
Revisiting Aristotle vs. Ringelmann: The influence of biases on
measuring productivity in Open Source software development

Christian Gut
christian.gut@usp.br

University of São Paulo
São Paulo, Brazil

Alfredo Goldman
gold@ime.usp.br

University of São Paulo
São Paulo, Brazil

ABSTRACT
Aristotle vs. Ringelmann was a discussion between two distinct
research teams from the ETH Zürich who argued whether the
productivity of Open Source software projects scales sublinear or
superlinear with regard to its team size. This discussion evolved
around two publications, which apparently used similar techniques
by sampling projects on GitHub and running regression analyses
to answer the question about superlinearity. Despite the similarity
in their research methods, one team around Ingo Scholtes reached
the conclusion that projects scale sublinear, while the other team
around Didier Sornette ascertained a superlinear relationship be-
tween team size and productivity. In subsequent publications, the
two authors argue that the opposite conclusions may be attrib-
uted to differences in project populations, since 81.7% of Sornette’s
projects have less than 50 contributors. Scholtes, on the other hand,
sampled specifically projects with more than 50 contributors.

This publication compares the research from both authors by
replicating their findings, thus allowing for an evaluation of how
much project sampling actually accounted for the differences be-
tween Scholtes’ and Sornette’s results. Thereby, the discovery was
made that sampling bias only partially explains the discrepancies
between the two authors. Further analysis led to the detection of
instrumentation biases that drove the regression coefficients in
opposite directions. These findings were then consolidated into a
quantitative analysis, indicating that instrumentation biases con-
tributed more to the differences between Scholtes’ and Sornette’s
work than the selection bias suggested by both authors.

CCS CONCEPTS
• Software and its engineering → Open source model; Pro-
gramming teams; Software version control; Maintaining software.

KEYWORDS
Mining Software Repositories, Open Source, Empirical Software En-
gineering, SoftwareDevelopment Productivity, GitHub, Git, Economies
of Scale, Diseconomies of Scale, Replication Study, Sampling Bias,
Instrumentation Bias

1 INTRODUCTION
With the ever-growing importance of software in modern society,
the question of how to develop software as efficiently as possible
has been relevant for decades. A subquestion on that topic, whether
adding more developers to Open Source projects will generate
economies or diseconomies of scale, had been investigated by two
different research teams from the ETH Zürich.

First, Sornette et al. deployed a regression analysis on the commit
history of GitHub projects and identified a superlinear relationship
between team size and team production [21]. Their metric for pro-
duction was the number of commits, or more precisely the number
of edited files in each commit. This measurement enabled the calcu-
lation of a linear regression coefficient, denominated 𝛽 , between the
logarithm of the output of the team and the logarithm of the size of
the team. The deployment of a 250-day period for each analysis and
5-day windows for the generation of data points allowed the au-
thors to obtainmultiple regression analyzes per project. The thereby
identified superlinearities were associated with the heavy-tailed
nature of the underlying distribution of contributions. Sornette et
al. also calculated the mean values for each project, denominated as
average 𝛽 , and reported 104 out of 164 projects as being superlinear
using this measure.

Almost 2 years later, Scholtes et al. detected diseconomies of
scale in GitHub projects using an apparently similar regression
analysis [17]. Their approach to measuring production was more
fine-grained by calculating the Levenshtein distance for each file
edit. This editing distance was then used to calculate the team’s
productivity, using 7-day windows for the output and a 295-day
windows with 7-day increments to determine the team size. Based
on these data points, the researchers conducted several regression
analyzes, considering Log-Log and Log-Lin models, and accounting
for the influence of one-time contributors. The resulting regression
coefficients were denominated as 𝛼3. For the case of the Log-Log
regression without filtering for one-time contributors, Scholtes et
al. discovered solely sublinear relationships across the 58 projects
they examined.

The fact that both research teams reached opposite conclusions
led to a follow-up publication that provided additional analytical
insights [15]. An important argument of that study was that com-
pletely different sets of projects were examined, since 134 out of
164 projects analyzed by Sornette et al. had less than 50 contrib-
utors and Scholtes et al. deliberately sampled projects with more
than 50 contributors. A study by Gote et al., based on Scholtes’
original work, also suggested that the difference may be caused by
the selection of projects [8].

This work contributes to the Aristotle vs. Ringelmann discussion
by addressing the following research question:

What factors explain the different conclusions drawn
by Sornette et al. and Scholtes et al.?

Since the two publications not only varied in their choice of
projects, but also implemented comparable yet distinct regression
techniques, the above research question can be split into these three
more specific subquestions:

https://orcid.org/0009-0003-1627-1710
https://orcid.org/0000-0001-5746-4154


SBES’24, September 30 – October 04, 2024, Curitiba, PR Christian Gut and Alfredo Goldman

(1) How significant was project selection in creating the differences
observed between Sornette et al. and Scholtes et al.?

(2) What bias in Sornette’s regression method could have favored
the identification of a superlinear relationship between team
size and productivity?

(3) What bias in Scholtes’ regression method could have favored
the identification of a sublinear relationship between team size
and productivity?

The first question was answered by reproducing both regression
methods, so that the method of one author can be applied to the
other authors’ data set. Such an analysis gave quantitative evidence
on how much project selection caused the opposite conclusions
drawn by Sornette and Scholtes. A response to the second question
led to a closer examination of Sornette’s regression method, result-
ing in the discovery of a potential 𝑝-value filter that eliminated all
regression coefficients close to zero. Similarly, the third question
inspired an exploration into how the overall time frame selection
affected Scholtes’ regression method, revealing a strong influence
of the first couple of days on the regression coefficient.

The remainder of this paper is structured as follows. After a short
summary of the related work on software development productivity,
a comprehensive explanation of the project selection and regression
methods used by Sornette and Scholtes is presented. Subsequent
sections show how the research methods were reproduced and how
replication led to the conclusion that selection bias only partially ac-
counts for the disparities between both authors. Next, quantitative
evidence is provided demonstrating how instrumentation biases
may have had a significant impact, and a conclusion summarizes
how accounting for project selection and instrumentation biases
approximates results. The final considerations provide a discussion
about the lessons learned, limitations, and future work.

