
Addressing the Synchronization Challenge in Cypress End-to-End
Tests

Thiago Santos de Moura
Federal University of Campina Grande

Campina Grande, Brazil
thiago.moura@copin.ufcg.edu.br

Everton L. G. Alves
Federal University of Campina Grande

Campina Grande, Brazil
everton@computacao.ufcg.edu.br

Regina Letícia Santos Felipe
Federal University of Campina Grande

Campina Grande, Brazil
regina.felipe@ccc.ufcg.edu.br

Cláudio de Souza Baptista
Federal University of Campina Grande

Campina Grande, Brazil
baptista@computacao.ufcg.edu.br

Ismael Raimundo da Silva Neto
Federal University of Campina Grande

Campina Grande, Brazil
ismael.silva.neto@ccc.ufcg.edu.br

Hugo Feitosa de Figueirêdo
Federal Institute of Paraíba

Esperança, Brazil
hugo.figueiredo@ifpb.edu.br

ABSTRACT
Automated end-to-end testing plays a crucial role in modern web
software projects, helping testers identify faults within complex
applications and shorten development cycles. Frameworks such as
Cypress are essential to provide a comprehensive testing environ-
ment with features that facilitate better access and validation of
page elements. However, time-related challenges (synchronization
issues) remain a significant concern in such suites. Testers need
to be aware of these challenges and employ appropriate waiting
mechanisms to ensure test reliability. This paper presents a catalog
of waiting mechanisms for Cypress tests and a set of empirical
studies that investigate the potential impact of synchronization
issues and waiting mechanisms on test suites. Our studies examine
the suites of an open-source and industrial project. Our findings
reveal that up to 32% of a suite can break due to synchronization
issues, exposing flaky tests. Subsequently, we revised the suites by
applying four waiting mechanisms (Static Wait, Stable DOM Wait,
Network Wait, and Explicit Wait). Network Wait and Explicit Wait
emerged as the most promising strategies leading to no breakages.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation.

KEYWORDS
end-to-end testing, flaky tests, synchronization, cypress, empirical
studies

1 INTRODUCTION
End-to-end (E2E) testing plays an important role in the industry, es-
pecially in preventing functionality regression [1, 24]. E2E web test
scripts provide a sequence of instructions for a testing framework,
directing its interactions with the Application Under Test (AUT)
[18]. These instructions encompass tasks such as element selection,
interaction, and checks for the presence of elements within the
application interface. These actions not only guide test execution
but also serve as oracle assertions, establishing criteria to determine
the expected AUT behavior [6, 28].

Selenium1 and Cypress2 are two well-known frameworks for
automated E2E web testing [21]. While Selenium has traditionally

1https://selenium.dev
2https://www.cypress.io

been the default choice for E2E testing, providing a framework for
validating web application functionality [5], Cypress has recently
emerged as a valuable alternative, gaining substantial attention
within the test automation community [23, 29].

Data from official NPM trends3 reveal that Cypress downloads
more than tripled between 2021 and June 2024 (exceeding 5.7 mil-
lion), while for the Selenium WebDriver, the number of downloads
remained nearly the same during the same period (around 2 mil-
lion). This suggests that testers prefer Cypress for E2E testing with
JavaScript. Possible reasons for this shift include the fact that Cy-
press includes new features that have attracted the attention of
testers. For instance, Cypress provides a simple setup process, where
a single download includes all essential browser engines, frame-
works, and assertion libraries, eliminating the need for separate
installations [7, 10]. This infrastructure challenge is a well-known
problem reported by Selenium users [12, 19]. Additionally, Cypress
also has a vibrant and active community that helps evolve the
framework with NPM packages and add-ons. Although very popu-
lar among developers, we found little research on E2E testing using
Cypress. We believe that this shift in focus to Cypress presents an
important opportunity for new research on how this framework
addresses underlying E2E testing challenges.

To ensure cost-effectiveness in E2E testing, it is imperative for
a test suite to demonstrate both efficiency and reliability [8, 16].
Therefore, flaky tests are an issue to be addressed. Flaky tests are
characterized by nondeterministic behavior that produces random
and inconsistent results, which can compromise the reliability of an
E2E web test suite [30]. In the continuous integration environment,
flaky tests present even greater risks, as a false failure may obstruct
new builds and/or releases [37]. Moreover, flaky tests often diminish
the tester’s confidence in the suite, as a significant amount of time
might be spent debugging non-existent faults [13].

Mitigating flaky tests in the context of E2E web testing is a
challenging task. For that, it is essential to comprehend and address
their underlying causes. Several studies have identified possible root
causes of flakiness. Asynchronicity and concurrency issues are often
listed as key factors for flaky tests in E2E tests [19, 22, 25, 36, 37].
Consequently, effective techniques for addressing flaky tests should
prioritize handling these factors to yield significant improvements.

