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ABSTRACT
Detecting code smells through machine learning (ML) poses chal-
lenges due to its unbalanced nature and potential interpretation bias.
While previous studies focused on severity tended to categorize
code smell’s specific types, this research aims to detect and classify
code smell severity in a single dataset containing instances of code
smells of four distinct types: God-class, Data-Class, Feature-Envy,
and Long-Method. This study also explores the impact of applying
data scaling, feature selection techniques, and ensemble methods
to enhance ML models for the purpose above. The evaluation of
two ensemble models on a combined dataset reveals that using data
standardization techniques, ensemble methods, and Chi-square
outperforms the result of other ensemble combinations, achieving
81.04% and 81.41% accuracy in the XGBoost and CatBoost models.
Additionally, the CatBoost algorithm attains the highest accuracy
at 80.67%, even without data preprocessing. Comparatively with
the state-of-the-art, the results obtained, an accuracy of 85%, by
the proposed approach in detecting the severity of code smells are
promising and suggest improvements in approaches and techniques
to enhance the effectiveness and reliability of models in real-world
scenarios.
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1 INTRODUCTION
Code smell detection is a data-driven process for code quality as-
surance that aims to detect whether a given piece of code violates
fundamental design principles that negatively impact design qual-
ity [5]. Therefore, it proves valuable for software developers in
minimizing maintenance costs and improving software quality by
detecting code smells and their severity [4].

Several code smell detection tools, including commercial ones
and research prototypes, have been proposed. These tools adopt
diverse techniques to identify code smell: some are based on metrics
[17, 21], while others employ a dedicated specification language
[28], program analysis to identify refactoring opportunities [42, 43],
analysis of software repositories [32], or machine learning (ML)
techniques [5]. Most of these approaches, use program analysis to
compare metrics against empirically identified thresholds, which
can be biased [35]. The machine learning-based approach can ex-
plore developer-defined code characteristics, enhancing generaliza-
tion across different datasets and programming languages [4].

However, detecting code smells using machine learning faces
challenges inherent to its unbalanced nature and susceptibility to
interpretation bias. This requires careful analysis and improvement

of the internal mechanisms of the prediction model before inter-
preting the generated results [35]. The manually labeled dataset of
the Madeyski Lewowski Code Quest (MLCQ) [23] is recognized as
the most comprehensive one regarding different aspects such as
sample size and quality [47]. Nevertheless, its code snippets have
been labeled following a descriptive paradigm, which encourages
subjectivity from annotators. In contrast, the prescriptive paradigm
is data-centric and discourages this subjectivity, establishing clear
criteria for annotating code smells in datasets [5, 29, 39].

Classifying the severity of code smells represents a crucial area
of study, as it categorizes the problems associated with this domain,
enabling the prioritization of costs and softwaremaintenance efforts
based on the severity faced, which can significantly contribute
to the software life cycle [4]. In this context, this research work
develops a model to detect and classify the severity of code smells
through the combined use of data preprocessing, feature selection,
hyperparameter optimization, and ensemble methods in a manually
labeled imbalanced dataset.

This research area has recently grown in popularity within the
research community, and, to address the problem of code smells,
researchers have used variousMLmodels. Initially, research focused
only on code smell detection [5, 12, 14, 35], while recently, there
has also been an increase in interest in investigating the severity
of code smell [1, 4, 11, 18, 29, 37], intending to improve software
quality.

Nevertheless, the aforementioned research studies, which center
around severity, are primarily oriented toward categorizing the
severity of code smells in datasets comprising instances of only
a specific type of code smell. This orientation separates these ap-
proaches from real-world scenarios in existing software, as they
neglect the influence exerted by different types of code smells on
each other. In this sense, to verify the real capabilities of the code
smell severity classification models evaluated, it is necessary to
build a new dataset with instances of more than one severity type
of different code smells, and a similar metric profile that may nega-
tively affect the design quality [14].

This paper proposes an ML method for detecting and classi-
fying the severity of a set of code smells at distinct levels: class
and method. To accomplish this, first, we create a new code smell
dataset from a combination of the datasets used in Arcelli Fon-
tana and Zanoni [4] (two method-level datasets) and in Nanda and
Chhabra [29] (two class-level datasets). The proposed dataset com-
bines the observations from the four original datasets into a single
observation in a new dataset, to present a more realistic represen-
tation of software code smells, since the software can present code
smells from these two levels.
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Following this, we present an ensemble method for the detection
and severity classification of code smells at these two levels. To
enhance the accuracy of the ensemble, the method addresses data
scaling and feature selection. This allows for the detection of both
non-smell and smelly code instances.

Thus, the contributions of this work can be described as two-fold:
• The creation of a dataset that contains instances of multiple
types of code smell severities, which is more realistic and
facilitates ML algorithms to better learn the nuances of these
instances, based on a set of metrics, i.e., independent vari-
ables, encompassing several aspects of software quality such
as size, complexity, cohesion, coupling, encapsulation, and
inheritance.

• The proposal of a two-step approach to detect and classify
code smell severity based on ensemble methods, that use data
scaling and feature selection. Firstly, this approach allows the
detection of instances with or without code smell following
a binary approach. Furthermore, the classification of code
smell severities is not restrained by the large number of
negative instances, common in this problem type, as these
instances are previously discarded in the second step of the
approach, leaving only positive instances to be dealt with
by the subsequently multiclass approach, which is more
complex than the first.