2 RELATEDWORK AND STATE-OF-THE-ART
Arguably, the most foundational work on the productivity of soft-
ware development teams is Brooks’ book TheMythicalManMonth [2],
from which the term Brooks Law originated. This law states that
adding people to a late software project will delay the project even
further. Brooks also advocated for surgical teams that consist of a
few highly specialized developers making most of the changes to
the code, supported by a wide variety of team members who make
the work of the few specialists as productive as possible. Another
highly referenced classic work on software development productiv-
ity is the COCOMO II cost estimation model by Boehm et al. [1].
Although parts of this model might be outdated, the underlying
factors like code reuse, the use of tools, or the team size, remain
relevant. For the latter, Boehm identified diseconomies of scale.

Recent literature reviews confirm that the impact of team size
on productivity in software development continues to be relevant.
Chapetta and Travassos conducted a literature review to derive
factors that influence developer productivity [3]. At the beginning
of their investigation, the authors examined 121 publications related
to this topic. Then, they identified relevant factors and mapped their
direction and intensity. Chapetta and Travassos also evaluated the
belief in these factors by looking at the type and quality of the
underlying study. These data points were then combined into a
unified Gain in Belief metric. The result of this exercise led to

the discovery of 16 factors which influence software development
productivity, one of which states a slightly adverse effect of team
size on developer productivity.

Another review of the literature on software development pro-
ductivity comes from Duarte, who examined a total of 99 publica-
tions [6]. He presented a synopsis of each article, providing valuable
information on the potential underlying factors that affect software
development productivity. These factors were related to size &
structure of the team, knowledge & experience of the developers,
development context, process & tools, code structure, and social
& emotional factors. The study confirmed a significant negative
impact of the size of the project on productivity, while team size
exhibited a moderate negative influence.

Contemporary research also conducted quantitative analysis
of the productivity of software development. Lavazza et al. is a
publication based on the ISBG1 data set [14]. This set consists of
industry data that quantifies the output of the software development
process in function points, which includes additional information,
such as the programming language used, the industry involved, and
whether a data point pertains to a new project or the maintenance
of an existing one. The level of data quality in the ISBG data set
varies widely, leading to the removal of more than 50% of the data
points from the analysis. On the basis of the remaining data points,
Lavazza et al. worked on two research questions: What factors
influence the productivity of software development? And what factors
influence economies or diseconomies of scale? In most cases, they
were unable to identify economies or diseconomies of scale with
statistical confidence. Exceptions were projects written in Java and
Visual Basic, as well as certain types of enhancement projects, for
which the authors detected economies of scale. Projects written in
PL/I were the only exception where diseconomies of scale could be
measured.

A different analysis of software development productivity was
conducted by Muríc et al., who specifically investigated projects
on GitHub with fewer than 20 contributors [16]. Within these limi-
tations, the authors found that Open Source projects scale super-
linear. However, this effect started to decrease once the team size
exceeded 10 team member. An interesting aspect of their study is
the notion of an effective team size 𝑛. This measurement is defined
by 𝑛 = 2𝐻 , where 𝐻 = −∑𝑁

𝑖=1 𝑓𝑖 · 𝑙𝑜𝑔2 (𝑓𝑖 ) and 𝑓𝑖 = 𝑤𝑖/𝑊 , with 𝑁

being the number of team members,𝑤𝑖 being the work done by the
team member 𝑖 , and𝑊 being the sum of the work performed by the
entire team. The effective team size reaches its maximum, 𝑛 = 𝑁 ,
if all members of the team contribute the same amount of work.
Muríc et al. identified a negative correlation between effective team
size and productivity, meaning that productivity increases if the
work load is primarily handled by a few developers, who incorpo-
rate sporadic contributions from the rest of their team members.
Interestingly, such a team structure has resemblance to the surgical
teams described by Brooks.

Last but not least, there are two articles that can be directly linked
to the Aristotle vs. Ringelmann discussion. First, there is a direct
comparison of the two publications by Maillart and Sornette [15].
They argue that the opposite conclusions drawn by Sornette et al.
and Scholtes et al. may be attributed to variations in the project

1International Software Benchmarking Group



Revisiting Aristotle vs. Ringelmann SBES’24, September 30 – October 04, 2024, Curitiba, PR

population, because the superlinearity found in Sornette et al. holds
for no more than 30 to 50 developers, and Scholtes et al. sampled
specifically projects with more than 50 developers. Maillart and
Sornette also emphasized that their work linked the phenomenon of
superlinearity to the statistical distribution of contributions, which
showed a heavy-tailed power-law behavior. This behavior can be
explained by two possible generating mechanisms, one based on
cascading interactions and the other involving large deviations of
the underlying process. They further asserted that the link between
these generating mechanisms and superlinear production was vali-
dated in their work by looking at bursts of activity per contributor.
Since the frequency of these bursts of activity decreases with larger
projects, and given that Scholtes’ data set mainly consists of large
projects, the authors suggested that these factors could explain the
divergent conclusions drawn by the two research groups. In the end,
Maillart and Sornette highlighted that the primary focus of their
work was different from Scholtes’ research, since they examined
bursts of production while Scholtes considered averages. Never-
theless, it should be mentioned that, despite focusing on bursts of
production, even the averages reported by Sornette et al. showed
superlinearity, which justifies the investigations conducted in this
study.

The other publication related to the Aristotle vs. Ringelmann dis-
cussion was conducted by Gote et al., which refined Scholtes’ initial
work by introducing team size stratification [8]. This work also pro-
vided new insights into the correlation of output metrics, economies
of scale, and the influence of foreign code edits on productivity.
Initially, the authors identified a high correlation between multiple
output metrics, such as the number of commits, the Levenshtein
distance, changes in LOC, or changes in cyclomatic complexity.
This implies that the different output metrics may only have a
marginal influence on the results when analyzing the productivity
of software development teams. Gote’s approach to stratify their
analysis by team size led to the identification of slight economies of
scale for teams with less than 20 contributors. For larger projects,
diseconomies of scale prevailed. Based on this finding, they argued
that any study favoring small projects in its sampling may mistak-
enly infer the presence of overall economies of scale. Finally, they
identified the ratio of foreign code edits, which is the percentage of
modifications to source code that has not been written by the author
itself, as a factor that negatively correlates with productivity. This
conclusion not only seems logical, but could also provides a ratio-
nale for the occurrence of diseconomies of scale, as having a larger
team working on a project may lead to an increased likelihood of
foreign code edits.