3https://npmtrends.com/cypress-vs-selenium-webdriver

SBES’24, September 30 – October 04, 2024, Curitiba, PR Moura et al.

Asynchronicity and concurrency issues are so prevalent in E2E
web testing that they are frequently referred to as the synchroniza-
tion challenge* [19, 37]. This challenge refers to scenarios where
the tester does not properly consider response time when creating
test scripts, which may result in flaky tests and intermittent fail-
ures during the execution of the test script. Such issues often arise
when test scripts attempt to perform actions on a web page not yet
ready to handle them, leading to breakage in the test execution. For
instance, when a test script logs into a web application and tries
to interact with elements on the home page, if the server response
is not received quickly enough, it may try to execute instructions
before the application’s home page is fully loaded. This premature
execution can lead to test breakages that mistakenly indicate fault
detection [14, 15, 38].

Figure 1: Example of a testing action that might fail due to
synchronization issues.

The Cypress framework tries to attenuate this issue by executing
scripts on the browser side, discerning the application’s transitional
state after an action, and waiting for the complete page to load.
However, the synchronization challenge remains when the test script
interacts with elements that trigger asynchronous calls [11, 27, 39].
Such calls occur whenever a page interaction requires data retrieval
from a Web server. Figure 1 exemplifies such a scenario. Suppose
a Cypress test script tries to interact with the tenth product that
appears after accessing the Select products drop-down input. The
click action triggers an asynchronous call that returns the list of
registered products. The select action becomes viable only after the
request is fulfilled and the application lists the found product (Figure
1-a). However, if the test does not properly handle synchronization,
the test script might try to click on a product before the list is loaded,
leading to a test breakage (Figure 1-b). Reasons for an application
delay that may lead to synchronization issues are numerous (e.g.,

*Also referred to as the asynchronous or race condition challenge.

network latency, slow server response, complex database queries)
and often cannot be controlled or properly anticipated by the tester.

Despite being the state-of-the-art framework for E2E web testing
and including a native waiting strategy, Cypress cannot avoid syn-
chronization issues. This highlights that synchronization remains
an open problem that requires proactive measures from testers. In
this paper, we discuss a catalog of waiting mechanisms to avoid
synchronization issues in Cypress tests, and we propose a new
mechanism, the Network Wait. Moreover, we evaluate the impact
that synchronization issues may generate in practice, and we in-
vestigate the effectiveness of the mechanisms in dealing with them.
By doing so, we offer new insights and ways to help testers to
better construct E2E suites, we provide evidence of the practical
effectiveness of different waiting mechanisms, and we highlight
the importance of adopting advanced strategies to address asyn-
chronously loaded content [27].

The contributions of this work are fourfold:
• A catalog of waiting mechanisms for Cypress tests;
• A novel waiting mechanism (Network Wait) for Cypress;
• Empirical studies that demonstrate the deterioration that
synchronization issues can generate on two E2E web test
suites; and

• Empirical studies that evaluate the efficiency of four waiting
mechanisms in addressing synchronization issues.

The remainder of the paper is structured as follows. Section 2
presents a catalog of waiting mechanisms for Cypress that can be
employed to address synchronization issues. Section 3 focuses on
a series of empirical studies designed to demonstrate the impact
of the synchronization challenge and to evaluate the effectiveness
of different waiting mechanisms. In Sections 4 and 5, we discuss
potential threats to validity and related work, respectively. Finally,
in Section 6, we present the concluding remarks and potential
avenues for future research.

2 A CATALOG OF WAITING MECHANISMS
The synchronization challenge is well-known in automated E2E
tests. In this context, waiting mechanisms can act as traffic lights
for testing, controlling when to stop, when to go, and when to wait.
This orchestration may help avoid synchronization issues.

To systematically identify relevant waiting mechanisms, we con-
ducted a literature mapping using common keyword searches com-
bined with snowballing, a technique in which references from se-
lected articles are reviewed to identify additional relevant studies,
ensuring a comprehensive review [40]. We subsequently validated
the importance of these mechanisms among experienced testers
from a partner company. Our review of the literature identified
four waiting mechanisms applicable in this context: Implicit Wait,
Static Wait, Explicit Wait, and Fluent Wait [3, 12, 26]. However, the
referenced works focus solely on Selenium test scripts. An explo-
ration of the grey literature introduced a new mechanism specific
to Cypress: Stable DOM Wait5. Furthermore, we introduce a novel
mechanism exclusive to Cypress: the Network Wait. As a result, we
compile a catalog of waiting mechanisms for Cypress tests*.