To evaluate the proposed dataset and the ensemble method, we
conducted an experiment based on the experiments conducted by
Arcelli Fontana and Zanoni [4] and Nanda and Chhabra [29]. First,
we apply data scaling (normalization and standardization) and fea-
ture selection (Linear Discriminant Analysis–LDA and chi-square)
techniques separately to find out the impact of these techniques
on the proposed dataset. Then we applied the technical improve-
ments in combination with the ensemble methods (XGBoost and
CatBoost) and compared them with state-of-the-art results. We
discovered some promising results with our approach in classifying
code smell severity at the class and method levels, since standardiza-
tion achieved its highest accuracy in the CatBoost model, achieving
a performance of 80.67%, and the combination of standardization
techniques, chi-square, and CatBoost ensemble method achieved
an accuracy of 81.41%. Finally, our two-step approach achieved rel-
evant values (85%), surpassing the approach of Arcelli Fontana and
Zanoni [4], while being outperformed by the approach of Nanda
and Chhabra [29] (98%), in the context of a more realistic and com-
plex dataset.

The remainder of the paper is organized as follows: section 2
presents related work. section 3 describes the process of combining
the datasets. section 4 details the detection and severity classifi-
cation ensemble. section 5 specifies the realized experiments and
analysis obtained results. section 6 presents the threats to validity.
Finally, section 7 describes the main conclusions of this paper.

2 RELATEDWORK
This section presents studies that employed ML techniques to as-
sess the severity of code smell. Also, some of these investigations
examined the impacts of data preprocessing techniques, e.g., data
balancing and feature selection techniques, and ensemble methods
in the code smell severity classification. The benchmark dataset in

these studies originated from research proposed by Arcelli Fontana
and Zanoni [4].

The study of Arcelli Fontana and Zanoni [4] focused on eval-
uating the severity of code smell by applying ML techniques in
several experiments. Different models were tested, from multino-
mial classification to regression, including a method to adapt binary
classifications to ordinal classification. Notably, they modeled code
smell severity as an ordinal variable, expanding on models pro-
posed by Arcelli Fontana et al. [5], where promising results were
achieved by employing binary classification models for code smell
detection. However, they did not show the use of normalization or
sophisticated feature selection approaches.

In a study by Nanda and Chhabra [29], a detailed analysis and
correction of the datasets from the research of Arcelli Fontana and
Zanoni [4] was carried out, removing inconsistencies in the data
related to the God and Data classes. This intervention improved
the performance of the ML techniques used for code smell sever-
ity classification. Later, they proposed an approach called Stacked
Hybrid Model (SSHM) –Synthetic Minority Oversampling Tech-
nique (SMOTE) and Stacking in combination, applying it to the
severity classification of the four types of code smell, namely: God-
class, Data-class, Feature-envy, and Long-method. However, both
studies [4, 29] did not consider other performance metrics, such as
precision, recall, or F-measure, limiting the analysis of the results
to a confusion matrix.

The study conducted by Abdou and Darwish [1] aimed to eval-
uate the performance of classification models for the severity of
code smell after applying the SMOTE resampling technique. An
additional focus of the study was the selection of the best models
through a comparative analysis. Additionally, they extracted predic-
tion rules to examine the effectiveness of using software metrics in
code smell prediction. However, they did not use any data scaling
or feature selection techniques in the data preprocessing phase of
their approach.

Hu et al. [18] evaluated the performance of 21 prediction models
in estimating code smell severity. These models included 10 clas-
sification methods and 11 regression algorithms, where the main
performance metrics adopted were Cumulative Lift Chart (CLC)
and Severity@20%. The latter is used to assess the percentage of
the total severity of the predicted top 20% of software instances. In
contrast, accuracy was used as a secondary indicator. Nevertheless,
they did not use data preprocessing techniques before applying the
code smell severity classification methods and algorithms.

In their research, Rao et al. [37] employed the SMOTE method
to address the class imbalance challenge and applied the Principal
Component Analysis (PCA)-based feature selection technique to
improve accuracy. Conversely, Dewangan et al. [11] used ensemble
ML models, employing a selection approach Chi-square features in
each dataset, and evaluated the impact of parameter optimization
on classification results for detecting the severity of code smell.
Although both studies used the normalization technique for data
scaling, this use was not accompanied by a comparison with other
data scaling techniques, e.g., data standardization, nor the impact
analysis of these techniques.

These research studies, focusing on severity, mainly aimed at
classifying the severity of code smells in datasets that contained
instances of only one specific type of code smell. This narrow focus
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separates these approaches from real-world situations in actual
software development. By doing so, they overlook the interplay
and influence between different types of code smells on each other.

Unlike previous works, to achieve the goal of detecting and
classifying code smells, we combine the two method-level datasets
fromArcelli Fontana and Zanoni [4] and the two class-level datasets
from Nanda and Chhabra [29] into a single one. This combination
aims to more accurately represent the challenge encountered in
real software, in which code smell instances, both at method and
class levels, are influenced by distinct forms of code smell severity.
We also propose a two-step approach to detect and classify code
smell severity based on ensemble methods, that use data scaling
and feature selection. This approach allows for the detection of
instances with or without code smells, following a binary approach,
and the classification of code smell severities, performed only with
positive instances in a multiclass approach.

3 DATASET COMBINATION
The original datasets are available, respectively, at Evolution of
Software Systems and Reverse Engineering (ESSeRE Lab)1 –Arcelli
Fontana and Zanoni [4] and in Google Drive2 –Nanda and Chhabra
[29]. For a clearer understanding, we present the following defini-
tions for these code smells:

God-class (GC) refers to classes that centralize the system’s
intelligence and can tend to exhibit characteristics such as com-
plexity, excess code, abundant use of data from other classes, and
implementation of multiple functionalities [18].

Data-class (DC) are classes that mainly serve as data storage,
they have limited functionality, and many other classes depend on
them. These classes have multiple attributes, have no complexity,
and provide access to data through accessor methods [18].