This study adds to the latest research by demonstrating that
selection bias alone is not a sufficient explanation for the Aristotle
vs. Ringelmann debate. It further illustrates how instrumentation
biases appear to be a relevant factor. Identifying these instrumen-
tation biases not only contributes to the specific debate between
Sornette and Scholtes but also hints at general factors that must
be considered when examining the productivity of Open Source
software development.

3 DIFFERENCES IN SORNETTE’S AND
SCHOLTES’ WORK

In general terms, Sornette et al. and Scholtes et al. used the same
regression approach to determine superlinearity:

(1) Select a set of projects
(2) Divide an overall time frame for each project into smaller

time windows
(3) For each time window
(a) Determine the team size
(b) Determine the output produced by the team

(4) Plot output and team size on a graph
(5) Run a linear regression analysis
Figure 1 is a visualization of this general approach. However,

these approaches differ significantly in terms of their implementa-
tion specifics.

3.1 Project selection
Both articles seemed to have made a similar choice in terms of data
collection: Mine all commits from a set of GitHub projects starting
with the very first commit and ending with some cut-off date in
the middle of the 2010’s.

Nevertheless, a closer examination reveals some fundamental
differences in the characteristics of the selected projects. Sornette
et al. looked at 164 projects while Scholtes et al. examined only
58 projects. Intriguingly, only 3 projects were analyzed by both
authors: Rails, Django, and jQuery. This represents less than 1.4% of
all 219 projects. Furthermore, Sornette et al. opted for a random
sampling approach, while Scholtes et al. made the deliberate choice
to select only projects with more than 50 contributors.

3.2 Regression method
The authors differed not only in the selection of projects, but also
in the details of their regression analysis. These differences are
illustrated in Figure 2 and will be explained in more detail below.

3.2.1 Definition of time windows. Sornette et al. divided the project
first into 250-day periods and then subdivided each 250-day pe-
riod into 5-day windows. The team output and team size were
determined for each 5-day window.

Scholtes et al. divided all data for a project into 7-day windows.
These 7-day windows were used to calculate the team output. Re-
markably, the team size itself had been determined by using 295-day
windows which were incremented by 7-day intervals that match
the end date of the team output window for each iteration. This
implies that the team size windows overlapped, so that a commit
was included multiple times when determining team sizes, but was
only counted once when calculating team output.

3.2.2 Measurement of output. Sornette et al. reported commit
count as an output measure, but an evaluation of Sornette’s Numpy
files on PLOS suggested that the authors actually worked with the
number of modified files in every commit. This assumption could
be confirmed during a subsequent email exchange with Thomas
Maillart, one of the coauthors.

Scholtes et al. used the Levenshtein editing distance to determine
the output of the team. This distance measure was applied over all



SBES’24, September 30 – October 04, 2024, Curitiba, PR Christian Gut and Alfredo Goldman

Figure 1: General regression approach used by both authors

(a) Illustration of Sornette’s regression method

(b) Illustration of Scholtes’ regression method

Figure 2: Illustration regression method details



Revisiting Aristotle vs. Ringelmann SBES’24, September 30 – October 04, 2024, Curitiba, PR

non-binary files by comparing the file’s content before the commit
against the file’s content after the commit. Depending on the par-
ticular case, it can make a difference if the distance is calculated on
a line-by-line, block-by-block, or file-by-file basis. Since inferring
the exact method was not possible, an email exchange with Ingo
Scholtes was initiated, who provided assistance by recommending
the use of the line-by-line calculation method for the replication.

3.2.3 Measurement of team size. To determine the team size, each
team member must be uniquely identified. For this purpose, a Git
commit provides four possible values: Author Email, Author Name,
Committer Email, or Committer Name. In the majority of instances,
the author and committer fields are the same. However, if modifica-
tions aremade to a commit (e.g. via the git rebase command), the
committer fields may differ from the author fields. This study used
Author Email as the unique identifier of a team member. Scholtes
et al. clearly stated the same choice in their publication, and an
examination of the data on PLOS indicated that Sornette et al. also
opted for this approach.

3.2.4 Regression analysis. Both authors determined if a project
scales superlinearly by running a linear regression. However, vari-
ations in the setup of the regression analyzes have been observed:

• Sornette et al. defined the final metric for a project as an
aggregation of multiple regression coefficients, called aver-
age 𝛽 . Scholtes et al. calculated the coefficient of a simple
linear regression, which they denominated 𝛼3.

• Sornette et al. plotted the team’s output against the team size
while Scholtes et al. compared the team’s productivity with
the team size. Since Scholtes’ productivity metric divides the
team’s output by team size, this difference is negligible in
practical terms. It only means that Scholtes’ method iden-
tifies superlinear projects for a slope > 0, while the same
applies to Sornette‘s method for a slope > 1.

• Sornette et al. divided each project into non-overlapping 250-
day periods before running a regression analysis on each of
them, while Scholtes et al. used all available data points for
one simple regression analysis per project.

• Scholtes et al. provided an additional analysis for Log-Lin
relationships in which the logarithm of the productivity
measure was plotted against the plain unmodified team size.

• Scholtes et al. also controlled for one-time contributors by
providing an analysis that excluded contributions from any-
one who submitted only one commit.

• Sornette et al. took statistical significance into account by
calculating the average 𝛽 only over those 250-day periods
where the 𝑝-value was 𝑝 < 0.01.

It should also be noted that the 𝑝 < 0.01 filter identified in
Sornette’s method had only been detected while attempting to
replicate the results. Without using this filter, reproduction of the
average 𝛽 values was not possible. Even minor alterations, such as
a 𝑝 < 0.05 filter, resulted in significantly higher 𝑝-values for the
statistical tests, corroborating with the hypothesis that the 𝑝 < 0.01
filter was actually part of the original study. This filter also implies
that average 𝛽 cannot be determined if the filter causes an exclusion
of all 𝛽 values.

Table 1: Comparison of projects analyzed and regression
method used by Sornette et al. and Scholtes et al.

