
A Comparison Between Hierarchical and Non-Hierarchical
Software Clustering

Léo C. R. Antunes
Federal University of the State of Rio de Janeiro (UNIRIO)

Rio de Janeiro, Brazil
leo.antunes@edu.unirio.br

Márcio de O. Barros
Federal University of the State of Rio de Janeiro (UNIRIO)

Rio de Janeiro, Brazil
marcio.barros@uniriotec.br

ABSTRACT
Heuristic search algorithms have been applied in various areas of
Software Engineering, such as requirements prioritization, software
architecture improvement, and time and cost planning. The research
field of Search-based Software Engineering (SBSE) proposes the
use of heuristic search techniques to solve Software Engineering
challenges, which are described as optimization problems. One of
the challenges frequently analyzed from the SBSE perspective is the
Software Module Clustering (SMC) problem. This problem involves
distributing a software project’s component modules (or classes)
among larger structures called clusters (or packages). Practice and
experimental studies have shown a strong correlation between poor
distributions and the presence of component failures. The main
factors used to assess the quality of distributions are coupling and
cohesion. However, research shows that optimization based on
metrics that capture structural characteristics does not result in an
adequate distribution of classes in packages from the point of view
of software developers. One of the reasons that might have led to
such limited results is that the algorithms produce non-hierarchical
distributions of classes into packages. In this study, we executed
the same greedy algorithm using two different fitness functions:
one that does not consider hierarchy and the other that does. We
wanted to measure whether they produced different results regard-
ing authoritativeness. We found indications that a hierarchy-based
approach produces solutions closer to those software developers
propose.

KEYWORDS
Software Engineering, Software Clustering, Hierarchical Design

1 INTRODUCTION
Heuristic search algorithms have been applied in various areas of
Software Engineering, such as requirements prioritization [4, 15,
41], software architecture improvement [5, 8, 35], and time and cost
planning [1, 2, 10, 29]. Traditional search techniques, such as brute
force or branch-and-bound [24], are used in some areas. However,
as the addressed problems grow in size and complexity, a search
procedure based on the exhaustive examination of all possible solu-
tions may require too much processing power to find the optimal
solution. Thus, using thorough searches in some situations, such
as those requiring quick decision-making responses or making use
of frequently updated data, becomes unfeasible.

The research field of Search-based Software Engineering (SBSE)
[3, 7, 16, 21] proposes the use of heuristic search techniques to solve
Software Engineering challenges which are described as optimiza-
tion problems. These techniques are more efficient in processing
power than traditional search, although they cannot be guaranteed

to find optimal solutions to the analyzed problem. In scenarios
where a complete search is not feasible, the goals of optimization
techniques are relaxed, and the search looks for reasonable (instead
of optimal) solutions to the problem. Research has shown that this
approach is promising for various Software Engineering problems.

One of the challenges frequently analyzed from the SBSE per-
spective is the Software Module Clustering (SMC) problem [31].
This problem deals with distributing the modules comprising a
software project among larger structures called clusters. The mod-
ules of the software project might be classes, methods, or variables.
The relationships between these modules represent the import of
classes, the invocation of methods, or the access to variables. Clus-
ters are groupings of modules and represent packages, namespaces,
or software subsystems. They are structures with a higher level
of abstraction than software modules. This manuscript assumes
that object-oriented programming is used; therefore, modules de-
pict classes, and clusters denote packages. Dependencies between
modules represent importing classes, calling methods, or accessing
variables. The pairs of terms module/class and cluster/package will
be used for the same purpose in this manuscript.

A good distribution of classes into packages helps to identify
the classes responsible for implementing a feature, provides more
straightforward navigation between the software components [17],
and makes it easier to understand the structure of the software
[23, 28]. Therefore, proper distribution of classes into packages
tends to make software easier to develop and maintain. In addition,
practice and experimental studies have shown a strong correlation
between poor distributions and the presence of failures [9].

The most frequently used metrics to assess the quality of a given
distribution of software modules into clusters are coupling and
cohesion [42]. Coupling measures dependency between software
modules (or the modules within a cluster) within a system. At the
same time, cohesion measures how much the module members (or
the modules within a cluster) are dedicated to a single objective.
Usually, coupling is measured by the number of dependencies be-
tween modules belonging to different clusters, while cohesion is
calculated through the dependencies between modules belonging
to the same cluster. In general, the goal of clustering is to distribute
the software modules in a given number of clusters to minimize
coupling and maximize cohesion – with the restriction that each
module must belong to a single cluster.

However, research shows that optimization based on metrics
that capture structural characteristics does not result in an adequate
distribution of modules into clusters from the developers’ point of
view [6]. One reason that might have led to such limited results is
the search for non-hierarchical distributions, that is, clusters can
contain only modules. In such distributions, clusters cannot contain

SBES’24, September 30 – October 04, 2024, Curitiba, PR Antunes and Barros

other clusters. On the other hand, most programming languages
allow the creation of clusters within clusters, and programmers
broadly use this resource. We, therefore, intend to explore the con-
cept of hierarchical distributions of modules into clusters.

Wood [40] developed a complexity measure for the hierarchi-
cal clustering of software projects based on a message-passing
metaphor called the Minimum Description Length (MDL) principle.
The metric makes no explicit mention of the concepts of cohesion
and coupling. Still, it aims to permit trade-offs between engineering
attributes (such as cohesion, coupling, and module size) to achieve
a better structure in a hierarchical framework. It assumes the best
distribution of modules into clusters for a software project is the
“simplest” according to the MDL principle.

In this paper, we performed an experiment on real-world projects
using a greedy algorithm applied to the software clustering prob-
lem and driven by two distinct fitness functions: one that does not
consider hierarchy (Modularization Quality - 𝑀𝑄) and the other
that does (Minimum Description Length - 𝑀𝐷𝐿). We wanted to
determine whether the results yielded by an optimization guided
by the second function produce distributions of modules into clus-
ters with higher authoritativeness than an optimization driven by
the former metric. By authoritativeness, we mean distributions of
modules to clusters closer to the one developers have proposed in
the software.

We compared both approaches using distinct metrics, such as the
average of classes per package and the percentage of commits that
contained classes belonging to a single package. We found that the
authoritativeness of solutions produced by an optimization guided
by 𝑀𝐷𝐿 is better on average than solutions produced by 𝑀𝑄 on
the chosen metrics. Also, while𝑀𝐷𝐿 produces distributions that
are still outperformed by the 𝐷𝐸𝑉 distribution on what concerns
the concentration of changes, such solutions are far better than
those produced by𝑀𝑄 .

This paper is structured as follows: Section 2 introduces the
theoretical foundation of information theory, which is required to
understand the MDL principle and the metric proposed by Wood
[40], as well as the related work. Section 3 presents the proposed
approach, while Section 4 depicts the experimental study setup
and results. Finally, section 5 presents the threats to this work’s
validity, and Section 6 highlights the conclusions and future work
directions.

2 BACKGROUND
2.1 SMC and the Minimum Description Length
In conversational language, we identify information about an indi-
vidual object as a set of descriptions of its characteristics. We can
formalize this concept computationally by defining the amount of
information required to describe a finite object (such as a string)
as the size of the smallest program (in bits) that, starting with a
blank memory, outputs the object and then terminates. This con-
cept of handling the quantity of information needed to describe
an individual object is called “Algorithmic Information Theory” or
“Kolmogorov Complexity” [25].

Kolmogorov Complexity started as a research field in probability
theory, combinatorics, and conceptions of randomness and gained
momentum with the theory of algorithms. It is based on Shannon’s

classical information theory [37] and aims to define a function
that calculates the quantity of information needed to represent an
ensemble of possible messages. Considering that all messages in
the ensemble are equally probable, this quantity is the number of
bits needed to count all possibilities to send unique messages from
a sender to a receiver. However, the theory cannot be directly used
in practice due to the noncomputability1 of such a count.

Rissanen [36] proposed the Minimum Description Length (MDL)
principle to cope with such a limitation. According to Li and Vitányi
[25], the Minimum Description Length principle states that the best
theory to explain a set of data is the one that minimizes the sum of
the length, in bits, of the description of the theory and the length, in
bits, of the data when encoded with the help of such theory. Given
some data 𝐷 , the 𝑀𝐷𝐿 principle states that we should pick the
theory T that minimizes Equation 1, where 𝑙𝑒𝑛𝑔𝑡ℎ(𝑇) is the number
of bits needed to minimally encode the theory 𝑇 and 𝑙𝑒𝑛𝑔𝑡ℎ(𝐷 |𝑇)
is the number of bits needed to minimally encode the data 𝐷 given
the theory 𝑇 . We must be able to decode the message; otherwise, a
single bit would be enough.

