.
onStart() is triggered when the activity enters the Started state,
making the activity visible to the user.
onResume() is triggered when the activity enters the Resumed
state, where the application is in the foreground, and the user
can interact with it. The activity remains in this state until an
interruption occurs (switching between apps, being interrupted by

Ihttps://github.com/RoboticsRG/R-DLD

Davi Freitas, Breno Miranda, and Juliano lyoda

another action, etc.), which puts it in the Paused state. If the app
returns to the foreground again, it goes to the Resumed state.

onPause() is called when the activity moves to the Paused state,
indicating that the user is leaving the activity. It is typically used
to release resources not in use, like a camera or a sensor. However,
lengthy operations, such as data saving, should be avoided as they
may not finish before the method exits.

onStop() is triggered when the activity enters the Stopped state.
It is a suitable callback to implement data saving or releasing un-
necessary resources. From the Stopped state, the activity either
interacts with the user again or is terminated. If the activity returns
to the foreground, the system invokes onRestart(); otherwise, it
calls onDestroy().

onDestroy() is triggered before the activity is destroyed. This
occurs when the user finishes the activity and it is completely
discarded, or when the system temporarily destroys the activity due
to a configuration change, such as a layout change due to a device
orientation change. During the orientation change, the activity
is temporarily destroyed and then restarted to accommodate its
elements in the new device orientation.

onRestart() is triggered after the onStop() callback when the
activity goes out of focus and is being re-displayed to the user. It is
followed by the onStart() callback.

The configuration change triggered by the stop-start event caused
by an orientation change has a higher probability of identifying a
data loss problem, as the activity is destroyed by the onDestroy()
callback and then recreated with the new device orientation. If the
developer has not implemented methods to save the state of vari-
ables or has not correctly implemented lifecycle-aware components,
they will be restarted with default values, resulting in data loss.

2.2 Data Loss Detector (DLD) Tool

The Data Loss Detector (DLD) [26] is a tool designed to detect
data loss issues in Android applications based on DroidBot [18]. It
identifies data loss problems caused by changes in the smartphone
orientation, thus triggering the stop-start event.

DroidBot [18] is a user interface-guided test input generator for
Android applications. Since input generation is guided by the user
interface, there is no need to instrument the application or have
access to the source code.

DLD utilizes exploratory strategies and actions that maximize
the likelihood of finding data loss defects through double rotation,
which forces an activity destruction caused by the change in orien-
tation. Then, the DLD oracle employs two approaches to identify
data loss. This process occurs in five steps (Figure 1).

Events
Stop-start
op-sta Oracle (Are
Simulated there
Capture 01 1 Capture 02 "
Event —» (Screenshot 9| Doul? ° —» (Screenshot — differences
Generator y Rotation . between
and Views) and Views) s
Robotic creenshots
Double and Views?)
Rotation

Figure 1: DLD/RDLD process for detecting data loss

https://github.com/RoboticsRG/R-DLD

Robotic-supported Data Loss Detection in Android Applications

The first step generates a set of events that modifies the default
values of the elements in the activity, for example, by changing
a field value (via typing) from its default value zero to the value,
say, three. Then, a screenshot of the activity is taken and the views
(properties of the screen elements) are saved.

Next, a double rotation is performed using ADB commands that
move the smartphone from the portrait position (Figure 2(a)) to the
left landscape orientation (Figure 2(c)), and then back to portrait
(Figure 2(a)). The double rotation is used to compare screen captures
in the same orientation. Following this, a new state screenshot is
taken but, this time, after the double rotation stop-start event that
has forced the destruction and recreation of the activity. DLD per-
forms this double rotation by simulating it in software (highlighted
by the yellow box in Figure 1).

o > i)l < [0

(a) Portrait (b) Inverted (c) Left
portrait landscape

(d) Right
landscape

Figure 2: Smartphone orientations. A double rotation goes
from (a) to (c), and back to (a).

Finally, the oracle checks for data loss by comparing both the
screenshots and the views. If there are discrepancies between any of
these artifacts, a data loss alert is generated along with the collected
information.

The execution of the tool is performed automatically once the
user defines several parameters: the target application, the location
for the output artifacts, the number of events, and the device under
test. The latter can be either an Android Virtual Device (AVD) or a
real device and, in both cases, the double rotation is simulated via
the Android Debug Bridge (ADB) commands. The test execution
duration depends on the number of events passed as a parameter
and the device used (AVD or real device). For instance, the experi-
ment reported in the DLD paper [26] used 2,250 events per app, an
AVD and a runtime of 3 hours.

In what follows, we describe the three methods employed by

DLD in order to increase the likelihood of identifying a data loss
issue.
A biased model-based exploration strategy. This strategy con-
structs a model of the graphical interface to represent visited states
and executed actions. The exploration visits new states and incre-
mentally tests newly discovered ones. DLD generates five types of
actions during exploration:

(a) TouchEvent, which performs a tap on a clickable view.

(b) LongTouchEvent, which performs a long tap on a clickable view.
(c) SetTextEvent, which inputs text into an editable view.

(d) KeyEvent, which presses a navigation button.

(e) ScrollEvent, which performs a swipe on a scrollable view.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Data loss revelation actions. The actions are grouped into two
types: the ones that are executed systematically every time a new
state is reached, and those that are executed probabilistically at
each state. When a new state is discovered, systematic data loss
revelation actions are performed. Otherwise, a probabilistic data
loss revelation action is executed, prioritizing events not executed
in the activity. The systematic data loss revelation actions consist
of five steps:

(a) Fill-in : Interacts with all elements of the activity to input non-
empty and non-default values.

(b) Save state : Saves the current state of the activity to later check
for data loss.

(c) Double screen rotation : Performs a screen orientation change in
order to produce a stop-start event and thus force the recreation
of the activity. Two rotations are performed to return to the initial
orientation. The screen, after the double rotation, should be exactly
the same as the initial screen. Otherwise, data loss is considered to
have occurred.

(d) Check state : Compares the current state with the saved state to
determine if any data loss occurred.

(e) Scroll down : Executes a scroll action that may reveal new ele-
ments that reach new states.

Use of two oracles for data loss detection. DLD employs the
strategy of capturing the state before and after executing actions
that may identify data loss issues, and then comparing them. It
defines two oracle strategies that can be used independently or
jointly:

(a) Screenshot-based oracle: DLD takes a screenshot and crops the
header and footer of the image to eliminate time-changing infor-
mation such as time and battery level. Comparison of the images
representing states before and after double rotation is performed
pixel by pixel. In order to reduce occurrences of false positives
related to cursor blinking, for example, differences up to 15 pixels
per 10,000 are disregarded.