Feature-envy (FE) refers to methods that predominantly access
and use data from other classes rather than their own. These meth-
ods are often characterized by excessive use of attributes from other
classes, including those accessed through accessor methods [18].

Long-method (LM) is characterized by methods that encap-
sulate an excessive amount of functionality within a single class.
These methods tend to be time-consuming, complex, difficult to
understand, and rely extensively on data from other classes [18].

In their study, Arcelli Fontana and Zanoni [4] selected 76 systems
out of 111, that were evaluated for different sizes, considering an ex-
tensive set of object-oriented resources. The choice of systems was
based on Qualitas Corpus version 20120401r, collected by Tempero
et al. [41]. To detect the code smell severity, they employed a vari-
ety of tools and methods known as advisors, such as iPlasma [24],
Fluid Tool [30], JSpIRIT [45], PMD [24], and Marinescu detection
rules [25]. Table 1 presents the automatic detection tools used in
the study.

In the study conducted by Nanda and Chhabra [29], during the
analysis of the datasets provided by Arcelli Fontana and Zanoni [4],
a significant number of inconsistencies were identified between
binary and multinomial datasets from GC and DC. These discrepan-
cies were appropriately corrected, and the remaining instances were

1http://essere.disco.unimib.it/reverse/MLCSD.html
2https://drive.google.com/drive/folders/16BqUdNlKNgdM_qrrJqGWKdQ_
NfEdRPVD?usp=sharing

Table 1: Automatic detection tools (advisors)

Class Advisors
DC iPlasma
GC iPlasma, JSpIRIT, PMD
FE iPlasma, Fluid Tool

LM iPlasma (Brain Method), PMD,
Marinescu detection rules

thoroughly evaluated for any misclassifications, requiring adjust-
ments in severity where necessary. Several advisors were employed
during this correction phase, notably iPlasma [24], JSpIRIT [45],
and PMD 3 for GC, while the iPlasma tool was used for DC, and
the final decision and severity labels were assigned based on expert
assessment. Table 2 summarizes the different corrections made,
indicating the reasons for each adjustment.

Table 2: Details of corrected instances provided by Nanda
and Chhabra [29]

Reason God-Class Data-Class
A. Conflict between dataset 128 129
B. Misclassified as negative instance 5 12
C. Misclassified as positive instance 6 6
D. Severity reclassification 18 20
E. Non-conflicting changes (B+C+D) 29 38
Total (A + E) 157 167

Each of these four datasets includes 420 instances, representing
classes or methods. These instances are associated with a feature
vector, composed of 63 values for GC and DC, and 84 values for LM
and FE. Furthermore, each dataset contains information about the
severity value for the code smell, as:

0 - No code smell: the class or method is not affected by code
smell. A no LM example: a method with 10 lines of code is respon-
sible for calculating the number of products sold. In its final line,
the method also saves the result into a file, which is a different
responsibility. Since the second responsibility is minor (i.e., one
easy-to-understand line of code), it does not present an issue [39].

1 - Non-severe code smell: the class or method is partially
affected by code smell. A non-severe LM example: a method with
30 lines of code has three distinct regions that perform different
responsibilities. Each region can be extracted into a standalone
method [39].

2 - Code smell: the characteristics of code smell are all present
in the class or method. An LM example: a method has 100 lines
of code and includes multiple levels of nested control structures.
Refactoring such a method requires understanding the tasks it
performs, reorganizing its logic, splitting loops, and extracting
regions of cohesive logic [39].

3 - Severe code smell: the code smell is present and has par-
ticularly high values of size, complexity, or coupling. A severe LM
example: a method with several hundred lines of code and many

3https://github.com/pmd/pmd

http://essere.disco.unimib.it/reverse/MLCSD.html
https://drive.google.com/drive/folders/16BqUdNlKNgdM_qrrJqGWKdQ_NfEdRPVD?usp=sharing
https://drive.google.com/drive/folders/16BqUdNlKNgdM_qrrJqGWKdQ_NfEdRPVD?usp=sharing
https://github.com/pmd/pmd
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nested control structures. It is very difficult to comprehend, solves
many tasks, and has nonapparent side-effects [39].

The dataset combination process was performed to make the
dataset applicable to ML techniques in real-world scenarios where
imbalanced data is common due to the inherent nature of code
smells. In this sense, to verify the real capabilities of the code smell
severity classification models evaluated, it is necessary to build a
new dataset with instances of more than one severity type of differ-
ent code smells, with a similar metric profile that may negatively
affect the design quality. The feature vectors of the GC and DC
datasets were modified to include the 84 values corresponding to
FE and LM. This resulted in missing values, which are covered in
subsubsection 5.1.1.

Figure 1 illustrates data from Arcelli Fontana and Zanoni [4] and
Nanda and Chhabra [29], which initially contains 420 instances
each. These instances are sorted in ascending order by attributes:
“project”, “package”, “complex_type”, and “method”. In the first stage
of the process, each pair of class-level (GC and DC) and method-
level (FE, LM) datasets are combined. For this, the algorithm detailed
in Algorithm 1 is presented. In brief terms, this algorithm deletes
duplicate method- or class-level instances with different severities
by removing the lowest severity. Furthermore, in the case of in-
stances with equal severities, instances of the LM and GC classes
are prioritized over FE and DC, respectively, since they are code
smells that have the most impact on quality attributes and bug
propensity [20], while also being considered as most problematic
by developers [31].

Figure 1: Overview of the dataset combination process

After the algorithm execution is completed, both data subsets,
at class (448 instances) and method (446 instances) levels, are com-
bined to form the final dataset with 894 instances. The algorithm
generates, at most, ((3 ∗ 𝑁𝑐𝑜𝑑𝑒𝑠𝑚𝑒𝑙𝑙𝑡𝑦𝑝𝑒𝑠) + 1) different types of
code smell severity classes, one of them being the no-smell class. In
our specific case, 13 classes are generated, as the number of code
smells is 4, i.e., GC, DC, FE, LM. Table 3 presents the details of the
generated classes, their number of instances, and percentages of
distribution by severity.