𝑙𝑒𝑛𝑔𝑡ℎ(𝑇) + 𝑙𝑒𝑛𝑔𝑡ℎ(𝐷 |𝑇) (1)
While applying the MDL principle to address the software mod-

ule clustering problem, Wood [40] proposed a theory to describe a
graph representing the design of a software system. In this graph,
nodes represent the modules that convey parts of the implemen-
tation of the software system, and edges represent dependencies
among these modules. Each module is represented by a unique
identifier (a positive integer), and each edge is represented by a pair
of positive integers representing, respectively, the identifiers of the
source and target modules of the dependency.

Wood [40] proposes that the length of a message describing
all edges of a graph is a measure of the structural complexity of
the graph and that a smaller message length indicates a simpler
graph. Subsequently, a simpler graph represents a better design
and, therefore, a better distribution of the software modules into
clusters. The author proposed the message depicted in Equation 2
to represent a hierarchical graph.

object_description = object_id +
|𝑛𝑜𝑑𝑒𝑠 | +
|𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 | {object1, . . . , object𝑚} +
|𝑒𝑑𝑔𝑒𝑠 | {𝑒𝑑𝑔𝑒1, . . . , 𝑒𝑑𝑔𝑒𝑒 }

point = {𝑜𝑏 𝑗𝑒𝑐𝑡_𝑖𝑑} ∗ 𝑏𝑎𝑠𝑖𝑐_𝑒𝑛𝑡𝑖𝑡𝑦_𝑖𝑑
edge = 𝑝𝑜𝑖𝑛𝑡1 − 𝑝𝑜𝑖𝑛𝑡2

(2)

The length of the message describing a graph representing the
structure of a software’s design using this encoding (Ψ) is calculated
by Equation 3, whereM is the set of all clusters, 𝑁𝑚 is the number
of sub-clusters and modules within cluster𝑚, 𝑁

′
𝑚 is the number

of sub-clusters within cluster 𝑚 (𝑁𝑚 ≥ 𝑁
′
𝑚), 𝐸𝑚 is the number

of edges described in cluster𝑚, and N𝑚 is the set of sub-clusters
and modules within cluster𝑚 (N𝑚 = |𝑁𝑚 |). 𝑓𝑛 is the frequency
of module or cluster 𝑛 in cluster𝑚, which for modules is given by

1Further details about the noncomputability as well as mathematical proof can be
found at [25].

A Comparison Between Hierarchical and Non-Hierarchical Software Clustering SBES’24, September 30 – October 04, 2024, Curitiba, PR

the degree2 of the corresponding module, and for clusters, is the
sum of the degrees of the child sub-clusters and modules plus 1 and
then 𝐹𝑛 =

∑
𝑛 𝑓𝑛 .

Ψ =
∑︁

𝑚∈M
(𝑛𝑜𝑑𝑒𝑠𝑚 + 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑚 + 𝑒𝑑𝑔𝑒𝑠𝑚 − 𝑓 𝑟𝑒𝑞𝑚 + 𝐸𝑚) + 1 (3)

𝑛𝑜𝑑𝑒𝑠𝑚 = log∗2 (𝑁𝑚 + 1) (4)

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑚 = log∗2 (𝑁
′
𝑚 + 1) (5)

𝑒𝑑𝑔𝑒𝑠𝑚 = log∗2 (𝐸𝑚 + 1) (6)

𝑓 𝑟𝑒𝑞𝑚 =
∑︁

𝑛∈N𝑚

𝑓𝑛 × log2
(
𝑓𝑛

𝐹𝑛

)
(7)

2.2 Related Work
Among the experiments performed on the SMC problem, those
carried out by the Drexel University group stand out [14, 27]. In
several comparative experiments [14, 20, 30], the results obtained
by a local search algorithm using the Random Restart Hill Climbing
technique were superior to those found by more complex meta-
heuristics, such as Genetic Algorithms and Simulated Annealing.
Pinto et al. [34] presented a heuristic based on Iterated Local Search
which proved effective for the SMC problem, outperforming the
genetic algorithm approaches and using less computational process-
ing time. Later, Monçores et al. [32] presented a heuristic based on
a constructive algorithm and the Large Neighborhood Search algo-
rithm that outperformed the ILS heuristic in 93 out of 124 software
projects with a confidence level of 95%.

Although most research work handles the SMC problem using
a non-hierarchical approach, some authors considered addressing
the SMC problem hierarchically. Wood’s work [40], presented in
the previous section, is an interesting example of such approaches
and was highlighted for serving as the basis for this research. The
approach used a narrow beam hill-climbing driven by the defined
complexitymeasure search strategy to look for less complex designs.
Initial empirical validation showed potential.

Lutz [26] proposed a variant of themetric proposed byWood [40]
and introduced the term HMD (Hierarchical Modular Decomposi-
tion) to refer to a hierarchical structure of modules. He proposed
a genetic algorithm that was run on three examples. The author
concluded that the HMD produced by the search had its compo-
nents better organized and is logically better than the organization
found by Wood [40] for one instance. We have not based our work
on Lutz’s work because implementing the metric defined by the
author did not produce the same results outlined in the paper. So,
we decided to take a step back and implement the original work
made by Wood, which was successfully replicated.

Another hierarchical clustering algorithm is ACDC (Algorithm
for Comprehension-Driven Clustering), proposed by Tzerpos et
al. [38]. Unlike algorithms based on structural information that
aim to satisfy metrics such as low coupling and high cohesion, the
2An edge, (𝑛𝑖 , 𝑛 𝑗) , is said to be incident from module 𝑛𝑖 and incident to module 𝑛 𝑗 .
The sum of the number of edges incident to and from a module is called the degree of
the module [40].

ACDC algorithm aims for an easily understandable output, ensuring
that the clusters follow familiar patterns and naming the clusters
intelligently. Experiments were carried out with two real projects.
It was found that ACDC can be an effective clustering algorithm
and a good candidate for reverse engineering projects.

Hall and McMinn [19] analyzed the Bunch tool in the hierar-
chical approach. The Bunch tool was used to produce hierarchical
solutions through successive clusters. A bottom-up approach was
used, with each clustering grouping the clusters produced previ-
ously, i.e. the clusters acting as modules in the new clustering. The
study results indicate an improvement of up to 30% by reducing
the hierarchical levels’ layering produced by the clustering.

Few studies have proposed hierarchy-based techniques. Some of
these studies relied on meta-heuristics, particularly genetic algo-
rithms, and no work we have been able to track has compared the
proposed solutions with the developers’ distributions. Our study
tested a hierarchical-based metric on real-world projects and com-
pared it with the developers’ solutions. To our knowledge, no such
work has been carried out.

3 PROPOSED APPROACH
As noted in the previous section, many different heuristics have
been proposed to solve the SMC problem. Notably, the application
of local search was shown to be promising for non-hierarchical
clustering, with good results being yielded by algorithms such as
the Iterated Local Search (𝐼𝐿𝑆) [34] and the Large Neighborhood
Search (𝐿𝑁𝑆) [33]. In both approaches, the first step of the search
process involves generating a promising initial solution to ease the
computational time required to execute the local search.

Pinto’s implementation of 𝐼𝐿𝑆 , called 𝐼𝐿𝑆_𝐶𝑀𝑆 , uses a construc-
tive approach in which the initial solution is built iteratively using a
Greedy algorithm [13, 18]. Greedy algorithms build up a solution in
small steps, choosing a decision at each step myopically to optimize
some underlying criterion. For some problems, Greedy algorithms
can produce a solution that is guaranteed to be close to optimal,
even if it does not achieve the precise optimum [22].

Pinto’s greedy algorithm is based on an approach applied to
clustering large networks [11] and used to identify “community
structures” – vertices more densely connected among themselves
than connected to vertices in other clusters. The problem of finding
“community structures” can be generically represented as identi-
fying groups in large networks, such as the Internet, social net-
works, and article citation networks. The greedy algorithm is an
Agglomerative Clustering (𝐴𝐶) algorithm that is fast enough for the
hierarchical partitioning of graphs with several thousand vertices.