(b) Property-based oracle: DLD retrieves all views, including their
properties and hierarchical organization, into a Python dictionary.
The comparison is performed between the dictionaries captured
before and after the double rotation.

3 THE R-DLD INFRASTRUCTURE

R-DLD is a robotic device built on the Arduino platform [21], aiming
to support the four types of smartphone orientations depicted in
Figure 2 (Portrait, Inverted Portrait, Left Landscape, and Right
Landscape). R-DLD is activated via a serial communication, and
different components from the platform were used: a part consisting
of pre-fabricated modules (shields) and another part developed by
us in order to integrate them.

In order to assemble the robot, the following items were pur-
chased: an Arduino UNO board, a 12-volt 3-watt power supply, a
NEMA 17 model stepper motor, and a DRV8825 motor driver. Some
components had to be fabricated, such as the clamp to hold the
smartphone and the robot chassis. The clamp was made using a
smartphone car holder, and a shaft was adapted to connect it to
the stepper motor. The chassis was crafted in wood and a metal
structure to support the components and to ensure stability during

SBES’24, September 30 — October 04, 2024, Curitiba, PR

n
B ® ARDUTNO

laca Arduino

(a) R-DLD infrastructure (b) Electrical schematic

Figure 3: R-DLD infrastructure and Electrical schematic

rotation. Figure 3 displays the robotic structure (Figure 3(a)), em-
phasizing the details of the smartphone-holding grip, and depicts
the electrical diagram of the component connections (Figure 3(b)).

A C-based program [23] was implemented for a computer to
communicate with R-DLD via a serial interface in order to position
the smartphone in the desired orientation during the data loss test.
The Arduino development environment was used along with the
AccelStepper library [4]. Since the stepper motor does not accept
angle parameters, the number of steps for each orientation was
calculated. The employed motor requires 200 steps for a full revolu-
tion, translating to 1.8 degrees per step. Therefore, to achieve the
Portrait, Landscape Left, Inverted Portrait, and Landscape Right
orientations (Figure 2), 0, 50, 100, and 150 steps are needed, respec-
tively. The initial position was set as Portrait and can be manually
calibrated while pressing the button on the board.

3.1 R-DLD Architecture & Modifications to DLD

R-DLD is a robotic extension of DLD incorporating Droidbot and
enhancing its data loss detection capabilities. In the architecture
depicted in Figure 4, we can identify the Droidbot original compo-
nents (in orange), the additions and modifications made by the DLD
team (in green, pink, yellow and white), as well as the extensions
made to implement R-DLD (in blue).

Considering Droidbot as the core, we explain how DLD and later
R-DLD introduced modifications. Droidbot comprises the Adapter
module, a Resources folder, and various classes and scripts. The
Adapter provides an abstraction for the device and the system under
test (SUT). The Resources folder contains auxiliary files, while the
classes and scripts control events and inputs during testing.

Modifications added by DLD are highlighted in green, showing
the files integrated by the DLD team into Droidbot. Pink files include
classes added by DLD to handle inputs and data loss policies. Yellow
files introduce methods to aid in data loss detection. The white color
indicates minor changes for keeping compatibility with the DLD
modifications, while orange files are those that remained unchanged
(i.e. the original Droidbot).

R-DLD introduced a new file (in blue) in order to establish a serial
communication with the Arduino board. Files named in red have
been slightly adjusted by us to incorporate robotic functionalities
and the logic to intercept orientation changes sent from DLD to the
robot. The -robot parameter was created to enable robotic capa-
bilities in R-DLD. When activated, the ADB class redirects rotation

Davi Freitas, Breno Miranda, and Juliano lyoda

requests to the Arduino class. The Arduino, in turn, controls the
positioning of the smartphone through serial communication using
the PySerial library, thus enabling specific guidance during tests.

R-DLD (Robotic Data Loss Detector)

input_event.py input_policy.py

class DataLossPolicy(InputPolicy):,
class DatalossException(Exception):

class FillUIEvent(InputEvent):,
class RotationEvent(InputEvent):,

class DoubleRotationEvent(InputEvent):

Resources ‘ acv.py | ‘ screenshot.py
‘ minicap | ‘ stylesheets | ‘ androcov.jar | ‘ view.py | ‘m_mﬁpy
‘ droidbotApp.apk | ‘ DroidBoxTests.apk | utils.py ‘ ‘ device.py
utg.py
Adapter ‘

env_manager.py

|
app.py ‘
|
|

‘ adapter.py | ‘ qgemu.py | ‘ droidbot_ime.py ‘ ‘ intent.py droidmaster.py
‘ cv.py | ‘ telnet.py | ‘ droidbot_app.py ‘ ‘ start.py input_script.py
droidbot.py | | jdwp.py minicap.py input_manager.py

\ Il || |

‘prooess_moni(or.py | ‘Iogcat.py H adb.py ‘

device_state.py

droidbot.py ‘

Figure 4: Architecture of R-DLD and Modifications to DLD

3.2 Research Questions in the Replication Study

The empirical evaluation of DLD was conducted using a virtual
device (AVD). Therefore, it did not suffer any influence from hard-
ware sensors, connection technologies, memory constraints, and
processing power. Our conceptual replication study was carried
out in a different context: we had the support of the R-DLD robotic
infrastructure and physical rotations of a real device in order to
promote less invasive and more realistic testing.

DLD was also compared DLD with ALARic [25] and QUAN-
TUM [31]. Since our goal is not to make comparisons against com-
petitors that had already been compared against DLD, this analysis
was discarded. The third question in the original experiment was
about the effectiveness of DLD, which led to our first Research
Question (RQ1). The fourth question was about the discovery of
bugs by the two types of oracles, which led us to our RQ2. Finally,
the fifth question was about the relevance of data loss for develop-
ers, leading us to our RQ3. Thus, the following research questions
were defined for our conceptual replication study.

RQ1 What is the relationship between True Bugs and False Alarms
identified by the R-DLD infrastructure?

RQ2 Does the detection of data loss follow the same proportion
identified by DLD for the screenshot-based and property-based
oracles?

RQ3 Is data loss (still) relevant to developers?

RQ1 investigates whether the proportion of True Bugs and False
Alarms identified by R-DLD is similar to that observed in the DLD
evaluation study [26]. RQ2, on its turn, help us to clarify whether
the two oracles behave similarly to what was observed in the DLD
evaluation study [26] (taking into consideration that we used differ-
ent apps, a real device and physical orientation changes). And RQ3
aims to gather information from developers regarding reported

Robotic-supported Data Loss Detection in Android Applications

data loss flaws and to determine whether there is still an interest
in addressing them.