Algorithm 1 Dataset Combination Algorithm

1: while there are instances to be analyzed do
2: Search for duplicate instances (at class or method level)
3: if duplicate instances found then
4: if severities of the cases are different then
5: Exclude the lowest severity instance
6: if severity is different from no smell then
7: Change the class name of the remaining instance to

“severity + code smell”
8: end if
9: else if severity is different from no smell then
10: Exclude the FE or DC instance
11: Change the class name of the remaining instance to

“severity + GC or LM”
12: else
13: Exclude either of the two instances
14: end if
15: else if severity is different from no smell then
16: Change the class name of the instance to “severity + code

smell”
17: end if
18: end while

Table 3: Details of the generated classes

Code
Smell

Sever-
ity ID Class Name # In-

stances
%

Severity
0 0 No code smell 413 -
1 1 Non-severe Feature-envy 13 2.70
1 2 Feature-envy 39 8.11
1 3 Severe Feature-Envy 11 2.29
1 4 Non-severe Long-method 8 1.66
1 5 Long-method 90 18.71
1 6 Severe Long-method 34 7.07
1 7 Non-severe Data-class 32 6.65
1 8 Data-class 77 16.01
1 9 Severe Data-class 37 7.69
1 10 Non-severe God-class 9 1.87
1 11 God-class 33 6.86
1 12 Severe God-class 98 20.37

It is important to highlight that negative instances, without code
smell, constitute 46.20% of the combined dataset, while positive
instances, with code smells, total 53.80%.

Because of the complexity of this strategy, the code smell severity
classifying can become more challenging, requiring a solution that
goes beyond the simple use of ML techniques, such as optimization
of machine hyperparameters, data standardization, and feature
selection techniques.

4 ENSEMBLES FOR DETECTION AND
SEVERITY CLASSIFICATION

Ensemble methods play an important role in improving the perfor-
mance of machine learning models for code smell detection and
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have been suggested by several authors [6, 35]. The core idea be-
hind the ensemble methods is to combine multiple classifiers to
obtain superior results compared to a standalone best classifier.
This approach is well presented and tutorials have been provided
to guide specific practitioners in building set-based classification
systems [36, 38].

The ensembles can be categorized as homogeneous or hetero-
geneous. Homogeneous ensembles are built with classifiers of the
same type, trained on different views of the dataset. On the other
hand, heterogeneous ensembles combine different types of classi-
fiers [2]. Homogeneous ensemblemethods, particularly the Random
Forest (RF) technique, have become widely prevalent among novel
techniques for detecting code smells [5, 12, 13, 19, 35].

Another ensemble method that obtained good results in code
smell detection was Category Boosting (CatBoost) [3], which was
used to detect the God-class, obtaining the highest performance
among 27 other classifiers used, in a real scenario where data is
generally unbalanced due to the inherent nature of code smells.
CatBoost employs the Sort Boosting algorithm like-replacement
for the traditional gradient estimation method. This substitution
reduces the bias in the gradient estimate, ultimately improving the
generalization ability of the model [46].

In the case of code smell severity classification, a multiclass
problem, Extreme Gradient Boosting (XGBoost) stands out for its
prominent results [1, 11, 18]. It exhibits robust performance, even
when the dataset lacks comprehensive preprocessing, and is an
important tree-based machine-learning algorithm known for its su-
perior performance and speed. Initially developed by Tianqi Chen
and overseen by the Distributed Machine-Learning Community
(DMLC) organization, it is recognized for its effectiveness in han-
dling structured and tabular data. Given its simplicity and effec-
tiveness, XGBoost has gained widespread popularity, especially for
code smell detection [11].

Unlike most approaches that rely on RF to detect code smells, in
our approach, we combine the excellent accuracy performance of
the CatBoost model in the context of data imbalance [3] to detect
positive and negative instances of code smell severity. We then use
the XGBoost model in a multi-target class scenario [11] to capture
the nuances of each class, focusing solely on the positive instances
recovered from the previous step, providing a better classification
for their severities.

5 EXPERIMENTS AND RESULTS
This section details the experiments on the combined dataset, ap-
plying data preprocessing techniques (data scaling and feature
selection), and ensemble methods for detecting and classifying the
severity of code smells.

5.1 Experiments Setup
Figure 2 illustrates the proposed approach overview for detecting
code smells and classifying their severity, under which the experi-
ments were carried out.

For these experiments, we used a dataset combined from the
following datasets, Arcelli Fontana and Zanoni [4], Nanda and
Chhabra [29], going through the procedure described in section 3
resulting in a dataset with 894 instances, covering 4 code smell

Figure 2: Overview of the proposed approach

types, i.e., GC, DC, FE, and LM. Furthermore, the dataset was split
into 70% for training and hyperparameter optimization and 30% for
testing, and model validation used a 5-fold cross-validation setup
on the entire dataset, with or without preprocessing. This aims to
ensure that models have a sufficient amount of data to learn from,
a robust set to test, and enough instances of each class to validate
while maintaining the relevance of results.

5.1.1 Data Preprocessing. Data Preprocessing always represents a
crucial aspect in building more accurate ML models, since it covers
the cleaning and transformation of raw data, which facilitates the
analysis and identification of the most relevant information, thus
contributing to improving the model’s performance [33]. Before
applying other preprocessing techniques to a combination dataset,
which includes labels and metrics as features, it is crucial to address
specific issues within that set, such as the presence of duplicate data
and missing values. Moreover, the exploratory analysis of the data
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set demonstrated that the range of values between the attributes
is different, and the difference between each attribute’s minimum
and maximum values (e.g., LOC_method and LOC_package) can
vary at high values. Furthermore, some dataset attributes have
several outliers, such as ATFD_method and AMWNAMM_type.
These hidden characteristics can bias the results of ML models.