Our proposed approach is based on Pinto’s work and modifies
the latter by replacing𝑀𝑄 with the𝑀𝐷𝐿 fitness function to drive
the optimization process using the 𝐴𝐶 algorithm. Alongside the
new fitness function, we have modified the original algorithm to
allow the creation of hierarchical structures. We added a step to
attempt to add clusters as sub-modules of other clusters to see if
it enhances MDL. Furthermore, at the end of the algorithm, we
perform cleanup operations: (i) remove clusters without children
and (ii) merge clusters with just one child to their parents to avoid
single-node clusters. These modifications have been proposed after
some exploratory executions. Besides, the proposal of using cluster

SBES’24, September 30 – October 04, 2024, Curitiba, PR Antunes and Barros

Algorithm 1: Agglomerative Clustering*

1: 𝑠∗ ← generate an initial solution with one module per cluster
2: repeat
3: 𝑚𝑎𝑥𝐷𝑒𝑙𝑡𝑎← 0
4: for each 𝑐 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
5: for each 𝑐

′ ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
6: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑀𝑒𝑟𝑔𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑀𝐷𝐿(𝑐, 𝑐 ′)
7: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎 > 𝑚𝑎𝑥𝐷𝑒𝑙𝑡𝑎 then
8: 𝑚𝑎𝑥𝐷𝑒𝑙𝑡𝑎← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎

9: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑐 ← 𝑐

10: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑐
′ ← 𝑐

′

11: end if
12: end for
13: end for
14: 𝑠∗ ←𝑚𝑒𝑟𝑔𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑐, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑐 ′)
15: until does not find clusters to merge
16: repeat
17: 𝑚𝑎𝑥𝐷𝑒𝑙𝑡𝑎← 0
18: for each 𝑐 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
19: for each 𝑐

′ ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
20: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎←

𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑑𝑑𝐴𝑠𝐶ℎ𝑖𝑙𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑀𝐷𝐿(𝑐, 𝑐 ′)
21: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎 > 𝑚𝑎𝑥𝐷𝑒𝑙𝑡𝑎 then
22: 𝑚𝑎𝑥𝐷𝑒𝑙𝑡𝑎← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎

23: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑐 ← 𝑐

24: 𝑡𝑎𝑟𝑔𝑒𝑡_𝑐
′ ← 𝑐

′

25: end if
26: end for
27: end for
28: 𝑠∗ ← 𝐴𝑑𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑠𝐶ℎ𝑖𝑙𝑑 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑐, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑐 ′)
29: until does not find clusters to add as children
30: 𝑠∗ ← 𝑟𝑒𝑚𝑜𝑣𝑒𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠𝑊 𝑖𝑡ℎ𝑜𝑢𝑡𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑠∗)
31: 𝑠∗ ←𝑚𝑜𝑣𝑒𝑂𝑛𝑙𝑦𝐶ℎ𝑖𝑙𝑑𝑇𝑜𝐺𝑟𝑎𝑛𝑑𝑝𝑎𝑟𝑒𝑛𝑡 (𝑠∗)

movements was essential to form the hierarchical structure; oth-
erwise, the algorithm would suggest a flat solution. The modified
algorithm’s pseudo-code, Agglomerative Clustering* (𝐴𝐶∗), is pre-
sented at Algorithm 1. In the scope of this paper, when we mention
𝐴𝐶 using𝑀𝐷𝐿 as the fitness function, we are referring to 𝐴𝐶∗.

4 EXPERIMENTS
4.1 Project Selection
We have selected systems used in previous studies [32, 34] and
applied the following criteria.

(1) Open-source software: we chose open-source libraries due
to the availability of the source code, which is necessary to
execute and evaluate the proposed approach;

(2) Source code is available through a Git repository: since we
needed to evaluate software evolution history, we chose
systems that stored their source code in Git repositories. Git
is one of the most popular VCS in use today;

(3) Source code is primarily written in Java programming lan-
guage: we decided to evaluate Java-based systems due to the

availability of tools to extract project metadata automatically
from the compiled code;

(4) Different numbers of classes and packages: to evaluate the
proposed approach in different scenarios and scales, we
picked systems with varying sizes, measured as the number
of classes and packages (from tens to thousands).

Since we have started from 124 open-source Java programs, the
criteria (1) and (3) have been automatically applied. We removed
those missing a GitHub repository to ensure we could analyze their
source-code modification history.

Table 1: Investigated software systems

Software system Description Version
AEP Core A client Java library to manage App En-

gine Java applications for any project
that performs App Engine Java applica-
tion management.

0.10.0

JavaGeom JavaGeom is a geometry library for Java. 0.11.3
JUnit The 5th major version of the

programmer-friendly testing framework
for Java and the JVM.

5.10.1

JMetal jMetal is a Java-based framework for
multi-objective optimization with meta-
heuristics.

6.2.2

JGit An implementation of the Git version
control system in pure Java.

6.8.0

Table 1 presents the chosen systems, their description, and ver-
sions. We chose to work with a limited number of classes and
packages for the preliminary studies reported in this chapter be-
cause of the time needed to execute 𝐼𝐿𝑆_𝐶𝑀𝑆 for large software
projects, particularly when the𝑀𝐷𝐿 fitness function was used.

The proposed algorithm merges and rebuilds the set of packages
comprising the system several times during the optimization. Thus,
the number of iterations it performs and its execution time are
strongly related to the number of classes and relationships. Also,
on each iteration, MDL must be recalculated from scratch, an ex-
pensive process in terms of computation power that also requires
going over all the classes and their relationships. For instance, JGit
has 1,613 classes. Considering the execution time observed while
optimizing its sub-modules, we estimate that 200 days would be
required to optimize the entire system using the same configura-
tions and hardware. On the other hand, MQ is calculated through
an optimized version that does not require recalculating the metric
from scratch on every round of optimization. Thus, it took seconds
to calculate all sub-modules when a change is tested during the op-
timization. Using MQ, generating the solution for the entire system
would take minutes.

Recalculating the metric from scratch is a drawback of the pro-
posed approach, which will be addressed in the next iterations of
the research. There are avenues for improving the performance of
the MDL metric calculation process. In the current study, we aimed
to determine whether the proposed solutions would be closer to
those developers created.

Therefore, we extracted sub-modules with less than 200 classes
from each of the selected software systems to maintain a reasonable
variation in the number of classes and packages. The limit was
chosen as a threshold to guarantee that the optimization of each
one of the projects could run in a short period (up to 30 minutes).

A Comparison Between Hierarchical and Non-Hierarchical Software Clustering SBES’24, September 30 – October 04, 2024, Curitiba, PR

Table 2 shows the sub-modules selected and their number of
classes and packages.

Table 2: Investigated systems/sub-modules ordered by the
number of classes.

ID Software system Sub-module Classes Packages
AEP AEP Core - 162 17
JGE JavaGeom - 159 20
JUP JUnit Platform 135 10
JMC JMetal Component 132 43
JUJ JUnit Jupiter 129 9
JGP JGit PGM 121 5
JUL JUnit Launcher 115 7
JGS JGit SSH 98 7
JMA JMetal Auto 69 7
JGH JGit HTTP 61 3

4.2 Data Collection
We executed the 𝐴𝐶 algorithm for each selected system’s sub-
module with 𝑀𝑄 and 𝑀𝐷𝐿 fitness functions. Subsequently, the
following information has been extracted:
• Number of packages: the number of packages in the resulting
solution;
• Average of classes per package: the average number of classes
per package calculated by dividing the number of classes
in the project by the number of packages in the resulting
solution. Nested packages are counted independently;
• Max depth: the longest path from the root package to the
deepest package in the hierarchy;
• 𝑀𝑜𝐽𝑜𝐹𝑀 : calculated by comparing the optimization results
with the distribution of classes to packages proposed by the
developers;
• Single-package commits ratio: percentage of commits that
contained classes belonging to a single package;
• Average number of packages affected per commit: average
number of packages with classes contained in each commit
to the version control system.

The “number of packages” and the “average number of classes per
package” metrics strike a balance between the number of packages
and the number of classes on each package. While systems with
fewer packages are easier to understand, a package with many
classes is usually more complex than one with just a few. So, we
must balance the total number of packages and the number of
classes per package.

The “max depth” metric has been studied to determine whether
the solutions contain hierarchies comparable to those humans gen-
erated. The𝑀𝑜 𝑗𝑜𝐹𝑀 metric compares two distributions of classes
into packages for the same system. It points out how far a solu-
tion generated by an algorithm is from the solution designed by
developers.