4 METHODOLOGY

The aim of this experiment is to investigate data loss occurrences
across a broader range of Android applications in order to report
and propose solutions to developers. The Android store chosen
for this investigation was F-Droid, as it hosts over 2,500 free and
open-source projects, along with providing a link to download the
compiled version of the application.

The F-Droid store offers 17 categories of applications like De-
velopment, Writing, Internet, Security, System, and so on. Some
applications belong to multiple categories; for instance, the EteSync
app falls under Writing, Internet, Security, and System. Our subjects
encompasses all 17 categories available in the F-Droid store.

4.1 Data Collection and Subject Selection

The data collection process was performed using web scraping
techniques to obtain the name, the description, the Android version,
and the links to the repository and the compiled version. Initially,
all links in the 17 software categories were collected, totaling 3,631
entries. After manually removing duplicated entries and broken
links, this number was reduced to 2,461.

The next step was to perform an analysis of the Manifest of the
applications to check for any screen orientation restrictions. The
analysis employed a library to read the AndroidManifest.xml file
integrated into the compiled version of the application in order to
look for specific configuration instructions.

The Androguard library was used to search for occurrences of
the screenOrientation instruction in the application activities. Three
types of restrictions may occur: (i) complete blocking of the applica-
tion orientation, in which case R-DLD cannot trigger the stop-start
event (thus, we discarded such apps); (ii) partial blocking of ori-
entation changes in the application, in which some activities may
block a rotation (as R-DLD cannot differentiate between a blocked
and a normal activity, which potentially leads it to a prolonged
exploration without being able to execute the stop-start event, we
set such apps to a lower priority for selection); and (iii) applications
with no orientation change restrictions, which were assigned a
higher priority for selection.

Another instruction sought was configChanges, which is used
to assign the responsibility for configuration changes to the de-
veloper [3]. This is done through the implementation of the on-
ConfigurationChanged() method in order to handle configuration
changes. In practice, it is common for developers not to implement
this method but to solely use this instruction to prevent the destruc-
tion of the activity during orientation changes, which can lead to
side effects.

An analysis of the Manifest revealed that 30.8% of the applica-
tions have only one activity. This number increases to 55.6% when
considering applications with up to 3 activities, and to 70.5% when
considering applications with up to 5 activities. Regarding configu-
ration changes, 35.1% of the projects have the configChanges param-
eter enabled in the Manifest, indicating that the developer assumes
responsibility for handling events such as orientation changes via
the onConfigurationChanged() method. Additionally, 22.8% of the

SBES’24, September 30 — October 04, 2024, Curitiba, PR

applications have some form of orientation lock. This can occur
in all activities or only in some of them. When considering only
locks in the main activity, this percentage decreases to 13.8%. As
most of the application functionality is generally found in the main
activity, the presence of this lock automatically disqualifies the
application. However, when it occurs elsewhere, the application
may be analyzed at a later time. The screenOrientation criterion
was used to eliminate applications that had locks in any activity.
Thus, the number of eligible projects was reduced to 1,899.

The next criterion aims to prevent choosing abandoned projects.
We selected apps that had at least one update in the year before
the experiment. When analyzing the repositories used by F-Droid,
it was observed that 78.4% correspond to GitHub, 11.3% to GitLab,
and 10.3% to other repositories. A script to obtain the commits for
each project was developed for GitHub to maximize the number of
evaluated applications, while the other repositories were discarded.
By applying these restrictions, 733 projects were selected, which
corresponds to 29.8% of the initial number of projects.

4.2 Execution

The applications selected in the previous phase were subjected to R-
DLD. The experiment employed the same number of events (2,250
per app) as used in the DLD evaluation, except that these events
were carried out with real rotations, aiming to uncover genuine
defects in a larger set of applications.

The execution process was automated to run continuously, re-
specting the time required for installation and uninstallation on
the Android smartphone. A total of 77 applications were randomly
selected for analysis in the experiment (approximately 10% of the
number of candidate applications). In the experiment, 36 applica-
tions required a minimum of Android 4, 27 applications required at
least Android 5, and 14 applications required Android 6.

The experiment was conducted using R-DLD with a Motorola
Moto G30 smartphone (4GB memory, 128GB storage, 1,600X720
resolution, and Android 11). Initially, some device settings were con-
figured to allow application installation and USB communication.
Additionally, a Null Keyboard was installed to prevent the keyboard
from appearing during text input. This decision was made based on
the observation of False Alarms related to keyboard interference
during our initial analysis.

Upon initiating the experiment with 2,250 events per app, we
observed that the processing time was 50% longer (4.5 hours) than
the time reported in the DLD study, which took 3 hours. This was
due to the difference between the simulator (AVD) and the real
device, and was not related to the use of the real rotation done by
the robot. In other words, if the DLD experiment had been executed
on a real smartphone (with no robot) instead of an AVD, the time
required to process the 2,250 events would also have been 50%
longer (4.5 hours).

The experiment generated 77 reports, with an average of 192
rotations, 82 data losses, 71% coverage of the activities, and 18.5%
fatal exceptions per application. The individual reports, one per app,
are available in our replication package (see Section 10). The average
execution time for each run was 4.5 hours, totaling approximately
350 hours of computational processing.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

4.3 Report Evaluation

We manually reviewed the information in the reports to categorize
alarms as either true positives (True Bug) or false positives (False
Alarm). A false alarm happens when the second screen capture
shows expected behavior of the application, such as an animated
element, a blinking cursor, timers, timed messages, etc. All data
losses marked as True Bugs were reported to the developers by
opening issues with descriptions of the problems using the artifacts
produced by R-DLD.

False Alarms were more common in data losses reported via
screenshots and were associated with animations, videos, or timed
messages (toasts). They can also occur due to differences in screen-
shot shading resulting from delayed screen updates or due to appli-
cation closure caused by an exception.

A dataloss is classified as a True Bug when a variable is destroyed,
reset, or assigned a default value. When reported via screenshots,
data loss manifests as disappearing fragments, text, or messages,
elements that change color or lose their state, among other mani-
festations. These losses are always associated with significant dif-
ferences between the views files.

4.4 Reporting Issues

After classifying the alerts, we reported the True Bugs to the devel-
opers by opening an issue that includes a problem description, steps
to reproduce, expected behavior, device model, and application ver-
sion. The screenshots reported by R-DLD were used to facilitate
the procedures for the developer to reproduce the issue.

5 ANALYSIS AND DISCUSSION OF RESULTS

In this section, we describe the analysis of the results for each
research question.