The process was, then, initiated by eliminating code smell in-
stances duplicated (section 3), which are always related to the same
level and never between different levels. Next, imputations were
performed for the missing values of 21 attributes, as these attributes
are specific to method code smells (84 attributes), and do not contain
values in class datasets (63 attributes). This imputation was neces-
sary so that ML models could act appropriately, without harming
the classifications of class datasets.

Regarding missing values, i.e., method metrics (NOP, CC, ATFD,
FDP, CM, MAXNESTING, LOC, CYCLO, NMCS, NOLV, MaMCL,
NOAV, LAA, FANOUT, CFNAMM,ATLD, CLNAMM,CINT,MeMCL,
CDISP) in the GC and DC instances, imputation was performed us-
ing the mode value because the sample values for each attribute do
not follow a normal distribution. This value was calculated consid-
ering only the no code smell results in instances of the FE and LM
classes. Furthermore, no “is_Static_method” attribute was assigned
a value of zero in each instance. The underlying hypothesis is that
machine interpretation learning models are not instances of FE or
LM. With the other independent values related to GC and DC, the
models will be able to classify them. Finally, the nominal categorical
variables were transformed into ordinal categorical variables, i.e.,
“modifier_type” and “visibility_type”.

Once this preprocessing phase was completed, Normalization
and Standardization techniques were applied to achieve resource
scaling. Finally, to select the most impactful features in the com-
bined dataset, improving the performance of the models by focusing
on software metrics that play a significant role in distinguishing
between similar functions in design patterns, were applied and
compared as follows techniques: LDA and Chi-Square. LDA is a
supervised machine learning algorithm specialized in identifying
distinctive characteristics between different groups or classes [34],
while the chi-square-based feature selection technique is employed
on categorical attributes of a dataset [11].

In the case of Chi-Square, we used the selected features by De-
wangan et al. [12] (see Table 4). These features represent some
quality dimensions in Object-Oriented (OO) software engineering,
for example, size, complexity, coupling, encapsulation, and cohe-
sion, which are calculated at the level of method, class, or both. The
difference between our study and the reference study [12] is that,
unlike their study, which uses these features on separate datasets,
we selected the used features by them at least once in each data set,
applying them all together to our combined dataset.

5.1.2 Hyperparameter Optimization and Validation of the Ensemble
Models. After applying data preprocessing techniques (data scaling
and feature selection), we proceeded with the optimization of the
hyperparameters, using the Grid Search algorithm, to determine the
most appropriate settings for the hyperparameters of each ensemble
method. These hyperparameters were configured to optimize the
model based on the f1-macro metric, thus without considering the
imbalance between the target classes. Also, to improve the models’

performance, we used a 5-fold cross-validation method in the hy-
perparameter optimization technique. This approach was selected
due to the presence of classes with extremely limited instances.

Next, the accuracy results of the ensemble models combined or
not with data preprocessing techniques were analyzed to choose the
most appropriate model for each phase of the proposed approach,
i.e., a code smell detector and a code smell severity classifier.

Lastly, this study has used a validation methodology to calculate
each experiment’s performance to avoid overfitting the algorithm
on the test dataset. Ensembles are calculated using 5-fold cross-
validation to divide the datasets into five segments, five times for the
algorithm training. In each replication dataset, one part is evaluated
as the test set, and the others are evaluated for the training set.

5.1.3 Code Smell Detector and Severity Classifier. The most ap-
propriate model was chosen for each stage of our approach, after
configuring hyperparameters, validating the models, and analyzing
the performance improvements of each ensemble method using
data scaling and feature selection techniques.

Unlike Arcelli Fontana and Zanoni [4] or Nanda and Chhabra
[29], we use ensemble methods with data scaling and feature selec-
tion to detect and classify code smells. The former used normaliza-
tion without showing its use and did not use sophisticated feature
selection approaches while the latter did not use data scaling and
feature selection, basing their approach solely on the ensemble
method and data balancing.

In our approach, the first step consists of a code smell detection
module composed of the CatBoost ensemble method, standardiza-
tion, and Chi-square. Allowing, thus, the detection of instances with
or without code smell following a binary approach, which is less
complex than the next, and reducing the model cost for detecting
negative instances.

The following step aims to classify the severity of code smells, us-
ing standardization and chi-square, but with the XGBoost ensemble
method in a multiclass approach. However, this severity classifica-
tion is not restrained by the large number of negative instances,
common in this problem type, as these instances are previously
discarded before this second step of the approach, leaving only
positive instances to be dealt with.

In the end, the set of experiments was converted, and to evalu-
ate the quality of the ensemble method model, four performance
parameters were considered: Precision (P), Recall (R), F1-Score (F1),
and Accuracy. These parameters are calculated using a confusion
matrix that contains the actual and predicted information estimated
by the design pattern detection classifications [9], i.e., True Positive
(TP), False Positive (FP), True Negative (TN), and False Negative
(FN).

5.2 Results
The ensemble model experiments were conducted in three ways on
the combined dataset: without data preprocessing; with only one
of the data preprocessing techniques; and with a combination of
data scaling and feature selection techniques. This determined the
best combination of data scaling, feature selection, and machine
learning techniques for code smell detection and severity classifi-
cation on the combined dataset for each approach stage and their
impacts on the models. First, the accuracy of the ML models on
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Table 4: Selected Features by Dewangan et al. [12] with Chi-Square

Quality di-
mension

Metric label and ci-
tation

Metric name Granularity Definition

Size

AMW [10, 44] Average Methods Weight Class The sum of complexity of the methods that are defined in the class
CYCLO [26, 44] Cyclomatic Complexity Method The maximum number of linearly independent paths in a method.