The “single-package commits ratio” computes how often classes
belonging to the same package are committed together. We assume
that a commit modifies a single feature provided by the system. So,
a large number of single-package commits indicates that the related

distribution of classes into packages brings together classes that are
changed together for a single purpose. On the other hand, while
single-package commits would be desired, commits involving more
than one package might involve as few as possible. So, the “average
number of packages affected per commit” metric determines if such
a concept applies to a given solution.

Since the 𝐴𝐶 algorithm is deterministic, we have executed it
once for each instance. We then compared the results with the dis-
tribution of classes to packages proposed by the developers of each
project. We refer to such distribution as “𝐷𝐸𝑉 ”. The distribution
resulting from the𝑀𝑄-driven optimization was called “𝑀𝑄”, and
“𝑀𝐷𝐿” was the name given to the distribution proposed by the
𝑀𝐷𝐿-driven optimization. Next, we present the results and related
discussion for each information described above.

4.3 Analysis: Number of Packages
Figure 1 presents the number of packages for each distribution of
classes into packages (𝐷𝐸𝑉 ,𝑀𝑄 , and𝑀𝐷𝐿). Nested packages were
counted independently for the 𝐷𝐸𝑉 and 𝑀𝐷𝐿 distributions. For
instance, if package A contained packages A1 and A2, the number
of packages would be three: A, A1, and A2. This allows comparing
the number of packages with the solution proposed by𝑀𝑄 , which
contains only flat packages.

Figure 1: Number of packages (𝐷𝐸𝑉 x𝑀𝑄 x𝑀𝐷𝐿).

We present the raw data in Table 3. We observe a large difference
in the number of packages on different solutions. 𝑀𝑄 generated
many more packages than the 𝑀𝐷𝐿 and the 𝐷𝐸𝑉 solutions for
all software projects under analysis, which we can observe in the
𝑀𝑄/𝐷𝐸𝑉 column and visually through the boxplot in Figure 2.
The ratio between 𝑀𝑄 and 𝐷𝐸𝑉 varies from 1.35 to 10.60, with
an average of 6.42 and a median of 7.04. For most cases, 𝑀𝐷𝐿

generated a balanced number of packages, with a few projects pro-
ducing fewer packages than 𝐷𝐸𝑉 (𝐽𝑀𝐶 and 𝐽𝑀𝐴), coincidentally
both sub-modules of the JMetal project. We can observe this in the
𝑀𝐷𝐿/𝐷𝐸𝑉 column. The ratio between𝑀𝐷𝐿 and 𝐷𝐸𝑉 varies from
0.70 to 5.80, with an average of 3.45 and a median of 3.59.

Furthermore, the correlation coefficient (𝜌) of the difference be-
tween𝑀𝑄 and𝑀𝐷𝐿 (𝑀𝑄−𝑀𝐷𝐿 column) and the number of classes
is equal to 0.79, which indicates a strong correlation according to
Cohen [12]. In other words, we can affirm that when the number
of classes increases, the difference between the solutions proposed
by𝑀𝐷𝐿 and𝑀𝑄 also increases, meaning the number of packages
in𝑀𝐷𝐿 grows slower than𝑀𝑄 .

SBES’24, September 30 – October 04, 2024, Curitiba, PR Antunes and Barros

Table 3: Number of packages (𝐷𝐸𝑉 x𝑀𝑄 x𝑀𝐷𝐿).

ID # Packages Packages Packages 𝑀𝑄/ 𝑀𝐷𝐿/ 𝑀𝑄−
(𝐷𝐸𝑉) (𝑀𝑄) (𝑀𝐷𝐿) 𝐷𝐸𝑉 𝐷𝐸𝑉 𝑀𝐷𝐿

AEP 162 17 85 59 5 3.47 26
JGE 159 20 70 26 3.5 1.3 44
JUP 135 10 72 37 7.2 3.7 35
JMC 132 43 58 30 1.35 0.7 28
JUJ 129 9 62 31 6.89 3.44 31
JGP 121 5 53 29 10.6 5.8 24
JUL 115 7 62 40 8.86 5.71 22
JGS 98 7 59 30 8.43 4.3 29
JMA 69 7 14 5 2 0.71 9
JGH 61 3 31 16 10.33 5.33 15
Min - 3.0 14.0 5.0 1.35 0.70 9.0
Mean - 12.8 56.6 30.3 6.42 3.45 26.3
Median - 8.0 60.5 30.0 7.04 3.59 27.0
Max - 43.0 85.0 59.0 10.60 5.80 44.0

Figure 2: Number of packages (𝐷𝐸𝑉 x𝑀𝑄 x𝑀𝐷𝐿) boxplot.

4.4 Analysis: Average of Classes per Package
Figure 3 shows each distribution’s average number of classes per
package (𝐷𝐸𝑉 , 𝑀𝑄 , and 𝑀𝐷𝐿). We also present the raw data in
Table 4.𝑀𝑄 has an average of 2.33 and a median of 2.05 classes per
package, which is far different than the 𝐷𝐸𝑉 distribution, which
has an average of 9.14 and a median of 8.25. In contrast, 𝑀𝐷𝐿

contains, on average, 5.85 classes per package with a median of
4.95 – a balanced solution compared to the previous two.

Figure 3: Average of classes per package (𝐷𝐸𝑉 x𝑀𝑄 x𝑀𝐷𝐿).

The DEV distributions show larger values for most software
projects, from eight to twelve classes per package on average, except
for 𝐽𝑀𝐶 and 𝐽𝑀𝐴, which have fewer classes per package (3.4 and
6.7, respectively) – again sub-modules of the JMetal project. This can
be visualized in the boxplot in Figure 4. One interesting observation

is that the MDL average is greater than DEV’s for those projects
(5.4 and 14.6, respectively).

In the𝑀𝐷𝐿/𝐷𝐸𝑉 column, we can observe that the ratio between
𝑀𝐷𝐿 and 𝐷𝐸𝑉 varies from 0.31 to 2.18, with an average of 0.78 and
a median of 0.5. This indicates a tendency to produce fewer classes
per package than 𝐷𝐸𝑉 but with a smaller variance than𝑀𝑄 , which
can be observed in the𝑀𝑄/𝐷𝐸𝑉 column. The ratio between𝑀𝑄

and 𝐷𝐸𝑉 varies from 0.15 to 0.73, with an average of 0.31 and a
median of 0.23.

The correlation (𝜌) of the difference between 𝑀𝐷𝐿 and 𝑀𝑄

(𝑀𝐷𝐿 −𝑀𝑄 column) and the number of classes is equal to −0.41,
which indicates a medium inverted correlation according to Cohen
[12]. In other words, when the number of classes increases, the
difference between the solutions proposed by 𝑀𝐷𝐿 and 𝑀𝑄 de-
creases, meaning the number of classes per package in𝑀𝐷𝐿 grows
faster than𝑀𝑄 .

Table 4: Average of classes per package (𝐷𝐸𝑉 x𝑀𝑄 x𝑀𝐷𝐿).

ID Classes Classes Classes Classes 𝑀𝑄/ 𝑀𝐷𝐿/ 𝑀𝐷𝐿−
(𝐷𝐸𝑉) (𝑀𝑄) (𝑀𝐷𝐿) 𝐷𝐸𝑉 𝐷𝐸𝑉 𝑀𝑄

AEP 162 8 1.9 3.7 0.24 0.46 1.8
JGE 159 7.9 2.3 7.1 0.29 0.9 4.8
JUP 135 10.6 1.9 4.6 0.18 0.43 2.7
JMC 132 3.4 2.3 5.4 0.68 1.59 3.1
JUJ 129 11.7 2.1 5.1 0.18 0.44 3
JGP 121 14.3 2.3 5.1 0.16 0.36 2.8
JUL 115 12.4 1.9 3.9 0.15 0.31 2
JGS 98 7.9 1.7 4.2 0.22 0.53 2.5
JMA 69 6.7 4.9 14.6 0.73 2.18 9.7
JGH 61 8.5 2 4.8 0.24 0.56 2.8
Min - 3.40 1.70 3.70 0.15 0.31 1.80
Mean - 9.14 2.33 5.85 0.31 0.78 3.52
Median - 8.25 2.05 4.95 0.23 0.50 2.80
Max - 14.30 4.90 14.60 0.73 2.18 9.70

Figure 4: Average of classes per package (𝐷𝐸𝑉 x𝑀𝑄 x𝑀𝐷𝐿)
boxplot.