RQ1: True Bugs and False Alarms identified by
the R-DLD infrastructure

In our replication study we analyzed 77 applications using R-DLD,
with an average execution time of 4.5 hours per application, and
evaluated the 3,589 data loss alerts generated. Six of these applica-
tions did not report any bug alerts, as shown in Table 1. In three
cases, R-DLD got stuck on the tutorial screen, and to overcome this
an initial configuration would be needed to advance to the main
activity before starting the evaluation. Six applications reported
bug alerts, though all of them were subsequently classified as False
Alarms (see Table 2).

Table 1: Applications that did not produce alerts

Application Diagnosis

TripleCamel Simple interface with only usage instructions
AF Weather Widget

Shelter Tutorial prevented access to the main activity

Track and Graph Tutorial prevented access to the main activity
Keymapper Tutorial prevented access to the main activity
AccA The application requires root access to function

Davi Freitas, Breno Miranda, and Juliano lyoda

Table 2: Applications that generated False Alarms only

Application #Alerts #True Bugs Diagnosis
Compass 1 0 Update
Termux:Boot 1 0 Capture error
Egyptian Mouse Pounce 163 0 Animation
DSA Assistant 6 0 Timed message
T T T
TB |- » '—{ll " m [
\ | | |
0 100 200 300
T T T — TTTT T T LR T T T 11
FA - E Em HE EE EE
L1 by |11 ! Ll L
10° 10 10

Figure 5: Distribution of True Bugs and False Alarms

After a manual analysis of each alert, 2,160 (60.2%) alerts were
classified as True Bugs, and 1,429 (39.8%) were classified as False
Alarms. Figure 5 presents box plots of these data. The x-axis rep-
resents the quantity of True Bugs and False Alarms, respectively,
while the points represent the applications.

Upon analyzing the reasons for the number of False Alarms,
we observed that nine applications exhibited outliers in their data.
While most applications had up to ten False Alarms, five applica-
tions fell within the range of ten to one hundred alarms, and the
remaining four had over one hundred False Alarms. A more detailed
investigation revealed that the four applications generating an ex-
cessive number of False Alarms (totalling 1,169 False Alarms and 72
True Bugs) were applications that had animations, which confuse
the screenshot oracle. Table 3 presents the number of True Bugs,
False Alarms, and the diagnosis of the reasons for False Alarms
for the considered outlier applications. Although the Moonlight
application (line 6 in Table 3) has animations, they only occur when
data is loaded. These False Alarms could possibly be reduced by
adjusting the time between the before and after state captures.

Table 3: Analysis of outlier observations

Application TB FA Diagnosis

Material Files 97 28 Blinking cursor
Wikipedia 35 28 Keyboard rendering
VocableTrainer 20 28 Keyboard rendering
A Time Tracker 49 17 Time change

Goodtime 6 312 Clock animation

Moonlight 45 98 Data loading animation
OpenPods 0 163 Animation during app usage
Baby Dots 1 379 App animation

Fiddle Assistant 18 219 App animation

TB: True Bugs; FA: False Alarms

When considering all applications, including those with anima-
tions, we reach the proportion of 1.38 True Bugs for each False

Robotic-supported Data Loss Detection in Android Applications

Alarm. However, when we exclude the applications with 100+ False
Alarms (i.e., Goodtime, OpenPods, Baby Dots, and Fiddle Assistant),
the proportion rises to 6 True Bugs for each False Alarm. Figure 6
presents this difference for both cases.

1N

(b) Apps without animation

B TB
O FA

(a) All apps

Figure 6: True Bugs (ITB) and False Alarms (FA) before and
after excluding apps with animations.

The coverage percentages of activities during the experiment
were also analyzed. Figure 7 presents the box plots, where the x-axis
represents the percentage of activity coverage, the points represent
the applications. Most applications had coverage above 40%, with
a median of approximately 70%. Even applications with coverage
below 40% managed to find a non-negligible number of True Bugs,
with a total of 351 True Bugs. The number of False Alarms for
low-coverage applications was 470. However, this high number
was caused by the Babydots application, which presented 379 False
Alarms and revealed only 1 True Bug.

Another point analyzed was the number of oracle checks in-
dicated by the double rotation in the generated report, Figure 8.
Screen rotation is the stop-start event with the highest probability
of revealing data loss issues due to the destruction and recreation
of the activity.Five applications behaved as outliers: two below the
lower limit and three above the upper limit of the distribution. Most
applications had between 145 and 230 oracle checks, with a median
of 200 checks.

A more detailed analysis of the results of these applications
confirmed the intuition that the number of checks performed is not
necessarily correlated with the number of True Bugs revealed. For
some applications, the oracle can be applied hundreds of times and
generate few alerts, but they correspond to True Bugs; for other
applications, hundreds of alerts can be generated, but all are related
to False Alarms. Table 4 presents the number of alerts, True Bugs,
and False Alarms generated for the outlier applications based on
the number of checks performed.

The variation in the number of double rotations among applica-
tions is related to the DLD exploration strategy of interacting with
all elements of the activity to insert values different from the default
values. In some cases, the R-DLD can get stuck in an activity if it
requires a very specific sequence of screen touches to change activ-
ities. For example, in the Babydots application, if a touch event is
launched at a specific point on the screen, the application is locked,
requiring a sequence of actions to unlock it. In these cases, R-DLD
waits for a condition (for example, inserting different values from
the default value) that ends up consuming many events.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Activity | |
Coverage ‘ ‘ ‘

0 20 40 60 80 100

Figure 7: Activity coverage per app.

T
Double | + + .

Rotation ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 100 200 300 400 500 600

Figure 8: Oracle checks per app.

Table 4: Outliers in data loss analysis due to double rotation.

Projects DR AL TB FA
Bubble 8 3 3 0
Step-and-height-counter 12 12 12 0
Baby dots 380 380 1 379
Compass 566 1 0 1
Mindustry 566 1 1 0

DR: Double Rotation; AL: Alerts; TB: True Bugs; FA: False Alarms

Response to RQ1: When considering all alerts, the R-DLD
achieved 1.38 True Bugs for each False Alarm. However, when
removing applications with animations, the ratio increases to
6 True Bugs for each False Alarm. To put into perspective, the
ratio in the DLD study was 4 True Bugs to each False Alarm.
Such a difference could be related to the type of applications
evaluated, as the removal of five applications with animations
caused a significant change in this ratio.