Sornette et al. Scholtes et al.

Projects
164 projects (3 overlapping) 58 projects (3 overlapping)

5-3,074 contributors 55-4,107 contributors

Regression
method

Output: 5-day windows Output: 7-day windows

Team size: 5-day windows Team size: 295-day windows

No. of file edits Levenshtein distance

Over 250-day periods Over whole project

Average of regression slopes One regression slope only

Filtered by 𝑝 < 0.01 No filtering

Log-Log regression only Log-Log and Log-Lin

No control for any variable Control for
one-time contributors

3.3 Summary
The two authors made quite distinct design choices, which are
summarized in Table 1. Sornette et al. opted for a random sam-
pling of projects and a simpler approach in measuring the team
output, but adopted a more elaborated method in deriving the time
windows for measuring the regression coefficients. Scholtes et al.
chose a more straightforward method to calculate the regression
coefficients, but selected projects more deliberately and studied
more variants of their regression method by looking into Log-Lin
regressions and controlling for one-time contributors. They also
provided a more fine-grained measurement of the team’s output.
However, the influence of this fine-grained measure may not be
as relevant due to the high degree of correlation between different
output metrics identified by Gote et al. [8].

4 REPLICATION OF SORNETTE’S AND
SCHOLTES’ WORK

To ensure that any extrapolation of the original study is free from
errors, it is essential to confirm that the original findings of Sornette
et al. and Scholtes et al. can be replicated with statistical confidence.
Shull et al. refer to this practice as performing a dependent replica-
tion, with the aim of closely reproducing the original findings, and
recommend that it should come before any conceptual replications,
which involve altering parameters to gain new insights [20]. There-
fore, this section provides an in-depth review of the replication
process before exploring possible selection and instrumentation
biases.

4.1 Technical implementation
The technical implementation of this study is based on a set of
Python scripts, using the PyDriller library [22]. These scripts ran
on Google’s Colab notebooks, using BigQuery as a storage engine.
This choice had been made for reasons of convenience, with the
objective of reducing the amount of time required to configure
systems and maintain an IT infrastructure.



SBES’24, September 30 – October 04, 2024, Curitiba, PR Christian Gut and Alfredo Goldman

Figure 3: Potential exclusion of relevant commits if time
window end date and mining date lie too close together

Another approach would have been the use of git2net , a tool
developed by Scholtes’ team [9]. This tool provides additional net-
work analysis capabilities that are not needed for this research.
Since these additional capabilities imply significantly longer execu-
tion times, the creation of a simpler and more performant mining
script appeared to be the better option for data collection.

The creation of own tools comes with the risk of introducing
errors. For example, Levenshtein distance calculations might have
been performed differently than in the original tools. To mitigate
these risks, the output of the scripts had been compared with the
data provided by git2net , confirming that both tools compute
exactly the same distances for all relevant, non-merge commits.

GitHub itself bears some pitfalls when it comes to the repro-
ducibility of results. In particular, the git rebase command al-
lows for a retroactive modification of commits. These modifications
can increase or decrease the number of commits, which is a known
problem with little remediation when it comes to the reproduction
of studies. Furthermore, pull requests may cause distortions if the
mining date is close to the end date of the time window of analysis,
as demonstrated in Figure 3. In these cases, merging a pull request
could add relevant commits to a repository that were not previ-
ously visible to the researcher. Finally, some very special cases of
manual amendments might put the commit dates out-of-order, thus
tripping off date filters, which assume all commits to be ordered by
date.

The reproduction of results requires the exact GitHub URLs,
which were not provided by neither author. So, a manual mapping
of project names to GitHub URLs had to be performed. For Sornette
et al., it was possible to identify the URL for 159 out of 164 projects.
In the case of Scholtes et al. all 58 projects could be mapped to an
URL.

Reproducing results also necessitates identifying the correct time
windows of analysis for each GitHub project. For Sornette et al. the
dates could be inferred by extracting the number of days of analysis
from the Numpy data files published on PLOS, and by working with
the assumption that the first commit on GitHub equals the start
date of the analysis. In Scholtes’ case the exact start and end dates
of the analysis were part of the article’s appendix.

4.2 Statistical tests
All of the factors in the above section are reasons why the replica-
tion of precise figures can be challenging, as was the case in this
study. Therefore, a pairwise comparison was carried out to assess
whether the measured and reported values for each project were
drawn from the same distribution. Thereby, the Wilcoxon test was
performed since the Shapiro-Wilk test indicated that none of the
regression coefficients adhered to a normal distribution [24][18].
In both cases, the SciPy Python package had been leveraged [23].

Both authors not only reported the regression coefficients in
their Article, but also provided Commit Data via PLOS or Zenodo.
These data sets in addition to the data mined on GitHub allow for
the following pairwise comparisons:

(1) Article vs. GitHub: The ultimate test if the results can be
reproduced.

(2) Article vs. Commit Data: A check if the regression calcula-
tions are being performed correctly.

(3) Commit Data vs. GitHub: An additional check of consistency.

All these comparisons used Scholtes’ Log-Log regression model
without a filter of one-time contributors, since this variant is closest
in resemblance to Sornette’s method.

The histogram in Figure 4 compares the data reported in the Ar-
ticle and the reproduced results using data from GitHub. The appar-
ent similarity of the distributions could be confirmed by Wilcoxon
tests, whose values are depicted in Figure 5. In all cases, the null
hypothesis that the data came from different distributions could
not be rejected, implying that the results were similar and that the
replicated data could be used for further analysis.

5 SELECTION BIAS
Subsequent research indicated that the differing conclusions reached
by Sornette et al. and Scholtes et al. can be attributed to the selec-
tion of projects [15][8]. This section is an attempt to effectively
quantify the impact of project selection by calculating Sornette’s
average 𝛽 and Scholtes’ 𝛼3 for all projects. If selection bias was
significant, many of the projects chosen by Sornette et al. would
produce values of 𝛼3 > 0, while the projects selected by Scholtes et
al. would generate values of average 𝛽 < 1.