4.5 Analysis: Maximum Depth
Figure 5 depicts the maximum depth of the package structure in
each distribution (𝐷𝐸𝑉 ,𝑀𝑄 , and𝑀𝐷𝐿). Also, the raw data is pre-
sented in Table 5.𝑀𝑄 generates flat packages, so the depth is always
constant, equal to 1 - as we can observe in both figure and table.
In contrast,𝑀𝐷𝐿 contains, on average, a maximum of 7 hierarchy
levels and values varying from 3 to 11. This is similar to the values
obtained at the 𝐷𝐸𝑉 distributions, which vary from 6 to 10 with

A Comparison Between Hierarchical and Non-Hierarchical Software Clustering SBES’24, September 30 – October 04, 2024, Curitiba, PR

an average of 7.4 and median of 7. This can also be observed in the
boxplot depicted in Figure 6.

Figure 5: Maximum depth (𝐷𝐸𝑉 x𝑀𝑄 x𝑀𝐷𝐿)

In the𝑀𝐷𝐿/𝐷𝐸𝑉 column, we can observe that the ratio between
𝑀𝐷𝐿 and 𝐷𝐸𝑉 varies from 0.63 to 1.33, with an average of 0.95 and
a median of 1.06. This indicates how close one is to the other. The
ratio between𝑀𝑄 and 𝐷𝐸𝑉 (𝑀𝑄/𝐷𝐸𝑉 column) varies according
to the 𝐷𝐸𝑉 distribution since𝑀𝑄 values are constant.

The correlation (𝜌) of the difference between 𝑀𝐷𝐿 and 𝑀𝑄

(𝑀𝐷𝐿 − 𝑀𝑄 column) and the number of classes is equal to 0.73,
which indicates a strong correlation according to Cohen [12]. In
other words, we can say that the difference between𝑀𝐷𝐿 and𝑀𝑄

grows when the number of classes increases. Since𝑀𝑄 proposes
only flat solutions and is constant, we can conclude the solutions
proposed by𝑀𝐷𝐿 increase the maximum depth according to the
number of classes.

Table 5: Maximum depth (𝐷𝐸𝑉 x𝑀𝑄 x𝑀𝐷𝐿).

ID Classes Depth Depth Depth 𝑀𝑄/ 𝑀𝐷𝐿/ 𝑀𝐷𝐿−
(𝐷𝐸𝑉) (𝑀𝑄) (𝑀𝐷𝐿) 𝐷𝐸𝑉 𝐷𝐸𝑉 𝑀𝑄

AEP 162 9 1 10 0.11 1.11 9
JGE 159 5 1 6 0.20 1.20 5
JUP 135 6 1 7 0.17 1.17 6
JMC 132 8 1 5 0.13 0.63 4
JUJ 129 6 1 6 0.17 1.00 5
JGP 121 5 1 6 0.20 1.20 5
JUL 115 6 1 8 0.17 1.33 7
JGS 98 7 1 6 0.14 0.86 5
JMA 69 6 1 2 0.17 0.33 1
JGH 61 6 1 4 0.17 0.67 3
Min - 5.0 1 5.0 0.11 0.63 4
Mean - 6.4 1 6.0 0.16 0.95 5
Median - 6.0 1 6.0 0.17 1.06 5
Max - 9.0 1 10.0 0.20 1.33 9

4.6 Analysis:𝑀𝑜 𝑗𝑜𝐹𝑀

Figure 7 shows 𝑀𝑜 𝑗𝑜𝐹𝑀 results for 𝑀𝑄 and 𝑀𝐷𝐿 compared to
the 𝐷𝐸𝑉 distribution. Except for 𝐽𝑀𝐴, we can observe that𝑀𝐷𝐿

values are mostly better than 𝑀𝑄 values – values closer to 100
represent more similarity between the distribution yielded by the
optimization process and the distribution proposed by the devel-
opers. Following the same pattern as previous metrics, the 𝐽𝑀𝐴’s
𝑀𝑄 distribution𝑀𝑜 𝑗𝑜𝐹𝑀 value is better than𝑀𝐷𝐿.

Table 6 shows the 𝑀𝑜 𝑗𝑜𝐹𝑀 values for all projects alongside
relevant metrics. We can then observe that𝑀𝑄 values vary from

Figure 6: Maximum depth (𝐷𝐸𝑉 x𝑀𝑄 x𝑀𝐷𝐿) boxplot.

Figure 7:𝑀𝑜 𝑗𝑜𝐹𝑀 (𝑀𝑄 x𝑀𝐷𝐿)

32.9 to 50.0 and have an average of 39.6 and a median of 37.6, which
is very different from the 𝑀𝐷𝐿 values. 𝑀𝐷𝐿 ranges from 35.5 to
69.0, with an average of 55.35 and a median of 58.10. The boxplot
in Figure 8 depicts this visually.

Table 6:𝑀𝑜 𝑗𝑜𝐹𝑀 value (𝑀𝑄 x𝑀𝐷𝐿).

ID Classes 𝑀𝑜 𝑗𝑜𝐹𝑀 𝑀𝑜 𝑗𝑜𝐹𝑀 𝑀𝐷𝐿 −𝑀𝑄

(𝑀𝑄) (𝑀𝐷𝐿)
AEP 162 32.9 46.3 13.4
JGE 159 35.7 42.7 7.0
JUP 135 38.3 68.0 29.7
JMC 132 36.9 45.9 9.0
JUJ 129 43.0 61.2 18.2
JGP 121 43.1 69.0 25.9
JUL 115 36.7 66.1 29.4
JGS 98 34.1 55.0 20.9
JMA 69 50.0 35.5 -14.5
JGH 61 44.8 63.8 19.0
Min - 32.9 35.50 -14.5
Mean - 39.6 55.35 15.8
Median - 37.6 58.10 18.6
Max - 50.0 69.00 29.7

For the 𝐽𝑀𝐴 instance, the results show that the 𝑀𝑄 distribu-
tion comes closer to the 𝐷𝐸𝑉 distribution than the𝑀𝐷𝐿 proposal.
Looking at the previous sections, we can infer this is due to (i) the
average of classes per package being smaller than in other projects,
and (ii) the generated𝑀𝐷𝐿 solution producing fewer packages and
putting more classes in a single package. These widened the chasm
between the two solutions.

The correlation (𝜌) of the difference between 𝑀𝐷𝐿 and 𝑀𝑄

(𝑀𝐷𝐿 − 𝑀𝑄 column) and the number of classes is equal to 0.22,
which indicates a weak correlation according to Cohen [12]. In

SBES’24, September 30 – October 04, 2024, Curitiba, PR Antunes and Barros

Figure 8:𝑀𝑜 𝑗𝑜𝐹𝑀 value (𝑀𝑄 x𝑀𝐷𝐿) boxplot.

other words, we cannot correlate the number of classes with the
difference between the solutions proposed by 𝑀𝐷𝐿 and 𝑀𝑄 . It
might indicate that this metric varies according to other solutions’
aspects not yet considered, such as the number of dependencies.

4.7 Analysis: Single-package Commits Ratio
Table 7 and Figure 9 present the percentile of commits with a single
package involved. We notice a better performance on the 𝐷𝐸𝑉

distribution (more commits involving changes in classes from a
single package), with𝑀𝐷𝐿 coming closer than𝑀𝑄 for all software
projects. For JMA, we observed that𝑀𝐷𝐿 has better results than
the 𝐷𝐸𝑉 distribution. This can indicate that the 𝐷𝐸𝑉 distribution
for this instance might benefit from restructuring.

Table 7: Percentage of one-package commits (𝐷𝐸𝑉 x 𝑀𝑄 x
𝑀𝐷𝐿).