RQ2: Comparison with DLD in terms of oracles

The empirical evaluation of DLD [26] used both screenshot-based
and property-based oracles. A bug alert can be triggered by one or
both of these oracles. The authors of DLD manually classified the
alerts into True Bugs and False Alarms and reported that 73.1% of
True Bugs were identified by both oracles, 17.8% were identified
only by the property-based oracle, and 9.2% were identified only
by the screenshot-based oracle. Regarding False Alarms, 73.6% oc-
curred in both oracles, 21.1% in the screenshot-based oracles, and
0.1% in the property-based oracles. In 5.3% of cases, the oracle failed
due to errors in capturing correct information caused by delays
in app updates. As a solution, the authors suggested adjusting the
parameters of DLD to reduce these failures.

Analysis of the experiment with all applications. Considering all
applications, without excluding those with animations, the results
observed in our study were similar to the results reported by the
authors of DLD for True Bugs. However, when compared to False
Alarms, there is a different distribution of data. Figures 9(a) and 9(b)
present the distribution of oracles related to True Bugs and False
Alarms, respectively, considering all applications. Regarding True
Bugs, both oracles were able to identify data loss in 71.9% of cases.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

l BH
O SBO
E PBO

(b) False Alarms

(a) True Bugs
BH: Both Oracle, SBO: Screenshot-based Oracle, PBO: Property-based Oracle

Figure 9: True Bugs and False Alarms for the evaluated apps

For the property-based oracle, this value was 18.4%, and for the
screenshot-based oracle, 9.7%. In the DLD evaluation, the results
were 73.1%, 17.8%, and 9.2%, respectively. Concerning False Alarms,
Figure 9(b) shows that both oracles were able to identify data loss
in 45.2% of cases. For the property-based oracle, this value was 2.0%,
and for the screenshot-based oracle, 52.8%. In the DLD evaluation,
the results were 73.6%, 0.1%, and 21.1%, respectively.

In the case of False Alarms, there is an additional category related
to information capture errors, accounting for 5.3% in the DLD study.
This error is associated with the slowness of the application in
rendering the activity, which leads the oracle to detect differences
between captures due to outdated information. This problem can
be reduced by adjusting the time parameter for the oracle. For the
purpose of comparison, False Alarms related to screen update time
were attributed to this category because when the oracle capture
occurs before the expected time, differences in tones or incomplete
rotations between the images may occur.

Figure 10 illustrates the distribution of False Alarms into four
categories. Both oracles made mistakes together in 44.1% of cases,
while the property-based oracle made errors in 1.7% of cases, and the
screenshot-based oracle made errors in 44.9% of cases. Incomplete
rotations accounted for 9.3% of cases. Incomplete rotation occurs
when the screenshot capture takes place before the orientation
change is completed, and it may be related to the smartphone
processing speed at the time of capture. The distribution of oracles
concerning False Alarms exhibited a different behavior than that
observed in the DLD study, both in terms of quantity and proportion.
However, the property-based oracle had fewer failures in both cases.
The observed differences are related to the characteristics of the
evaluated applications.

Differences between the applications in both studies (DLD and R-
DLD). In our conceptual replication study, cases of True Bugs re-
ported with and without animation exhibited a similar behavior
to the original study. However, there was a significant difference
regarding False Alarms, both in quantity and proportion. The ob-
served differences may be related to the characteristics of the ana-
lyzed applications, especially in cases of applications with anima-
tions. For example, applications that load data from the internet
may require more time before calling the oracles in comparison
to the default time (our study did not adjust the time parameter

Davi Freitas, Breno Miranda, and Juliano lyoda

1.7% O PBO

O3 sBO
B BH
E IR

PBO: Property-based Oracle; SBO: Screenshot-based Oracle; BH: Both Oracle; IR: Incomplete Rotation

Figure 10: Proportion of False Alarms separated by oracle
and the criterion of incomplete rotation

between events). The large number of False Alarms does not nec-
essarily implies a higher manual effort during the alert analysis
phase. As this type of alert usually occurs in a specific activity and
is detected by only one oracle, it is possible to apply filters to the
generated alerts and group the captures for more efficient manual
or automated analysis.

Response to RQ2: When considering all applications, True
Bugs had a distribution similar to that observed in the DLD study.
The distribution remained similar when conducting the same
analysis after removing applications with animations. However,
we observed differences in False Alarms when comparing with
the DLD study. R-DLD obtained a higher proportion of False
Alarms in the screenshot-based oracle when considering the
grouping of applications with and without animation. This dif-
ference may be related to the characteristics of the analyzed
applications.

RQ3: Relevance of data loss bugs to developers

After manually analyzing all 3,589 warnings and classifying them
as True Bugs and False Alarms, we found that many warnings
were duplicated, sometimes reporting the same failure identically,
and in other cases, with minor variations. For example, a form
containing the string "test" and the same form containing "test123"
reported different warnings. Grouping similar failures resulted in a
total of 341 bugs. Only 5 failures were not reported because they
were associated with archived projects (Bubble and TrebleShot).
The remaining 336 failures found were reported to developers by
opening issues on the project repositories on GitHub. Due to the
quantity of bugs per project, one or more issues were created to
report them, always indicating the relationship with the others,
resulting in a total of 87 issues opened.

To provide context to developers regarding the data loss issue, the
issue descriptions included concepts of the activity lifecycle, data
loss problem, R-DLD detection technique, and possible solutions de-
scribed in the Android documentation. After this contextualization,
for each bug, the steps to reproduce the bug, the expected result, the
configuration environment, and some links to Android documenta-
tion were reported. Additionally, some artifacts produced during
the R-DLD execution, such as the screenshots before and after the
double rotation, the changed properties, and the touchscreen taps,
were included.

Robotic-supported Data Loss Detection in Android Applications

At the time of writing, 52 issues have been addressed (58.94%
of the reported issues), and 47 (89.55% of the addressed issues) re-
ceived positive feedback, demonstrating developers interest in the
problem. A detailed breakdown of the status of each issue is avail-
able in our replication package. Among the issues with negative
feedback (only 5), developers reported no interest in resolving the
issue because it was a very specific problem with small probability
of being reproduced by a user. Others attributed the problem to
Android or reported that the project is no longer maintained or
simply closed the issue without responding.

For issues with positive feedback, 18 were resolved by project
members. In some cases, a partial solution was developed promptly,
especially when the reported failure compromised an essential
application feature. In one particular case, the developer was about
to release a newly restructured version of the application, and the
bugs had already been fixed almost simultaneously with the issue
opening. In 25 cases, the developers left the issue open, waiting for
a convenient opportunity to resolve them. In 4 cases, the developers
acknowledged the relevance of the data loss problem but expressed
no interest in resolving it and left the issue open.