A path is linear if there is no branch in the execution flow of the
corresponding code

LOC [22] Lines of Code Class, Method The number of lines of code of an operation or a class, including blank
lines and comments

LOCNAMM [16] Lines of Code Without Ac-
cessor or Mutator Methods

Class The number of lines of code of a class, including blank lines and
comments and excluding accessor and mutator methods and corre-
sponding comments

NOA Number of Attributes Class Number of attributes of a class.
NOMNAMM [16] Number of Not Accessor or

Mutator Methods
Class The number of methods defined locally in a class, counting public

and private methods, excluding accessor or mutator methods
WMC [10, 44] Weighted Methods Count Class The sum of complexity of the methods that are defined in the class
WMCNAMM [16] Weighted Methods Count

of Not Accessor or Mutator
Methods

Class The sum of complexity of the methods defined in the class, but are
not accessor or mutator methods

WOC [25] Weight of Class Class The number of “functional” public methods divided by the total num-
ber of public members

Complexity

ATFD [25] Access to Foreign Data Class, Method The number of attributes from unrelated classes belonging to the
system, accessed directly or by invoking accessor methods

ATLD [16] Access to Local Data Method The number of attributes from the current classes accessed by the
measured method directly or by invoking accessor methods

FANOUT [27] - Class, Method Number of called classes
FDP [27] Foreign Data Providers Method The number of classes in which the attributes accessed - in conformity

with the ATFD metric - are defined
MAXNETing [27] Maximum Nesting Level Method The maximum nesting level of control structures within an operation
NOAV [27] Number of Accessed Vari-

ables
Method The total number of variables accessed directly or through accessor

methods from the measured operation
NOLV [25] Number of Local Variable Method The total number of local variables accessed directly or through ac-

cessor methods from the measured operation
RFC [10, 44] Response for a Class Class The size of the response set of a class

Coupling

CFNAMM [16] Called Foreign Not Acces-
sor or Mutator Methods

Class, Method The number of called not accessor or mutator methods declared in
unrelated classes concerning: I) the one that declares the measured
for each method; and ii) the measured one, for class

CINT [25] Coupling Intensity Method The number of distinct operations called by the measured operation

Encapsula-
tion

DIT [10, 44] Depth of Inheritance Tree Class The number of ancestor classes measures the maximum length from
the class node to the tree’s root

Cohesion TCC [7, 8, 44] Tight Class Cohesion Classe The normalized ratio between the number of methods directly con-
nected with other methods through an instance variable and the total
number of possible connections between methods

the combined dataset without data preprocessing and with data
scaling techniques were compared. Next, ensemble methods per-
formed well without preprocessing; normalization harmed models,
while standardization improved validation with less standard devi-
ation, as standardization handled outliers better [15]. Then, feature
selection combined with data scaling techniques were applied to
improve the accuracy of models, simplifying them and making the
results obtained more understandable, mainly with the chi-square
technique. The GitHub repository 4 links article results to available
files. Refer to README.md for details.

4https://github.com/fabiorosario/Code-smell-severity-classification

The results of these experiments revealed that standardization
achieved its highest accuracy in the CatBoost model, providing
80.67%, even without data processing (see Table 5).

Table 5: Accuracies with Normalization and Standardization

Ensemble
Method

No data
scaling

Normalization Standardization

RF 79.55 75.09 79.55
XGBoost 79.18 76.21 79.18
CatBoost 80.67 76.95 80.67

https://github.com/fabiorosario/Code-smell-severity-classification
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However, this result did not surpass the effectiveness of combin-
ing data standardization, chi-square, and ensemble methods, which
achieved 81.04% and 81.41%, in the XGBoost and CatBoost models,
respectively (see Table 6).

Table 6: Accuracies with LDA and Chi-square

Ensemble
Method

LDA Chi-square Chi-Square Stan-
dardization

RF 74.72 78.07 78.07
XGBoost 76.58 80.30 81.04
CatBoost 75.84 79.55 81.41

Given this, our approach for detecting and classifying code smell
severity included two steps. The first step aims to detect code smells
from instances with severity, using the Standardization data pre-
processing technique, Chi-Square for feature selection, and the Cat-
Boost ensemble method to binary identify the presence or absence
of code smell. The following step removes the negative instances
and classifies the code smell severity of the positive instances, us-
ing the standardization, chi-square, and XGBoost. This approach
obtained 85% accuracy, as described in Table 7.

Table 7: Values for the achieved results (%)

Severity P R F1 Support
0-No code smell 98 88 93 129
1-Non-severe Feature-envy 100 50 67 6
2-Feature-envy 54 58 56 12
3-Severe Feature-Envy 100 100 100 1
4-Non-severe Long-method 0 0 0 2
5-Long-method 79 76 77 29
6-Severe Long-method 64 100 78 7
7-Non-severe Data-class 75 75 75 8
8-Data-class 83 76 79 25
9-Severe Data-class 71 83 77 12
10-Non-severe God-class 0 0 0 0
11-God-class 62 50 56 10
12-Severe God-class 83 89 86 28
Accuracy 85

The confusion matrix presented in Figure 3 suggests that the
approach’s code smell detector can detect negative instances rea-
sonably well, achieving measures of precision, recall, f1-score, and
accuracy in the order of 98%, 88%, 93%, and 94%, respectively.

Figure 4 shows the confusion matrix, in which the hit-and-miss
frequencies achieved by the severity classifier for each class are
shown.