ID Classes % % % 𝑀𝑄/ 𝑀𝐷𝐿/ 𝑀𝐷𝐿−
(𝐷𝐸𝑉) (𝑀𝑄) (𝑀𝐷𝐿) 𝐷𝐸𝑉 𝐷𝐸𝑉 𝑀𝑄 (%)

AEP 162 64.7 52.3 56.9 0.81 0.88 4.59
JGE 159 40.4 23.4 33.6 0.58 0.83 10.22
JUP 135 80.7 64.1 77.1 0.79 0.96 12.95
JMC 132 67.2 54.8 64.0 0.82 0.95 9.17
JUJ 129 79.9 63.6 67.1 0.8 0.84 3.49
JGP 121 86.7 79.7 84.0 0.92 0.97 4.37
JUL 115 75.4 59.7 69.7 0.79 0.93 10.00
JGS 98 50.0 39.5 44.2 0.79 0.88 4.66
JMA 69 61.1 48.7 70.6 0.80 1.16 21.9
JGH 61 84.1 57.9 61.9 0.69 0.74 3.96
Min - 40.43 23.40 33.62 0.58 0.74 3.49
Mean - 69.01 54.38 62.91 0.78 0.91 8.53
Median - 71.27 56.37 65.53 0.80 0.90 6.92
Max - 86.67 79.67 84.04 0.92 1.16 21.9

In the 𝑀𝐷𝐿/𝐷𝐸𝑉 column, we observe that the ratio between
𝑀𝐷𝐿 and 𝐷𝐸𝑉 varies from 0.74 to 1.16, with an average of 0.91
and a median of 0.90. This indicates a tendency to produce results
that are more similar to 𝐷𝐸𝑉 than𝑀𝑄 regarding the distribution
of change, which can be observed in the 𝑀𝑄/𝐷𝐸𝑉 column. For
𝐽𝑀𝐴,𝑀𝐷𝐿 actually outperformed 𝐷𝐸𝑉 , with 70.6% against 61.1%.
The ratio between𝑀𝑄 and 𝐷𝐸𝑉 varies from 0.58 to 0.92, with an
average of 0.78 and a median of 0.80. This can be seen visually
through the boxplot in Figure 10.

The correlation (𝜌) of the difference between 𝑀𝐷𝐿 and 𝑀𝑄

(𝑀𝐷𝐿 −𝑀𝑄 column) and the number of classes is equal to −0.23,
which indicates a weak inverted correlation according to Cohen

Figure 9: Single-package commits ratio (𝐷𝐸𝑉 x𝑀𝑄 x𝑀𝐷𝐿)

Figure 10: Single-package commits ratio (𝐷𝐸𝑉 x𝑀𝑄 x𝑀𝐷𝐿)
boxplot.

[12]. We wanted to determine whether the number of classes influ-
enced the quality of the𝑀𝑄 and𝑀𝐷𝐿 solutions for single-package
commits. We might say that, as the number of classes increases, the
𝑀𝑄 solutions come slightly closer to the𝑀𝐷𝐿 ones.

4.8 Analysis: Average Packages per Commit
Table 8 and Figure 11 show the average number of packages per
commit on each distribution (𝐷𝐸𝑉 , 𝑀𝑄 , and 𝑀𝐷𝐿). This metric
complements the previous metric, giving us a better view of how
distant some software projects are from a single-package commit,
i.e., the bigger the value, the worse the performance.

Table 8: Average of clusters per commit (𝐷𝐸𝑉 x𝑀𝑄 x𝑀𝐷𝐿).

ID # Clusters Clusters Clusters 𝑀𝑄/ 𝑀𝐷𝐿/ 𝑀𝑄−
(𝐷𝐸𝑉) (𝑀𝑄) (𝑀𝐷𝐿) 𝐷𝐸𝑉 𝐷𝐸𝑉 𝑀𝐷𝐿

AEP 162 1.7 2.8 2.3 1.65 1.35 0.5
JGE 159 3.0 6.6 3.1 2.20 1.03 3.5
JUP 135 1.3 2.7 1.8 2.08 1.38 0.9
JMC 132 2.0 3.0 2.1 1.50 1.05 0.9
JUJ 129 1.4 2.4 1.8 1.71 1.29 0.6
JGP 121 1.2 1.7 1.4 1.42 1.17 0.3
JUL 115 1.4 2.6 2.0 1.86 1.43 0.6
JGS 98 1.7 3.0 2.5 1.76 1.47 0.5
JMA 69 1.6 2.3 1.3 1.44 0.81 1.0
JGH 61 1.2 2.7 1.9 2.25 1.58 0.8
Min - 1.20 1.70 1.30 1.42 0.81 0.30
Mean - 1.65 2.98 2.02 1.79 1.26 0.96
Median - 1.50 2.70 1.95 1.74 1.32 0.70
Max - 3.00 6.60 3.10 2.25 1.58 3.50

A Comparison Between Hierarchical and Non-Hierarchical Software Clustering SBES’24, September 30 – October 04, 2024, Curitiba, PR

Figure 11: Average of packages per commit (𝐷𝐸𝑉 x 𝑀𝑄 x
𝑀𝐷𝐿)

We can observe a poor performance for the 𝑀𝑄 distribution
of 𝐽𝐺𝐸 with 6.6 packages per commit on average. The remaining
projects all have larger values than 𝐷𝐸𝑉 and𝑀𝐷𝐿. Once more, we
observe a better performance of the 𝑀𝐷𝐿 distribution for 𝐽𝑀𝐴,
with 1.3 against 1.6 and 2.3 from 𝐷𝐸𝑉 and𝑀𝑄 , respectively.

Figure 12: Average of packages per commit (𝐷𝐸𝑉 x 𝑀𝑄 x
𝑀𝐷𝐿) boxplot.

The ratio between 𝑀𝐷𝐿 and 𝐷𝐸𝑉 (column 𝑀𝐷𝐿/𝐷𝐸𝑉) varies
from 0.81 to 1.58, with an average of 1.26 and a median of 1.32.
This indicates a tendency to produce results more similar to 𝐷𝐸𝑉
than 𝑀𝑄 , which can be observed in the 𝑀𝑄/𝐷𝐸𝑉 column. For
𝐽𝑀𝐴 again,𝑀𝐷𝐿 actually outperformed 𝐷𝐸𝑉 , with 1.3 against 1.6.
The ratio between𝑀𝑄 and 𝐷𝐸𝑉 varies from 1.42 to 2.25, with an
average of 1.79 and a median of 1.74. This could also be observed
from the boxplot in Figure 12.

The correlation (𝜌) of the difference between 𝑀𝐷𝐿 and 𝑀𝑄

(𝑀𝐷𝐿 − 𝑀𝑄 column) and the number of classes is equal to 0.33,
which indicates a medium correlation according to Cohen [12]. In
other words, we can say that as the number of classes increases, the
𝑀𝑄 solutions increase the average number of packages involved
in a single commit with their distributions.

4.9 Summary
Next, we summarize the results detailed in the former subsections
to draw conclusions from the results of our studies.

𝑀𝑄 generated many more packages than the𝑀𝐷𝐿 and the 𝐷𝐸𝑉
solutions for all software projects under analysis. Consequently,

𝑀𝑄 produced solutions with a much smaller average ratio of classes
to packages. This confirms the results presented by Barros et al. [6]
for the software projects analyzed here. While solutions generated
by𝑀𝐷𝐿 present a larger number of packages than the 𝐷𝐸𝑉 distri-
bution and, subsequently, smaller ratios of classes to packages than
the distribution proposed by the developers, we observe a clear
improvement toward automated software clustering.

𝑀𝐷𝐿 generated solutions with a maximum depth of hierarchy
levels compatible with the 𝐷𝐸𝑉 distribution. Furthermore, such
solutions have a median 𝑀𝑜𝐽𝑜𝐹𝑀 of 58.10 and are far closer to
the 𝐷𝐸𝑉 distribution than solutions generated by 𝑀𝑄 (median
𝑀𝑜𝐽𝑜𝐹𝑀 of 37.6). Thus, we can conclude that the authoritativeness
of solutions produced by an optimization guided by𝑀𝐷𝐿 is better
on average than solutions produced by𝑀𝑄 .

Finally, concerning the version control system, we noticed that
the 𝐷𝐸𝑉 distribution has the largest percentage of commits involv-
ing changes in classes from a single package, with 𝑀𝐷𝐿 coming
closer than𝑀𝑄 for all software projects analyzed.𝑀𝐷𝐿-based solu-
tions also present an average number of packages involved on each
commit slightly higher than the 𝐷𝐸𝑉 distribution. We conclude
that while𝑀𝐷𝐿 produces distributions of classes into packages that
are still outperformed by the 𝐷𝐸𝑉 distribution on what concerns
the concentration of changes, such solutions are far better than
those produced by𝑀𝑄 .

5 VALIDITY THREATS
According to Wohlin et al. [39], four categories of validity threats
may endanger the results of experimental studies: construct, inter-
nal, external, and conclusion threats.

Construct validity threats are related to generalizing the re-
sults to the concepts behind the study, in other words, the rela-
tionship between theory and observation. To minimize this kind
of threat, the theory and reasoning behind selecting the algorithm,
software systems subjected to analysis, and fitness functions were
thoroughly presented in section 4. We have also considered open-
source projects actively used and maintained in the Software Engi-
neering community to prevent using toy examples.