Response to RQ3: A total of 341 bugs were reported in 87 issues,
with 52 (58.94%) issues receiving responses from the developers.
Among those addressed, 47 issues had data loss bugs confirmed.
These accepted issues correspond to 180 bugs, representing
89.55% of the addressed bugs. Thus, it can be inferred that the
data loss problem is relevant to developers.

6 FEASIBILITY STUDY OF ROBOTIC
AUTOMATION FOR DATA LOSS TESTING

What are the costs of setting up the testing environment? In
a context where the team already works with robots, incorporating
data loss testing is a straightforward task because the effort is in
integrating DLD with the robot control system. However, when
it is necessary to build the entire infrastructure, the implementa-
tion cost can vary significantly. If the team chooses to acquire an
industrial robot capable of performing various types of movements
with different degrees of freedom and speed control, this cost can
reach tens of thousands of dollars. The handmade robotic arm built
as part of this work to rotate the smartphone has a much lower
cost (the version presented in Figure 3(a) costs approximately $60).
During the replication experiment, which lasted approximately 350
hours, the robotic arm did not present defects or require additional
calibrations due to the number of orientation changes. The calibra-
tion is performed when the equipment is turned on, and no further
calibration is required during testing.

What are the challenges in integrating the robotic approach
into a data loss detection tool? Integrating the automated testing
tool with the robot is a relatively simple task that involves intercept-
ing ADB commands and replacing them with robotic instructions.
In this case, the robotic instruction is a command to rotate an object
attached to a support. However, this depends on an API that the
tool provides or on its source code availability. The integration with
DLD was possible because the developers provided the source code.
Another critical point is the speed of the robotic arm in performing

SBES’24, September 30 — October 04, 2024, Curitiba, PR

an orientation change. During the validation experiment of the
robotic arm, we verified that this time was less than 2 seconds for
each orientation change. By default, DLD uses a 3-second delay be-
tween events, allowing the robotic arm to perform both orientation
changes without interfering with the oracle verification.

Are there advantages to using physical devices compared to
emulated ones? An AVD (Android Virtual Device) is a simulation
of a hardware profile to run on the Android emulator, where the
components are abstractions of real devices. Although it resembles
a physical device, an AVD has limitations. For example, it is not
possible to run tests involving phone calls, Bluetooth connections,
or image rectification algorithms (which require the use of the
camera).

7 THREATS TO VALIDITY

The primary internal threat to our study is the manual classifica-
tion of alerts as either True Bugs or False Alarms. Although this
classification is a straightforward process involving the verification
of differences in properties or screenshots, it is not a trivial task. It
needs an understanding of the application behavior to determine
whether a supposedly data loss is, in fact, an expected behavior of
the application. For example, in cases where the activity involves a
timer, the oracles for screenshots, properties, or both can indicate
(erroneously) a data loss.

The primary external threat pertains to the generalizability of
the results. Our study was conducted on a sample of 77 applications
collected from an Android app store. Mitigating this threat can
only be achieved through additional studies that consider different
applications, domains, and additional research questions.

The choice of a single smartphone model and a specific version of
Android was made to maintain control and consistency throughout
the experiment. This allowed us to focus on identifying issues and
observing app behavior in a standardized environment. However,
we acknowledge that the results may not be generalizable to other
devices or Android versions, underscoring the need for future re-
search that includes a greater variability of hardware and different
operating system configurations to achieve a more comprehensive
evaluation.

8 RELATED WORK

8.1 Testing for data loss detection

Zaeen et al. [31] introduce QUANTUM, an automatic test case gener-
ator exploring GUIs in mobile apps. They selected 106 reproducible
bugs from 13 applications to identify opportunities for automatic
test case generation. Each bug was manually categorized to identify
the type of oracle that could be used and grouped into categories. It
generated 60 tests, unveiling 22 bugs, emphasizing GUI failures and
also addressing data loss during the activity lifecycle exploration.

Amalfitano et al. [1] conducted two blackbox experiments with a
non-invasive approach, aiming to identify GUI failures (data losses)
through orientation changes on real devices. The first experiment
found 439 GUI failures among 68 applications. The second experi-
ment assessed interface failure in large company applications. Ten
applications were evaluated and revealed 140 flaws. Both exper-
iments involved manual detection, checking for screen changes
after double rotation.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Riccio et al. [25] present ALARic, a tool that uses dynamic ex-
ploration techniques over particular events like double orientation
change and semi-transparent activity intent. ALARic tested 15 apps
and revealed 106 True Bugs, emphasizing the efficacy of double
orientation in exposing an activity lifecycle issue.

As already described at Section 2.2, Riganelli et al. [26] devel-
oped the Data Loss Detector (DLD) to identify data loss on Android
devices using ADB (Android Debug Bridge) commands to simulate
device interaction. The main benefits of using DLD were the black-
box approach and the automatic test generation, which employed
an exploratory strategy to cover the activities and an interaction
strategy to change default element values.

Guo et al. [14, 15] present iFixDataloss, a tool combining static
and dynamic analysis for data loss detection and correction. For
each application’s activity, predefined tests and events covering
various data loss scenarios are executed. When a data loss problem
is encountered, the tool uses a model to generate a correction patch.
After creating the patches for each variable, a new verification is
performed on the corrected activities to check for any remaining
data loss problems or if the corrections caused any crashes.

The works of Amalfitano and Riganelli present non-invasive
blackbox approaches for data loss detection, one manual and the
other automated. Guo’s work (iFixDataloss) introduces a greybox
approach, incorporating static code analysis into a systematic, au-
tomated, and invasive exploration. R-DLD adds value by leveraging
robotics for less invasive blackbox testing, physically performing a
smartphone rotation.

8.2 Use of robots for smartphone testing

Robots are widely used for many repetitive tasks, and interest in
using them in the context of mobile device testing has been grow-
ing recently [19]. Banerjee et al. [5-9] employed robotic testing
to simulate real-world user movements. This methodology proved
instrumental in algorithm comparison across diverse user scenarios,
mitigating the influence of human errors. The use of robots ensures
a controlled environment for systematic algorithm evaluation, re-
duced manual testing, and improved efficiency and scalability.

K. Mao et al. [20] presented the Axiz tool, a robotic test generator
for mobile applications using a real device in a black-box testing
approach. Common points between Axiz and R-DLD include the
use of a robot to execute tests, the utilization of the device cyber-
physical interface, and the automatic test generation. However, in
order to create efficient test cases, the Axiz tool requires a prede-
fined test suite to generate a realistic model. This may lead to two
issues: biases can be introduced by the lack of test diversity, and
bias can be introduced by the testing team programming tenden-
cies. R-DLD generates realistic tests without the need to access a
test suite, as it uses DLD to identify activity elements and their
possible combinations, generating random events that adhere to
these requirements.