The worst-case scenario happens when the model indicates a
severity that is less than what it is, as it can significantly affect the
quality and life cycle of the software due to failure to maintain a
more serious severity. In this sense, our model behaves well, as this
happened only a few times:

• 1 instance was classified as Non-severe LM when it should
have been classified as LM, that is 3% of 29 instances.

Figure 3: Confusion Matrix of the Detection Phase

Figure 4: Confusion Matrix of the Severity Classification
Phase

• 2 instances were classified as Non-severe DC when they
should have been classified as DC, 8% of 25 instances.

• 2 instances were classified as DC when they should have
been classified as Severe DC, 17% of 12 instances.

• 3 instances were classified as GC when they should have
been classified as Severe GC, 11% of 28 instances.

Another scenario that can result in unnecessary maintenance
costs occurs when a less severe code smell is prioritized over a more
serious one due to incorrect classification. These also happened a
few times as in:

• 1 instance was classified as Severe LM when they should
have been classified as FE, 8% of 12 instances.

• 3 instances were classified as Severe LM when they should
have been classified as LM, 10% of 29 instances.
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• 2 instances were classified as DC when they should have
been classified as Non-severe DC, 25% of 8 instances.

• 4 instances were classified as Severe DC when they should
have been classified as DC, 16% of 25 instances.

• 5 instances were classified as Severe GC when they should
have been classified as GC, 50% of 10 instances.

Another important information that can be extracted from the
confusion matrix is that our model managed to predict all instances
of the DC and GC classes in one of their three severity levels,
even with interference from other instances at the method level,
i.e., FE and L.M. However, the same fact was not observed in the
severities of the FE and LM classes, where in 26% of cases the model
predicted the LM classes, when it should have predicted FE, in 5 of
the 19 cases. Also, in 8% of the cases, the model predicted the FE
classes, when it should have predicted LM, in 3 of the 38 cases. This
indicates that handling multi-label classes may not be sufficient
to deal with method-level interference in the data combination
process (section 3) and suggests more specialized handling for these
instances. It is also important to realize that our approach got all
instances right when considering each level, whether method or
class, that is, instances at the class level did not interfere with the
classification of instances at the method level and vice versa. Even
with the simple imputation of missing data in class instances, the
model exhibited this expected behavior.

5.3 Comparison with results from relevant
research studies

Here, we elaborate a comparative summary of the results of the pro-
posed approach to other relevant research studies. To the best of our
knowledge and based on the available literature, we have identified
only six works [1, 4, 11, 18, 29, 37] addressing the detection of the
severity of code smells, with the first five not providing measured
values for precision, recall, or f1-score. Dewangan et al. [11] was
the only one that raised these questions, and, given this scenario,
we carried out two comparisons. The first, using the mean accuracy
of each study with our approach, considering that our dataset is
unique for all types of code smells, and the second, comparing our
results with those of Dewangan et al. [11], who reported all metrics.

In the first comparison (Table 8), our approach presented superior
performance only to the study of Arcelli Fontana and Zanoni [4],
recording an average accuracy of 85% compared to 84%.

Table 8: Average accuracy assessment

APPROACH DC GC FE LM AVG
Arcelli Fontana and Zanoni [4] 74 77 92 93 84.00
Nanda and Chhabra [29] 97 98 98 99 98.00
Abdou and Darwish [1] 93 92 97 97 94.75
Rao et al. [37] 83 85 96 99 90.75
Hu et al. [18] 79 78 92 92 85.25
Dewangan et al. [11] 88.22 86 96 99.12 92.34
Our approach Single Dataset 85.00

Concerning the other works, we experienced a difference that
varied from 0.25% to 13%, unfavorable to our approach. The fol-
lowing works can be highlighted, since Nanda and Chhabra [29]

applied the SMOTE resampling technique and achieved a remark-
able average accuracy of 98%, and the 99.12% accuracy recorded by
the XGBoost approach of Dewangan et al. [11].

In the comparison provided by Table 9, our precision, recall, and
f1-score results were below the results obtained by Dewangan et al.
[11], with the smallest differences being found in the DC dataset,
6% in all metrics. However, the biggest differences were recorded in
LM precision (20%), FE recall (22%), and FE and LM F1-score (17%).

Table 9: Precision, Recall and F1-Score Evaluation

Code Smell Metrics Dewangan et al. [11] Our Approach
P (%) 88 82

DC R (%) 87 81
F1 (%) 87 81
P (%) 90 81

GC R (%) 90 76
F1 (%) 90 78
P (%) 97 88

FE R (%) 96 74
F1 (%) 96 79
P (%) 100 80

LM R (%) 100 88
F1 (%) 100 83

In conclusion, this section provides a comprehensive analysis
of the results obtained by the proposed approach in comparison
with other relevant research studies in detecting the severity of
code smells. The comparison revealed that, although outperforming
Arcelli Fontana and Zanoni [4], our approach showed unfavorable
differences with other works. This evaluation highlights the con-
tinued importance of improving approaches and techniques in
detecting code smells to advance the effectiveness and reliability of
these models in real-world scenarios.

6 THREATS TO VALIDITY
Various threats to validity may influence the integrity and accuracy
of the results and conclusions of this research. This section summa-
rizes some implications for our ML-based code smell detection and
classification approach.

The construct validity of our study is mainly linked to the merg-
ing of the dataset. We selected well-known datasets: i) the FE and
LM dataset from Arcelli Fontana and Zanoni [4], which was used
in all related works, and the GC and DC dataset from Nanda and
Chhabra [29], which corrected some inaccuracies in the original
dataset [4]. To mitigate this threat, we remove duplicate instances
and perform missing value imputations so that the ML models can
act appropriately. Most importantly, we present and follow a data
combination algorithm that allows the process to be verified and
repeated.