The result of this exercise is shown in Figure 6. For both regres-
sion methods, the distributions generated by each data set seem
to differ, which could be confirmed by the 𝑝-values of two-sample
Kolmogorov-Smirnov tests using the SciPy package [11][23]: For
average 𝛽 a 𝑝-value of 𝑝 = 0.00000000099 was obtained and for 𝛼3
a value of 𝑝 = 0.001383 was measured, indicating that the results
from both data sets differed significantly for either method.

However, the information presented in Figure 6 and Table 2 also
suggests that the selection of projects only partially accounts for
the differences between Sornette and Scholtes. For most of Scholtes’
projects, a superlinear relationship had been detected, even when
Sornette’s method was applied. Likewise, Scholtes’ method mea-
sured sublinear relationships for the majority of projects in Sor-
nette’s data set. Both facts clearly indicate that selection bias alone
is not a sufficient explanation for the differences between Sornette
et al. and Scholtes et al., necessitating further investigation of biases
within the regression methods.



Revisiting Aristotle vs. Ringelmann SBES’24, September 30 – October 04, 2024, Curitiba, PR

(a) Results for Sornette’s average 𝛽

(b) Results for Scholtes’ 𝛼3

Figure 4: Comparison between regression coefficients as re-
ported in the article and themeasured values using data from
GitHub

(a) Results for Sornette et al. (b) Results for Scholtes et al.

Figure 5: Results of the Wilcoxon tests

Table 2: Number of projects with sub- and superlinear rela-
tionship between team size and productivity

Regression
Method Data Set Sublinear

Projects
Superlinear
Projects

Projects
Total

Sornette
Sornette 1 147 148

Scholtes 3 55 58

Scholtes
Sornette 130 29 159

Scholtes 58 0 58

(a) Comparison for Sornette’s average 𝛽 values

(b) Comparison for Scholtes’ 𝛼3 values

Figure 6: Cross-comparison of data sets and regression meth-
ods

6 INSTRUMENTATION BIASES
The preceding section has already shown that project selection
only partially accounts for the discrepancies between Sornette and
Scholtes. This section eludes to potential biases found in either
regression method, thus providing an additional explanation for
the differences between Sornette’s and Scholtes’ findings.

6.1 Sornette’s p-value filter
Section 3 mentions that reproduction efforts for the work of Sor-
nette et al. were only successful after applying a 𝑝-value filter with
𝑝 < 0.01 when calculating the average 𝛽 values for a project. How-
ever, these 𝑝-values tend to get high for slopes close to zero, because
they represent results "for a hypothesis test whose null hypothesis is
that the slope is zero, using Wald Test with t-distribution of the test
statistic" [5]. Hence, the filter can introduce bias by excluding small
values of 𝛽 from the computation of the average 𝛽 .

Figure 7 compares the distribution of average 𝛽 values with a
𝑝 < 0.01 filter to values without any filter. It can be clearly seen
that the removal of the filter causes a reduction of average 𝛽 , which
was 14.82% on average. A Wilcoxon test with 𝑝 = 0.0000000 also
confirms that the reduction was of statistical significance.



SBES’24, September 30 – October 04, 2024, Curitiba, PR Christian Gut and Alfredo Goldman

Figure 7: Distribution of average 𝛽, comparing values using
𝑝 < 0.01 to values which use all 𝛽

Table 3: Effect of 𝑝-value filter on number of projects with
sublinear relationship between team size and productivity

Regression
Method Data Set Sublinear

Projects
Superlinear
Projects

Projects
Total

Sornette
(𝑝 < 0.01)

Sornette 1 147 148

Scholtes 3 55 58

Sornette
(all 𝛽)

Sornette 14 134 148

Scholtes 16 42 58

The effect of the filter also influences the sub- and superlinearity,
as shown in Table 3. For Sornette’s data set the number of projects
with diseconomies of scale increases from 1 to 14, and for Scholtes’
data set the increase is from 3 to 16 projects. These numbers indicate
that the 𝑝-value filter seemed to have a real influence on Sornette’s
conclusions.

6.2 Scholtes’ time window selection
The regression analysis performed by Scholtes et al. took into ac-
count all contributions, from the very first commit until a certain
cut-off date in 2014. An exploratory analysis indicated that remov-
ing the first few days from a project significantly influences the
results of Scholtes’ method, leading to the suspicion that the choice
of time window may bear an instrumentation bias. A more de-
tailed investigation led to Figure 8, showing the effect on 𝛼3 if the
first days of a project, denoted as Front Load Days, are removed
from the regression analysis. The steady increase until a peak at
540 days is evidence that Scholtes’ method may indeed be affected
by instrumentation bias.

One possible explanation for this bias could be code imports
during the first days of publication on GitHub. A developer or a
team of developers may already have engaged in significant, non-
measurable work before publishing the first commit. This work re-
mains invisible until its inclusion via code imports after the project’s
launch. Since the early stages of a project tend to involve fewer
developers, imports potentially generate artificial spikes of team
output, which correlate with small team sizes, and thus lead to a

Figure 8: The influence of Front Load Days on the average of
𝛼3 over all projects

negative bias for the regression analysis. Figure 9 illustrates this
effect.

The research of Gote et al. also addresses the impact of code
imports by excluding the top and bottom 2.5% of contributions, in
terms of Levenshtein distance [8]. However, the effect of Front Load
Days prevails even when filtering by these outliers, as shown in
Figure 10. A potential reason could be that code imports can happen
in small chunks (i.e. module-by-module) and therefore would not
entirely be filtered out by accounting for outliers.

The influence of Front Load Days is negligible in the case of
Sornette’s regression method because the use of 250-day periods
inhibits propagation of that bias throughout the entire regression
analysis. A comparison of the average 𝛽 values where the first
250-day period had been removed with the values of the original
method, as shown in Figure 11, demonstrates that the exclusion of
the first couple of days had little influence on the overall outcomes.
A Wilcoxon test with a 𝑝-value of 𝑝 = 0.9841 supports this finding.

Eliminating Front Load Days comes with the drawback of having
to exclude certain projects from the analysis due to insufficient data
points for the calculation of the regression coefficient. Consequently,
the decision was made to choose 330 Front Load Days to examine
the impact on superlinearity. This choice eliminated less than 5% of
all projects from the analysis. At the same time, 330 days seems to
be a point where the average 𝛼3 appears to stabilize. For 330 Front
Load Days the number of projects with a superlinear relationship
increases from 29 to 65 projects in the case of Sornette’s data set,
and from 0 to 11 projects in the case of Scholtes’ data set, as shown
in Table 4. This increase suggests that the choice of Front Load Days
has a relevant impact on the results of Scholtes’ regression method.