Qian et al. [24] presented the RoScript tool, a script-based robotic
testing system employing a non-intrusive approach for GUI testing
on touch-screen devices. Unlike intrusive approaches that obtain
GUI information through access to the device operating system,
RoScript uses computer vision to identify GUI elements and states.
It interacts with the device using the cyber-physical interface. This

Davi Freitas, Breno Miranda, and Juliano lyoda

process differs from traditional approaches that use installed apps
on the device under test to record these steps.

Craciunescu et al. [11] introduced a portable, low-cost robot
developed for testing mobile devices with resistive and capacitive
touch screens. By employing image processing techniques, it can
provide feedback on executed actions and remains robust in locating
elements on the screen even with device repositioning.

Juang and Cheng [17] employed computer vision and a robotic
arm to conduct tests on smartphones with the aim of creating a
robotic system that accepts a test case and executes actions similar
to a human on a device.

Vermaa et al. [29] presented a low-cost robot that allows for
actions on a smartphone using the touch screen, constructed with
a Cartesian coordinate design using an Arduino board, two Nema
17 stepper motors, and some other components.

9 CONCLUSION AND FUTURE WORK

Our work proposed an automated testing framework, activated
by a robot, to perform data loss tests in a real environment. This
proposal is more realistic and less invasive than recent previous
work [15, 25, 26]. It is more realistic because the orientation changes
are triggered by the physical rotation of the smartphone, thus inter-
acting with the sensors as in a real usage scenario. It is less invasive
because a crucial portion of the interaction with the smartphone
(the orientation change) is carried out by a low-cost homemade
robot. In other words, these interactions are not sent through ADB
commands via the USB port to the smartphone.

In order to evaluate our proposal, we conducted an empirical
assessment with 77 randomly selected Android apps from an app
store and identified 341 data loss bugs. We reported all bugs to the
developers and received responses to 58.94% of them. The develop-
ers acknowledged the problem in 89.55% of the cases.

As future work, we aim to investigate the feasibility of propos-
ing a completely non-invasive approach [13]. We plan to replace
the screenshot oracle with computer vision techniques to identify
differences between activities after a double rotation event. We
also plan to investigate other ways to trigger a stop-start event to
detect data loss, such as switching between apps under stress con-
ditions associated with increased processing. Another area we aim
to improve is the activity exploration strategy. The current solution
does not allow for selecting the activities we want to test, such as
choosing a specific activity, excluding those with blocked orienta-
tion changes, among others. During app selection, it was observed
that many of them have orientation locks in one or more activities.
It is also possible to enhance the way we classify alerts into True
Bugs and False Alarms using computational intelligence techniques
following the example of previous works [10, 22]. One potential
avenue of future work is investigating the feasibility of using bi-
nary classification algorithms to categorize the alerts generated by
R-DLD into True Bugs or False Alarms.

10 DATA AVAILABILITY

To facilitate independent verification and replication, our artifacts
are available at: https://github.com/RoboticsRG/R-DLD.

https://github.com/RoboticsRG/R-DLD

Robotic-supported Data Loss Detection in Android Applications

REFERENCES

(1]

&

[9

=

[10]

(1]

[12

(13

[14]

[15]

[16]

Domenico Amalfitano, Vincenzo Riccio, Ana C. R. Paiva, and Anna Rita
Fasolino. 2018. Why does the orientation change mess up my Android
application? From GUI failures to code faults. Software Testing, Verifica-
tion and Reliability 28, 1 (2018), e1654. https://doi.org/10.1002/stvr.1654
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1654 1654 stvr.1654.
Android. 2022. The Activity Lifecycle. https://developer.android.com/guide/
components/activities/activity-lifecycle [Online; accessed 12-February-2022].
Android. 2022. Handle configuration changes. https://developer.android.com/
guide/topics/resources/runtime-changes [Online; accessed 12-February-2022].
Arduino. 2024. AccelStepper - Arduino Reference. https://www.arduino.cc/
reference/en/libraries/accelstepper/

Debdeep Banerjee and Kevin Yu. 2018. Robotic Arm-Based Face Recognition
Software Test Automation. IEEE Access 6 (2018), 37858-37868. https://doi.org/
10.1109/ACCESS.2018.2854754

Debdeep Banerjee and Kevin Yu. 2020. 3D Face Authentication Software Test
Automation. IEEE Access 8 (2020), 46546-46558. https://doi.org/10.1109/ACCESS.
2020.2978899

Debdeep Banerjee, Kevin Yu, and Garima Aggarwal. 2018. Hand Jitter Reduction
Algorithm Software Test Automation Using Robotic Arm. IEEE Access 6 (2018),
23582-23590. https://doi.org/10.1109/ACCESS.2018.2829466

Debdeep Banerjee, Kevin Yu, and Garima Aggarwal. 2018. Image Rectification
Software Test Automation Using a Robotic ARM. IEEE Access 6 (2018), 34075—
34085. https://doi.org/10.1109/ACCESS.2018.2846761

Debdeep Banerjee, Kevin Yu, and Garima Aggarwal. 2018. Object Tracking Test
Automation Using a Robotic Arm. IEEE Access 6 (2018), 56378-56394. https:
//doi.org/10.1109/ACCESS.2018.2873284

Lucas Cabral, Breno Miranda, Igor Lima, and Marcelo d’Amorim. 2022. RVprio: A
tool for prioritizing runtime verification violations. Software Testing, Verification
and Reliability 32, 5 (2022), e1813. https://doi.org/10.1002/stvr.1813

Mihai Craciunescu, Stefan Mocanu, Cristian Dobre, and Radu Dobrescu. 2018.
Robot Based Automated Testing Procedure Dedicated to Mobile Devices. In 2018
25th International Conference on Systems, Signals and Image Processing (IWSSIP).
1-4. https://doi.org/10.1109/IWSSIP.2018.8439614

Android Developer. 2023. Android Debug Bridge (ADB). https://developer.android.
com/tools/adb

Davi Freitas, Breno Miranda, and Juliano Iyoda. 2024. RENIT: Robotic Framework
for Non-invasive Testing. In Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering. https://doi.org/10.1145/
3663529.3663871

Wunan Guo, Zhen Dong, Liwei Shen, Wei Tian, Ting Su, and Xin Peng. 2022.
Detecting and Fixing Data Loss Issues in Android Apps. In ISSTA 2022. https:
//doi.org/10.1145/3533767.3534402

Wunan Guo, Zhen Dong, Liwei Shen, Wei Tian, Ting Su, and Xin Peng. 2022. A
Tool for Detecting and Fixing Data Loss Issues in Android Apps. In ISSTA 2022.
Manoj Hans. 2015. Appium Essentials. Vol. 1. Packt Publishing.