The internal validity of experiments is threatened when the
results can be tainted by modeling and measurement errors, or
we cannot replicate the behavior of the study. To guarantee the
reproducibility of the experiments, all the source code and projects
used in the experiments will be made available in a public repository.
Furthermore, the steps to reproduce the results will be detailed in
the same repository.

The external validity threats are related to our ability to gen-
eralize the studies’ results and whether they can be used in dif-
ferent scopes. Only open-source software systems were explored
in the experiments. This could threaten the validity of the results.
More centralized development models, such as the systems used
in commercial software companies, are developed with distributed
and organized collaboration. In open communities, the efforts are
distributed among developers around the globe with little or no
centralization and control. In this case, the ideal would be to con-
duct a more comprehensive investigation into different commercial
software systems of varying sizes. However, accessing the source

SBES’24, September 30 – October 04, 2024, Curitiba, PR Antunes and Barros

code of commercial software systems is more complicated. In addi-
tion, the software projects used in the experiments were collected
from software written in Java, which can limit generalization to
systems written in other programming languages.

The threats related to inaccurate conclusions come under the
conclusion validity category. In this sense, only ten software
systems were tested in the experiments reported in this chapter,
which makes it impossible to adopt statistical inference tests. The
intention is to increase and diversify the software systems analyzed
to guarantee an evaluation using statistical tests.

6 CONCLUSION
This paper presented a set of experiments conducted on hierarchical
clustering using 𝑀𝐷𝐿 as a fitness function to improve hierarchi-
cal structures. We have combined the 𝐴𝐶 algorithm with 𝑀𝐷𝐿

and compared the results with the ones generated by another dri-
ver function,𝑀𝑄 – widely used in the literature. The comparisons
focused on measuring the authoritativeness of the approaches, com-
paring the solutions they proposed on an instance basis to those
proposed by the developers. Overall, we noticed that𝑀𝐷𝐿 gener-
ated solutions closer to those proposed by the developers than the
ones suggested by𝑀𝑄 . While we agree that we have few instances,
the positive results obtained while examining those justify the need
to improve the implementation of the optimizer to cope with larger
instances in a reasonable time.

Considering the practical implications of the results, we under-
stand development teams could benefit from using an SMC tool as a
refactoring mechanism or semi-automatic assistant to improve the
maintainability of the entire solution or its sub-modules. Then, we
could evaluate and suggest improvements as the system evolves.

We could also highlight the research results are more related to
how hierarchical-based metrics could generate solutions closer to
those developers propose. This is mainly because hierarchies make
it easier to understand the underlying system. This could motivate
other researchers to explore the hierarchical side of decompositions
and focus more on techniques that would bring the results closer
to those humans would create and maintain.

ARTIFACTS AVAILABILITY
Results dataset available at https://zenodo.org/records/10970792.

REFERENCES
[1] Jesús S. Aguilar-Ruiz, Isabel Ramos, José Cristóbal Riquelme Santos, and Miguel

Toro. 2001. An evolutionary approach to estimating software development
projects. Information and Software Technology 43, 14 (2001), 875–882. https:
//doi.org/10.1016/S0950-5849(01)00193-8 Publisher: Elsevier.

[2] Giuliano Antoniol, Massimiliano Di Penta, and Mark Harman. 2005. Search-
Based Techniques Applied to Optimization of Project Planning for a Massive
Maintenance Project. In Proceedings of the 21st IEEE International Conference
on Software Maintenance (ICSM 2005), 25-30 September 2005, Budapest, Hungary.
IEEE Computer Society, 240–249. https://doi.org/10.1109/ICSM.2005.79

[3] Andrea Arcuri and Lionel C. Briand. 2011. A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In Proc. of the 33rd
International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu ,
HI, USA, May 21-28, 2011. ACM, 1–10. https://doi.org/10.1145/1985793.1985795

[4] Anthony J. Bagnall, Victor J. Rayward-Smith, and Ian M. Whittley. 2001. The
next release problem. Information and Software Technology 43, 14 (2001), 883–890.
https://doi.org/10.1016/S0950-5849(01)00194-X

[5] Márcio Barros. 2014. An experimental evaluation of the importance of random-
ness in hill climbing searches applied to software engineering problems. Empir.
Softw. Eng. 19, 5 (2014), 1423–1465. https://doi.org/10.1007/S10664-013-9294-4

[6] Márcio Barros, Fábio Farzat, and Guilherme Travassos. 2015. Learning from
optimization: A case study with Apache Ant. Inf. Softw. Technol. 57 (2015),
684–704. https://doi.org/10.1016/J.INFSOF.2014.07.015

[7] Iain Bate and Simon M. Poulding. 2011. Editorial for the special issue on search-
based software engineering. Software: Practice and Experience 41, 5 (2011), 467–
468. https://doi.org/10.1002/SPE.1056

[8] Michael Bowman, Lionel C. Briand, and Yvan Labiche. 2010. Solving the Class
Responsibility Assignment Problem in Object-Oriented Analysis with Multi-
Objective Genetic Algorithms. IEEE Transactions on Software Engineering 36, 6
(2010), 817–837. https://doi.org/10.1109/TSE.2010.70

[9] Lionel Claude Briand, Sandro Morasca, and Victor R. Basili. 1999. Defining and
Validating Measures for Object-Based High-Level Design. IEEE Trans. Software
Eng. 25 (1999), 722–743. https://api.semanticscholar.org/CorpusID:6662624

[10] Colin James Burgess and Martin Lefley. 2001. Can genetic programming improve
software effort estimation? A comparative evaluation. Inf. Softw. Technol. 43
(2001), 863–873. https://api.semanticscholar.org/CorpusID:206106375

[11] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. 2004. Finding community
structure in very large networks. Physical Review E 70, 6 (Dec. 2004), 066111.
https://doi.org/10.1103/PhysRevE.70.066111

[12] J. Cohen. 1992. A power primer. Psychological Bulletin 112, 1 (July 1992), 155–159.
https://doi.org/10.1037//0033-2909.112.1.155

[13] R. M. Cormack. 1971. A Review of Classification. Journal of the Royal Statistical
Society. Series A (General) 134, 3 (1971), 321–367. https://doi.org/10.2307/2344237
Publisher: [Royal Statistical Society, Wiley].

[14] D. Doval, S. Mancoridis, and B.S. Mitchell. 1999. Automatic clustering of software
systems using a genetic algorithm. In STEP ’99. Proceedings Ninth International
Workshop Software Technology and Engineering Practice. IEEE Comput. Soc, Pitts-
burgh, PA, USA, 73–81. https://doi.org/10.1109/STEP.1999.798481

[15] Juan J. Durillo, Yuanyuan Zhang, Enrique Alba, Mark Harman, and Antonio J.
Nebro. 2011. A Study of the Bi-Objective next Release Problem. Empirical Softw.
Engg. 16, 1 (Feb. 2011), 29–60. https://doi.org/10.1007/s10664-010-9147-3 Place:
USA Publisher: Kluwer Academic Publishers.

[16] Gordon Fraser and Jerffeson Teixeira de Souza. 2018. Guest editorial: search-
based software engineering. Empirical Software Engineering (2018), 1–3. https:
//api.semanticscholar.org/CorpusID:14630566

[17] Simon J. Gibbs, Dennis Tsichritzis, Eduardo Casais, Oscar Nierstrasz, and Xavier
Pintado. 1990. Class management for software communities. Commun. ACM 33
(1990), 90–103. https://api.semanticscholar.org/CorpusID:16220359

[18] A. D. Gordon. 1987. A Review of Hierarchical Classification. Journal of the Royal
Statistical Society. Series A (General) 150, 2 (1987), 119–137. https://doi.org/10.
2307/2981629 Publisher: [Royal Statistical Society, Wiley].

[19] MathewHall and Phil McMinn. 2012. An analysis of the performance of the bunch
modularisation algorithm’s hierarchy generation approach. In 4 th Symposium
on Search Based-Software Engineering. 19.

[20] Mark Harman, Robert Hierons, andMark Proctor. 2002. A new representation and
crossover operator for search-based optimization of software modularization. In
Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation
(GECCO’02). Morgan Kaufmann Publishers, San Francisco, CA, USA, 1351–1358.