7 CONCLUSION
The discussion of Aristotle vs. Ringelmann evolved around the
question whether the productivity of Open Source projects scales
sublinear or superlinear with regard to its team size. The conflicting
findings reported by Sornette et al. and Scholtes et al. prompted both
research groups to publish follow-up studies, suggesting project
selection as a possible explanation. The answer to the first research
question of this study – "How significant was project selection in



Revisiting Aristotle vs. Ringelmann SBES’24, September 30 – October 04, 2024, Curitiba, PR

Figure 9: Illustration of Front Load Days effect: Code imports
during the launch phase on GitHub may distort results

Figure 10: The influence of Front Load Days on the average
of 𝛼3 over all projects, when excluding the top and bottom
2.5% of contributions based on Levenhstein distance

Figure 11: Comparison of original average 𝛽 distribution with
the values where the first 250-days were removed

creating the differences observed between Sornette et al. and Scholtes et
al.?" – probes into the significance of the suggested selection bias by
replicating both regression methods on both data sets. This analysis
revealed that 130 of 159 projects from Sornette’s data set scaled
sublinearly using Scholtes’ method. Likewise, 55 of 58 projects
from Scholtes’ data set showed superlinear scaling if subjected to
Sornette’s method. Thus, indicating that selection bias had only a
minor influence.

Table 4: Effect of Front Load Days on number of projects with
sublinear relationship between team size and productivity

Regression
Method Data Set Sublinear

Projects
Superlinear
Projects

Projects
Total

Scholtes
(0 days)

Sornette 130 29 159

Scholtes 58 0 58

Scholtes
(330 days)

Sornette 85 65 150

Scholtes 46 11 57

This finding led to the second research question – "What bias
in Sornette’s regression method could have favored the identification
of a superlinear relationship between team size and productivity?"
– which identified a 𝑝-value filter as a source of bias, whose re-
moval increased the total number of projects that scale sublinearly
from 4 to 30. Similarly, an inquiry into the third research question
– "What bias in Scholtes’ regression method could have favored the
identification of a sublinear relationship between team size and pro-
ductivity?" – led to the discovery of Front Load Days, whose removal
increased the total number of projects that scale superlinearly from
29 to 76.

Figure 12 summarizes the influences of selection and instrumen-
tation biases. Since the population size for each analysis vary, all
results are reported in percent to have a relative comparison. For ex-
ample, using the original method on the original data set identified
0% superlinearity for the 58 projects from Scholtes. In the case of
Sornette et al., the original method yielded results for 148 projects,
with 99.32% showing superlinearity. Consequently, the difference
is 99.32%. Applying both regression methods to all projects reveals
that selection bias alone does not fully account for the discrepancies,
leaving a difference of 84.69%. A sole adjustment of the regression
methods approximates results better, resulting in a difference of
70.64%. And, using the adjusted methods on all projects leaves a
gap of 48.54%. Thus, the conclusion can be drawn that selection
bias as well as instrumentation biases contributed to the different
conclusions drawn by Sornette et al. and Scholtes et al.

8 FINAL CONSIDERATIONS
8.1 Discussion
The results of this research not only add to the Aristotle vs. Ringel-
mann debate, but also offer general insights into measuring pro-
ductivity using Mining Software Repositories techniques. Initially,
the study confirms that selection bias has an influence. Secondly,
it eludes to the fact that the choice of time windows is critical, as
demonstrated by the influence of the Front Load Days. Finally, the
effect of the 𝑝-value filter illustrated that the design of the data
pipeline requires careful consideration to avoid the introduction of
instrumentation biases.

This study also addresses the challenge of reproducibility in
Empirical Software Engineering. In the related field of effort esti-
mation for software development, Shepperd et al. identified only
28 replication studies [19]. Based on their assessment, there are



SBES’24, September 30 – October 04, 2024, Curitiba, PR Christian Gut and Alfredo Goldman

Figure 12: Summary on how selection and instrumentation
biases influence the fraction of projects with a superlinear
relationship for each regression method

probably hundreds or thousands of publications in this area, leading
to the conclusion that only a very small percentage are actually
being replicated. Cockburn et al. alert that publication bias leads
to practices such as project selection, 𝑝 hacking, and HARKing2,
which might put computer science research at risk [4]. They argue
in favor of better statistical practices, experiment preregistration,
openness of data, and encouragement of replications. By success-
fully reproducing the findings of Sornette et al. and Scholtes et
al., this research contributes to the existing collection of published
replication studies. Furthermore, this publication made efforts to
adhere to the recommendations from Cockburn et al. by including
a thorough reporting 𝑝-values and by providing public access to all
data and calculations used in this study.

8.2 Lessons Learned
The work carried out in this research also provided insight into
factors that are of importance when replicating studies and offered
a deeper understanding of how to reduce biases.

First, taking small steps proved to be beneficial. For example,
instead of jumping right to the calculation of correlation coefficients,
the reproduction of intermediate steps, such as the calculation of
Levenshtein distances for single commits, already raised important
questions. Second, cross-checks between different data sources, i.e.
reproduced data, the results from the article and published data sets,
triangulated problems, and increased confidence in the replication.
Third, statistical tests also revealed to be important, leading to the
detection of the 𝑝 < 0.01 filter in Sornette’s method. And last but
not least, reaching out to the authors of the original papers helped
to clarify implementation details.

As this study shows, avoiding bias is not a simple undertaking.
Accounting for as many factors as possible, e.g., team size, definitely
addresses this issue; however, this approach has its limitations if the
number of available variables gets too big or if relevant variables are
either unknown or difficult to measure. Another effective method
to mitigate biases is to encourage reproductions, as independent

2Hypothesizing After the Results are Known

parties’ reviews are an established approach to guarantee quality
and reliability.

8.3 Limitations and Future Work
This study has some limitations, which may serve as a starting
point for future work.

The influence of time window selection has been addressed only
partially. Apart from the Front Load Days, there is also the question
of whether the number of days for team size and team output
windows influenced the results, whether the variation in the total
number of years analyzed for each project was relevant, or whether
data from a more recent period would have had an impact.