Regarding external validity, our combined dataset is a more real-
istic representation of real-world code smells at both the method
and class levels. By addressing code smells at both levels and ensur-
ing that the dataset reflects a variety of programming scenarios, we
increase the external validity of our findings. This means that our
results are more likely to be generalizable to other software projects
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and programming environments beyond our specific dataset, in-
cluding those written in different programming languages, than
previous work.

Therefore, the changes in data and models contributed to reduc-
ing classification bias both by not having duplicate instances and
by standardizing attribute scales to deal with outliers. It is worth
highlighting that mode as a strategy for filling in missing data was
important in the results of the models, mainly because no classifi-
cation errors were identified in a class instance being predicted as
a method instance or vice versa.

Another important factor is the reliability of the conclusion,
which refers to the threats that influence the ability to draw the
same conclusions if the procedure is repeated under the same condi-
tions. The main issue related to this category was the configuration
of the experiments performed on the combined dataset. To mitigate
this threat, this work analyzes, details, and makes publicly avail-
able all stages of the data combination process, hyperparameter
optimization (grid search), model validation (5-fold crossover), com-
parison, and choice of techniques employed (data scaling, feature
selection, and ML).

7 CONCLUSION
Code smell detection is a data-driven approach that aims to ensure
code quality by identifying if a code segment breaches essential
design principles, which can degrade design quality. Nevertheless,
previous research studies primarily focus on categorizing the sever-
ity of individual code smell types within specific datasets, diverging
from real-world software scenarios because this overlooks how
different code smell types interact.

To help smaller teams or those with tight deadlines reduce costs
and prioritize issues, the objective of this study is to detect and
classify the severity of code smell in a single dataset covering in-
stances of four distinct types of code smell, i.e., God-class, Data-
Class, Feature-Envy, and Long-Method. In contrast to previous
studies that focus on this task by analyzing datasets with only one
specific type of code smell, our approach comes closer to the real
scenario of existing software, considering the influence different
types of code smells exert on each other.

In this context, our research work develops a model to detect and
classify the severity of code smells through the combined use of
scaling datasets, Normalization and Standardization techniques, and
the selection of features with the LDA and Chi-square techniques.
Furthermore, we apply two ensemble methods, i.e., XGBoost and
CatBoost, to detect and classify code smell severity. We also use
the Grid Search algorithm for hyperparameter optimization and
5-fold cross-validation in the best machine learning models.

The results indicate that Standardization reached its highest
accuracy in the CatBoost model, recording 80.67%. In contrast, Nor-
malization dropped the accuracy, with CatBoost having the biggest
drop (3,72%). LDA showed worse values compared to the combined
dataset with all features, with the CatBoost method dropping al-
most 6% in its performance. However, the achieved results by the
combined dataset without feature selection technique did not sur-
pass the effectiveness of the combination of dataset standardization
techniques, ensemble methods, and Chi-square, which achieved

values of 81.04% and 81.41% in the XGBoost and CatBoost models,
respectively.

Despite encountering interference from other instances at the
method level, specifically FE and L.M., our model successfully pre-
dicted all instances of the DC and GC classes in one of their three
severity levels. Notably, our approach demonstrated accuracy across
all instances when considering each level—whether method or class.
This implies that instances at the class level did not disrupt the clas-
sification of instances at the method level, and vice versa.

However, when compared with other relevant works in this area
of research, our approach performed better than the study of Arcelli
Fontana and Zanoni [4], recording an average accuracy of 85% com-
pared to the 84% of the aforementioned author. Regarding precision,
recall, and f1-score, our results are outperformed by those obtained
by Dewangan et al. [11], with the smallest differences being discov-
ered in the DC dataset, with 6% across all as measurements. The
biggest differences, however, were recorded in LM precision (20%),
FE recall (22%), and LM f1-score (17%).

The main findings, in addition to those already mentioned about
normalization, standardization, and feature selection, are: i) The
multiclass approach, despite not being influenced by the large num-
ber of negative instances, lacks the treatment of unbalanced data to
the most superficial severities (minority) in comparison to the most
serious ones (majority), e.g., using SMOTE at this stage to create
other relevant points of minority classes, without compromising
the quality of the sample; ii) Although ensemble methods play an
important role in this area, as long as their hyperparameters are
adequately optimized, with the help of appropriate techniques, they
were not sufficient to solve the problem of code smell severities
class imbalances, even with data scaling and feature selection.

Given these results, in future work, we will focus on carrying
out a more detailed analysis of each independent attribute of the
dataset and verifying, according to the individual distribution of
each one, the imputation of missing values in a more appropri-
ate way. Another possibility for future work will be to deal with
multi-label classes with specific techniques for this type of problem,
since, in our work, these instances were used to balance the classes
corresponding to their labels in comparison with other classes of
the dataset. This opens up the possibility of using a more sophisti-
cated technique for balancing minority classes, such as the SMOTE
technique, which was successful in Nanda and Chhabra [29].

Finally, analysis of the results obtained by the proposed approach
in comparison with other relevant research studies in detecting the
severity of code smells suggests the need to improve approaches
and techniques in detecting code smells to advance the effective-
ness and reliability of these models in real-world scenarios. In that
regard, our ML severity classification approach aims to create an
ML model that can, e.g., be transferred to other programming lan-
guages (although this is not the focus of this paper). With this most
robust approach and better generalization of the models, it is possi-
ble to overcome the limitations of available datasets, which often
have imbalanced samples, inadequate severity level support, and
are primarily Java-based [39, 47], despite C#’s prominence in code
smell discussions [40], most annotated datasets are Java-based [47].
Despite this, the combination process and the ML-trained model,
as devised, may be applied to code smell instances written in other
programming languages.
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