[17] Jih-Gau Juang and I-Hua Cheng. 2017. Application of character recognition to

(18]

robot control on smartphone test system. Advances in Mechanical Engineering 9,
3(2017), 1687814017693181. https://doi.org/10.1177/1687814017693181

Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a
lightweight UI-Guided test input generator for android. In 2017 IEEE/ACM 39th

[23

[24

[25

[26

[28

[29

[30

[32

]
]

SBES’24, September 30 — October 04, 2024, Curitiba, PR

International Conference on Software Engineering Companion (ICSE-C). 23-26.
https://doi.org/10.1109/ICSE-C.2017.8

Lucas Maciel, Alice Oliveira, Riei Rodrigues, Williams Santiago, Andresa Silva,
Gustavo Carvalho, and Breno Miranda. 2022. A Systematic Mapping Study on
Robotic Testing of Mobile Devices. In 2022 48th Euromicro Conference Series on
Software Engineering and Advanced Applications (SEAA). IEEE, 475-482. https:
//doi.org/10.1109/SEAA56994.2022.00079

Ke Mao, Mark Harman, and Yue Jia. 2017. Robotic Testing of Mobile Apps
for Truly Black-Box Automation. IEEE Software 34, 2 (2017), 11-16. https:
//doi.org/10.1109/MS.2017.49

Michael McRoberts. 2011. Beginning Arduino (1st ed.). Apress.

Breno Miranda, Igor Lima, Owolabi Legunsen, and Marcelo d’Amorim. 2020.
Prioritizing runtime verification violations. In 2020 IEEE 13th International Con-
ference on Software Testing, Validation and Verification (ICST). IEEE, 297-308.
https://doi.org/10.1109/ICST46399.2020.00038

Simon Monk. 2022. Programming Arduino: Getting Started with Sketches (3rd ed.).
McGraw Hill.

Ju Qian, Zhengyu Shang, Shuoyan Yan, Yan Wang, and Lin Chen. 2020. Ro-
Script: A Visual Script Driven Truly Non-Intrusive Robotic Testing System
for Touch Screen Applications. In Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering (Seoul, South Korea) (ICSE °20). As-
sociation for Computing Machinery, New York, NY, USA, 297-308. https:
//doi.org/10.1145/3377811.3380431

Vincenzo Riccio, Domenico Amalfitano, and Anna Rita Fasolino. 2018. Is this the
lifecycle we really want? an automated black-box testing approach for Android

activities. In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops. 68-77.
Oliviero Riganelli, Simone Paolo Mottadelli, Claudio Rota, Daniela Micucci, and

Leonardo Mariani. 2020. Data loss detector: automatically revealing data loss
bugs in Android apps. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 141-152.

Robotium. 2022. Android test automation framework. https://developer.android.
com/training/testing/other-components/ui-automator [Online; accessed 15-June-
2022).

UIAutomator. 2022. UI testing framework. https://developer.android.com/
training/testing/other-components/ui-automator [Online; accessed 15-June-
2022].

Prateek Vermaa, Dushyant Singh Chauhana, Rohan Ramaswamya, and C. Likith
Kumar. 2017. MultiTouch Testing Robot. International Journal of Control Theory
and Applications 10, 31 (2017), 219-223.

Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2016. Taming Android fragmen-
tation: Characterizing and detecting compatibility issues for Android apps. In
2016 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE). 226-237

Razieh Nokhbeh Zaeem, Mukul R Prasad, and Sarfraz Khurshid. 2014. Automated
generation of oracles for testing user-interaction features of mobile apps. In
2014 IEEE Seventh International Conference on Software Testing, Verification and
Validation. IEEE, 183-192.

Tao Zhang, Ying Liu, Jerry Gao, Li Peng Gao, and Jing Cheng. 2020. Deep Learning-
Based Mobile Application Isomorphic GUI Identification for Automated Robotic
Testing. IEEE Software 37, 4 (2020), 67-74. https://doi.org/10.1109/MS.2020.
2987044

https://doi.org/10.1002/stvr.1654
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1654
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/topics/resources/runtime-changes
https://developer.android.com/guide/topics/resources/runtime-changes
https://www.arduino.cc/reference/en/libraries/accelstepper/
https://www.arduino.cc/reference/en/libraries/accelstepper/
https://doi.org/10.1109/ACCESS.2018.2854754
https://doi.org/10.1109/ACCESS.2018.2854754
https://doi.org/10.1109/ACCESS.2020.2978899
https://doi.org/10.1109/ACCESS.2020.2978899
https://doi.org/10.1109/ACCESS.2018.2829466
https://doi.org/10.1109/ACCESS.2018.2846761
https://doi.org/10.1109/ACCESS.2018.2873284
https://doi.org/10.1109/ACCESS.2018.2873284
https://doi.org/10.1002/stvr.1813
https://doi.org/10.1109/IWSSIP.2018.8439614
https://developer.android.com/tools/adb
https://developer.android.com/tools/adb
https://doi.org/10.1145/3663529.3663871
https://doi.org/10.1145/3663529.3663871
https://doi.org/10.1145/3533767.3534402
https://doi.org/10.1145/3533767.3534402
https://doi.org/10.1177/1687814017693181
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/SEAA56994.2022.00079
https://doi.org/10.1109/SEAA56994.2022.00079
https://doi.org/10.1109/MS.2017.49
https://doi.org/10.1109/MS.2017.49
https://doi.org/10.1109/ICST46399.2020.00038
https://doi.org/10.1145/3377811.3380431
https://doi.org/10.1145/3377811.3380431
https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/training/testing/other-components/ui-automator
https://doi.org/10.1109/MS.2020.2987044
https://doi.org/10.1109/MS.2020.2987044

	Abstract
	1 Introduction
	2 Background
	2.1 The Activity Lifecycle in Android Devices
	2.2 Data Loss Detector (DLD) Tool

	3 The R-DLD Infrastructure
	3.1 R-DLD Architecture & Modifications to DLD
	3.2 Research Questions in the Replication Study

	4 Methodology
	4.1 Data Collection and Subject Selection
	4.2 Execution
	4.3 Report Evaluation
	4.4 Reporting Issues

	5 Analysis and Discussion of Results
	6 Feasibility Study of Robotic Automation for Data Loss Testing
	7 Threats to Validity
	8 Related Work
	8.1 Testing for data loss detection
	8.2 Use of robots for smartphone testing

	9 Conclusion and Future Work
	10 Data Availability
	References