Calculating the correct team size might be another factor to
consider. In that regard, Gote and Zing addressed the problem of
author disambiguation and provided a tool for its solution [10].
However, disambiguation has been excluded from this study to
maintain consistency with the original research methodologies.
Another emerging and significant question revolves around the
influence of commits made by bots and AI agents.

This research has not examined confounders or other influencing
variables, except for team size. Lavazza et al. identified additional
factors that impact productivity, such as programming language
or project type [14], and Gote et al. discovered the importance of
foreign code edits [8]. So, factors related to dimensions like team
structure, source code structure, or software engineering practices
may provide additional insights.

Furthermore, the existing method of measuring productivity,
which divides team output by team size, can be complemented by
additional factors such as quality, maintainability, or sustainabil-
ity. Recent recommendations to evaluate software development
productivity in a more multidimensional manner, like the SPACE
metrics, already provide a suitable framework [7]. The complexity
of software development may also require complementary qualita-
tive evaluations to improve the understanding of the underlying
creative process [12][13]. Such extensions could serve as an ap-
proach to producing rigorous and quantitative research, which also
offers practical insights for software development practitioners.

ACKNOWLEDGMENTS
We would like to thank Sornette et al. and Scholtes et al. for pro-
viding a great inspiration on how to conduct rigorous quantitative
analysis of productivity in the realm of Open Source software devel-
opment. In particular, we thank Thomas Maillart and Ingo Scholtes
for their clarifications and feedback.

We are also grateful for the invaluable insights and discussions
provided by the Software Engineering Research Group at the Uni-
versity of São Paulo.

ARTEFACT AVAILABILITY
All data sets, Colab notebooks, and Python code are available on
Zenodo (see https://zenodo.org/records/12755951).

REFERENCES
[1] Barry Boehm, Bradford Clark, Ellis Horowitz, Chris Westland, Ray Madachy,

and Richard Selby. 1995. Cost models for future software life cycle processes:
COCOMO 2.0. Annals of Software Engineering 1, 1 (Dec. 1995), 57–94. https:
//doi.org/10.1007/BF02249046

https://zenodo.org/records/12755951
https://doi.org/10.1007/BF02249046
https://doi.org/10.1007/BF02249046


Revisiting Aristotle vs. Ringelmann SBES’24, September 30 – October 04, 2024, Curitiba, PR

[2] Frederick P. Brooks. 1995. Themythical man-month: essays on software engineering
(anniversary ed ed.). Addison-Wesley Pub. Co, Reading, Mass.

[3] Wladmir Araujo Chapetta and Guilherme Horta Travassos. 2020. Towards an
evidence-based theoretical framework on factors influencing the software devel-
opment productivity. Empirical Software Engineering 25, 5 (Sept. 2020), 3501–3543.
https://doi.org/10.1007/s10664-020-09844-5

[4] Andy Cockburn, Pierre Dragicevic, Lonni Besançon, and Carl Gutwin. 2020.
Threats of a Replication Crisis in Empirical Computer Science – Communications
of the ACM. https://cacm.acm.org/research/threats-of-a-replication-crisis-in-
empirical-computer-science/

[5] The SciPy community. 2008. linregress — SciPy v1.14.0 Manual. https://docs.
scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

[6] Carlos Henrique C. Duarte. 2022. Software Productivity in Practice: A Systematic
Mapping Study. Software 1, 2 (May 2022), 164–214. https://doi.org/10.3390/
software1020008

[7] Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann,
Brian Houck, and Jenna Butler. 2021. The SPACE of Developer Productivity:
There’s more to it than you think. Queue 19, 1 (Feb. 2021), 20–48. https://doi.
org/10.1145/3454122.3454124

[8] Christoph Gote, Pavlin Mavrodiev, Frank Schweitzer, and Ingo Scholtes. 2022. Big
data = big insights?: operationalising brooks’ law in a massive GitHub data set.
In Proceedings of the 44th International Conference on Software Engineering. ACM,
Pittsburgh Pennsylvania, 262–273. https://doi.org/10.1145/3510003.3510619

[9] Christoph Gote, Ingo Scholtes, and Frank Schweitzer. 2019. git2net - Mining Time-
Stamped Co-Editing Networks from Large git Repositories. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). IEEE, Montreal,
QC, Canada, 433–444. https://doi.org/10.1109/MSR.2019.00070

[10] Christoph Gote and Christian Zingg. 2021. gambit – An Open Source Name
Disambiguation Tool for Version Control Systems. http://arxiv.org/abs/2103.
05666 arXiv:2103.05666 [physics].

[11] J. L. Hodges. 1958. The significance probability of the smirnov two-sample test.
Arkiv för Matematik 3, 5 (Jan. 1958), 469–486. https://doi.org/10.1007/BF02589501

[12] Ciera Jaspan and Caitlin Sadowski. 2019. No Single Metric Captures Productivity.
In Rethinking Productivity in Software Engineering, Caitlin Sadowski and Thomas
Zimmermann (Eds.). Apress, Berkeley, CA, 13–20. https://doi.org/10.1007/978-
1-4842-4221-6_2

[13] Amy J. Ko. 2019. Why We Should Not Measure Productivity. In Rethinking
Productivity in Software Engineering, Caitlin Sadowski and Thomas Zimmermann
(Eds.). Apress, Berkeley, CA, 21–26. https://doi.org/10.1007/978-1-4842-4221-6_3

[14] Luigi Lavazza, Sandro Morasca, and Davide Tosi. 2018. An Empirical Study on
the Factors Affecting Software Development Productivity. e-Informatica Soft-
ware Engineering Journal 12 (2018), 27–49. https://doi.org/10.5277/E-INF180102
Medium: PDF Publisher: Institute of Applied Informatics, Wrocław University of
Technology, Wrocław.