[21] Mark Harman and Bryan F. Jones. 2001. Search-based software engineering. Inf.
Softw. Technol. 43, 14 (2001), 833–839. https://doi.org/10.1016/S0950-5849(01)
00189-6

[22] Jon Kleinberg and Eva Tardos. 2006. Algorithm design. Pearson Addison Wesley.
[23] Craig Larman. 2001. Applying UML and Patterns: An Introduction to

Object-Oriented Analysis and Design and the Unified Process. https://api.
semanticscholar.org/CorpusID:119922699

[24] Eugene L. Lawler and D. E. Wood. 1966. Branch-and-Bound Methods: A Survey.
Oper. Res. 14 (1966), 699–719. https://api.semanticscholar.org/CorpusID:36099120

[25] Ming Li and PaulM.B. Vitányi. 1990. Kolmogorov Complexity and its Applications.
In Algorithms and Complexity. Elsevier, 187–254. https://doi.org/10.1016/B978-
0-444-88071-0.50009-6

[26] Rudi Lutz. 2001. Evolving good hierarchical decompositions of complex systems.
J. Syst. Archit. 47 (2001), 613–634. https://api.semanticscholar.org/CorpusID:
28630106

[27] Spiros Mancoridis, Brian Mitchell, Chris Rorres, Yih-Farn Chen, and Emden
Gansner. 1998. Using Automatic Clustering to Produce High-Level System Or-
ganizations of Source Code. In 6th International Workshop on Program Compre-
hension (IWPC ’98), June 24-26, 1998, Ischia, Italy. IEEE Computer Society, Ischia,
Italy, 45–52. https://doi.org/10.1109/WPC.1998.693283

[28] Steve McConnell. 2004. Code Complete, Second Edition. https://api.
semanticscholar.org/CorpusID:60449735

[29] Leandro L.Minku andXin Yao. 2013. Ensembles and locality: Insight on improving
software effort estimation. Inf. Softw. Technol. 55 (2013), 1512–1528. https:
//api.semanticscholar.org/CorpusID:584455

[30] Brian Mitchell and Spiros Mancoridis. 2002. Using heuristic search techniques
to extract design abstractions from source code. In Proceedings of the 4th An-
nual Conference on Genetic and Evolutionary Computation (GECCO’02). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1375–1382.

https://zenodo.org/records/10970792
https://doi.org/10.1016/S0950-5849(01)00193-8
https://doi.org/10.1016/S0950-5849(01)00193-8
https://doi.org/10.1109/ICSM.2005.79
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1016/S0950-5849(01)00194-X
https://doi.org/10.1007/S10664-013-9294-4
https://doi.org/10.1016/J.INFSOF.2014.07.015
https://doi.org/10.1002/SPE.1056
https://doi.org/10.1109/TSE.2010.70
https://api.semanticscholar.org/CorpusID:6662624
https://api.semanticscholar.org/CorpusID:206106375
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1037//0033-2909.112.1.155
https://doi.org/10.2307/2344237
https://doi.org/10.1109/STEP.1999.798481
https://doi.org/10.1007/s10664-010-9147-3
https://api.semanticscholar.org/CorpusID:14630566
https://api.semanticscholar.org/CorpusID:14630566
https://api.semanticscholar.org/CorpusID:16220359
https://doi.org/10.2307/2981629
https://doi.org/10.2307/2981629
https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1016/S0950-5849(01)00189-6
https://api.semanticscholar.org/CorpusID:119922699
https://api.semanticscholar.org/CorpusID:119922699
https://api.semanticscholar.org/CorpusID:36099120
https://doi.org/10.1016/B978-0-444-88071-0.50009-6
https://doi.org/10.1016/B978-0-444-88071-0.50009-6
https://api.semanticscholar.org/CorpusID:28630106
https://api.semanticscholar.org/CorpusID:28630106
https://doi.org/10.1109/WPC.1998.693283
https://api.semanticscholar.org/CorpusID:60449735
https://api.semanticscholar.org/CorpusID:60449735
https://api.semanticscholar.org/CorpusID:584455
https://api.semanticscholar.org/CorpusID:584455

A Comparison Between Hierarchical and Non-Hierarchical Software Clustering SBES’24, September 30 – October 04, 2024, Curitiba, PR

[31] Brian Mitchell and Spiros Mancoridis. 2006. On the Automatic Modulariza-
tion of Software Systems Using the Bunch Tool. IEEE Transactions on Software
Engineering 32, 3 (March 2006), 193–208. https://doi.org/10.1109/TSE.2006.31

[32] Marlon C. Monçores, Adriana C. F. Alvim, and Márcio O. Barros. 2018. Large
Neighborhood Search applied to the Software Module Clustering problem. Com-
puters & Operations Research 91 (March 2018), 92–111. https://doi.org/10.1016/j.
cor.2017.10.004

[33] Marlon da Costa Monçores. 2015. Busca em vizinhança grande aplicada ao
problema de clusterização de módulos de software. Master’s thesis. http:
//www.repositorio-bc.unirio.br:8080/xmlui/handle/unirio/11798 Accepted: 2018-
06-25T22:06:23Z.

[34] Alexandre Fernandes Pinto. 2014. Uma heurística baseada em busca local iterada
para o problema de clusterização de módulos de software. Master’s thesis. http:
//www.repositorio-bc.unirio.br:8080/xmlui/handle/unirio/11920 Accepted: 2018-
07-10T22:00:52Z.

[35] Kata Praditwong, Mark Harman, and Xin Yao. 2011. Software Module Clustering
as a Multi-Objective Search Problem. IEEE Transactions on Software Engineering
37, 2 (2011), 264–282. https://doi.org/10.1109/TSE.2010.26

[36] J. Rissanen. 1978. Modeling by shortest data description. Automatica 14, 5 (Sept.
1978), 465–471. https://doi.org/10.1016/0005-1098(78)90005-5

[37] C E Shannon. 1948. A Mathematical Theory of Communication. The Bell System
Technical Journal 27 (Oct. 1948), 623–656.

[38] V. Tzerpos and R.C. Holt. 2000. ACCD: an algorithm for comprehension-driven
clustering. In Proceedings Seventh Working Conference on Reverse Engineering.
258–267. https://doi.org/10.1109/WCRE.2000.891477 ISSN: 1095-1350.

[39] Claes Wohlin. 2012. Experimentation in software engineering. Springer, NY.
[40] Joseph Arthur Wood. 1998. Improving software designs via the minimum descrip-

tion length principle. PhD Thesis. https://api.semanticscholar.org/CorpusID:
38339071

[41] Jifeng Xuan, He Jiang, Zhilei Ren, and Zhongxuan Luo. 2012. Solving the Large
Scale Next Release Problem with a Backbone-Based Multilevel Algorithm. IEEE
Transactions on Software Engineering 38, 5 (2012), 1195–1212. https://doi.org/10.
1109/TSE.2011.92

[42] Edward Yourdon and Larry L. Constantine. 1979. Structured design. Fundamentals
of a discipline of computer program and systems design. Englewood Cliffs: Yourdon
Press (1979). https://ui.adsabs.harvard.edu/abs/1979sdfd.book.....Y/abstract

https://doi.org/10.1109/TSE.2006.31
https://doi.org/10.1016/j.cor.2017.10.004
https://doi.org/10.1016/j.cor.2017.10.004
http://www.repositorio-bc.unirio.br:8080/xmlui/handle/unirio/11798
http://www.repositorio-bc.unirio.br:8080/xmlui/handle/unirio/11798
http://www.repositorio-bc.unirio.br:8080/xmlui/handle/unirio/11920
http://www.repositorio-bc.unirio.br:8080/xmlui/handle/unirio/11920
https://doi.org/10.1109/TSE.2010.26
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1109/WCRE.2000.891477
https://api.semanticscholar.org/CorpusID:38339071
https://api.semanticscholar.org/CorpusID:38339071
https://doi.org/10.1109/TSE.2011.92
https://doi.org/10.1109/TSE.2011.92
https://ui.adsabs.harvard.edu/abs/1979sdfd.book.....Y/abstract

	Abstract
	1 Introduction
	2 Background
	2.1 SMC and the Minimum Description Length
	2.2 Related Work

	3 Proposed Approach
	4 Experiments
	4.1 Project Selection
	4.2 Data Collection
	4.3 Analysis: Number of Packages
	4.4 Analysis: Average of Classes per Package
	4.5 Analysis: Maximum Depth
	4.6 Analysis: MojoFM
	4.7 Analysis: Single-package Commits Ratio
	4.8 Analysis: Average Packages per Commit
	4.9 Summary

	5 Validity Threats
	6 Conclusion
	References