[15] Thomas Maillart and Didier Sornette. 2019. Aristotle vs. Ringelmann: On super-
linear production in open source software. Physica A: Statistical Mechanics and its
Applications 523 (June 2019), 964–972. https://doi.org/10.1016/j.physa.2019.04.130

[16] Goran Murić, Andres Abeliuk, Kristina Lerman, and Emilio Ferrara. 2019. Col-
laboration Drives Individual Productivity. Proceedings of the ACM on Human-
Computer Interaction 3, CSCW (Nov. 2019), 1–24. https://doi.org/10.1145/3359176

[17] Ingo Scholtes, Pavlin Mavrodiev, and Frank Schweitzer. 2016. From Aristotle
to Ringelmann: a large-scale analysis of team productivity and coordination in
Open Source Software projects. Empirical Software Engineering 21, 2 (April 2016),
642–683. https://doi.org/10.1007/s10664-015-9406-4

[18] S. S. SHAPIRO and M. B. WILK. 1965. An analysis of variance test for normal-
ity (complete samples)†. Biometrika 52, 3-4 (Dec. 1965), 591–611. https://doi.
org/10.1093/biomet/52.3-4.591 _eprint: https://academic.oup.com/biomet/article-
pdf/52/3-4/591/962907/52-3-4-591.pdf.

[19] Martin Shepperd, Nemitari Ajienka, and Steve Counsell. 2018. The role and value
of replication in empirical software engineering results. Information and Software
Technology 99 (July 2018), 120–132. https://doi.org/10.1016/j.infsof.2018.01.006

[20] Forrest J. Shull, Jeffrey C. Carver, Sira Vegas, and Natalia Juristo. 2008. The role of
replications in Empirical Software Engineering. Empirical Software Engineering
13, 2 (April 2008), 211–218. https://doi.org/10.1007/s10664-008-9060-1

[21] Didier Sornette, Thomas Maillart, and Giacomo Ghezzi. 2014. How Much Is
the Whole Really More than the Sum of Its Parts? 1 + 1 = 2.5: Superlinear
Productivity in Collective Group Actions. PLoS ONE 9, 8 (Aug. 2014), e103023.
https://doi.org/10.1371/journal.pone.0103023

[22] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. PyDriller: Python
framework for mining software repositories. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE 2018). Association for
Computing Machinery, New York, NY, USA, 908–911. https://doi.org/10.1145/
3236024.3264598

[23] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. Van Der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,

Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul Van Mulbregt, SciPy 1.0 Contributors, Aditya Vijaykumar, Alessandro Pietro
Bardelli, Alex Rothberg, Andreas Hilboll, Andreas Kloeckner, Anthony Scopatz,
Antony Lee, Ariel Rokem, C. Nathan Woods, Chad Fulton, Charles Masson,
Christian Häggström, Clark Fitzgerald, David A. Nicholson, David R. Hagen,
Dmitrii V. Pasechnik, Emanuele Olivetti, Eric Martin, Eric Wieser, Fabrice Silva,
Felix Lenders, Florian Wilhelm, G. Young, Gavin A. Price, Gert-Ludwig Ingold,
Gregory E. Allen, Gregory R. Lee, Hervé Audren, Irvin Probst, Jörg P. Dietrich,
Jacob Silterra, James T Webber, Janko Slavič, Joel Nothman, Johannes Buchner,
Johannes Kulick, Johannes L. Schönberger, José Vinícius De Miranda Cardoso,
Joscha Reimer, JosephHarrington, Juan Luis Cano Rodríguez, JuanNunez-Iglesias,
Justin Kuczynski, Kevin Tritz, Martin Thoma, Matthew Newville, Matthias Küm-
merer, Maximilian Bolingbroke, Michael Tartre, Mikhail Pak, Nathaniel J. Smith,
Nikolai Nowaczyk, Nikolay Shebanov, Oleksandr Pavlyk, Per A. Brodtkorb, Perry
Lee, Robert T. McGibbon, Roman Feldbauer, Sam Lewis, Sam Tygier, Scott Siev-
ert, Sebastiano Vigna, Stefan Peterson, Surhud More, Tadeusz Pudlik, Takuya
Oshima, Thomas J. Pingel, Thomas P. Robitaille, Thomas Spura, Thouis R. Jones,
Tim Cera, Tim Leslie, Tiziano Zito, Tom Krauss, Utkarsh Upadhyay, Yaroslav O.
Halchenko, and Yoshiki Vázquez-Baeza. 2020. SciPy 1.0: fundamental algorithms
for scientific computing in Python. Nature Methods 17, 3 (March 2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

[24] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83. https://doi.org/10.2307/3001968 Publisher: [Interna-
tional Biometric Society, Wiley].

https://doi.org/10.1007/s10664-020-09844-5
https://cacm.acm.org/research/threats-of-a-replication-crisis-in-empirical-computer-science/
https://cacm.acm.org/research/threats-of-a-replication-crisis-in-empirical-computer-science/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
https://doi.org/10.3390/software1020008
https://doi.org/10.3390/software1020008
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1145/3454122.3454124
https://doi.org/10.1145/3510003.3510619
https://doi.org/10.1109/MSR.2019.00070
http://arxiv.org/abs/2103.05666
http://arxiv.org/abs/2103.05666
https://doi.org/10.1007/BF02589501
https://doi.org/10.1007/978-1-4842-4221-6_2
https://doi.org/10.1007/978-1-4842-4221-6_2
https://doi.org/10.1007/978-1-4842-4221-6_3
https://doi.org/10.5277/E-INF180102
https://doi.org/10.1016/j.physa.2019.04.130
https://doi.org/10.1145/3359176
https://doi.org/10.1007/s10664-015-9406-4
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1016/j.infsof.2018.01.006
https://doi.org/10.1007/s10664-008-9060-1
https://doi.org/10.1371/journal.pone.0103023
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.2307/3001968

	Abstract
	1 Introduction
	2 Related Work and State-of-the-Art
	3 Differences in Sornette's and Scholtes' work
	3.1 Project selection
	3.2 Regression method
	3.3 Summary

	4 Replication of Sornette's and Scholtes' work
	4.1 Technical implementation
	4.2 Statistical tests

	5 Selection Bias
	6 Instrumentation Biases
	6.1 Sornette's p-value filter
	6.2 Scholtes' time window selection

	7 Conclusion
	8 Final Considerations
	8.1 Discussion
	8.2 Lessons Learned
	8.3 Limitations and Future Work

	References