5https://github.com/narinluangrath/cypress-wait-for-stable-dom
*A detailed version of the catalog is available on our website: https://noto.li/mhRfQe

Addressing the Synchronization Challenge in Cypress End-to-End Tests SBES’24, September 30 – October 04, 2024, Curitiba, PR

Although some mechanisms are not native to Cypress, they can
be implemented. For instance, we discuss the implementation of
Explicit Waits using external Cypress dependencies. Additionally,
mechanisms such as Stable DOM, which have not been addressed
in any related work using Selenium, are currently exclusive to
Cypress. Furthermore, the proposed mechanism incorporates a
concept unique to Cypress: intercepting requests. Consequently,
this new mechanism is only supported by Cypress.

In this section, we present our catalog by discussing each mech-
anism, exploring its pros and cons, relevance, and implementation
details within the Cypress context. To the best of our knowledge,
our catalog is the first to compile and demonstrate the use of these
waiting mechanisms in the Cypress framework. For each mecha-
nism, we provide a general description, followed by an example of
how to implement it with Cypress, and a discussion on implication,
benefits, and possible drawbacks. We hope this catalog aids testers
in gaining a better understanding and handling of synchronization
issues in Cypress tests.

2.1 Implicit Wait
2.1.1 Description. The Implicit Wait acts as a single traffic light
overseeing waits for the entire test script. Unlike other waiting
mechanisms inserted before specific commands, the Implicit Wait is
a global setting that uniformly impacts all commands. It enforces a
time limit for every interaction, ensuring that no command proceeds
until it is either feasible to continue or a specified waiting period
has elapsed. Selenium employs an Implicit Wait [12]. For Cypress,
although this mechanism is not officially labeled as such, it includes
a general automatic waiting feature.

2.1.2 Usage Scenario with Cypress. When a tester utilizes com-
mands like click, type, or clear, Cypress implicitly enforces those
commands to wait for the respective operations to complete. The
default timeout for Cypress commands is 4000 milliseconds, but it
can be customized based on specific requirements, as exemplified
in Listing 1 (line 1). In this example, the defaultCommandTimeout is set
to two seconds. Consequently, when a test script interacts with a
page element, Cypress waits two seconds to acquire the element
before proceeding with the click command.

1 Cypress.config('defaultCommandTimeout ', 2000);
2
3 cy.get('[id="product -select "]').click ();
4 cy.get('[id="item -10"]', { timeout: 5000 }).click ();

Listing 1: Example of Implicit Wait configuration in Cypress.

Additionally, Cypress offers a timeout option within commands,
allowing custom waiting times for individual commands. For in-
stance, in Listing 1 (line 4), the timeout for the command that
acquires the desired item was set to five seconds. This gives the
tester control over how long to wait for the asynchronous call to be
fulfilled and for the item to appear on the page. It is important to
note that altering the timeout for a specific command extends the
basic characteristics of an Implicit Wait, as it solely evaluates the
action of the command without considering any other condition.

2.1.3 Implications, Benefits and Drawbacks. The use of Implicit
Waits can simplify wait management by offering a consistent ap-
proach across test commands, which may reduce the need for exten-
sive wait coding and improve script readability and maintenance.
However, they may cause inefficiencies and unreliable test out-
comes due to the use of fixed waiting times that may not match the
actual application response times, potentially slowing the tests and
leading to flakiness [33, 36]. Complex synchronization issues, such
as waiting for visible elements with specific attributes, may require
alternative strategies for more precise handling.

2.2 Static Wait
2.2.1 Description. In Selenium, testers often use Thread.sleep() to
pause the execution of a test script for a specific duration. This
pause is not dependent on any conditions or external factors, and
the script resumes only after the pre-defined time has elapsed. For
Cypress, a similar behavior is achieved using the wait command.

2.2.2 Usage Scenario with Cypress. In Listing 2, we exemplify the
use of this mechanism. After interacting with the Select products
element, we use the wait command to pause the test execution
for one second (line 2). After the waiting period is over, the test
execution performs the click on the item (line 3).
1 cy.get('[id="product -select "]').click ();
2 cy.wait (1000);
3 cy.get('[id="item -10"]').click ();

Listing 2: Example of Static Wait use in a Cypress test script.

2.2.3 Implications, Benefits and Drawbacks. The use of Static Waits
can impact reliability and efficiency. Although it provides a straight-
forward synchronization method by pausing execution for a fixed
duration, this can lead to inefficiencies in dynamic web applications
with varying loading times. Fixedwait timesmay cause unnecessary
delays if the application is ready early or result in test breakages if
it takes longer than expected, increasing test flakiness [26, 36]. It
may also mask underlying synchronization issues, making it less
effective in dynamic testing environments. Static Waits should be
used moderately and combined with adaptive waiting strategies.

2.3 Explicit Wait
2.3.1 Description. In Selenium, Explicit Waits are a powerful mech-
anism for ensuring that a test script proceeds only when specific
conditions are met [34, 37]. This feature is indispensable when deal-
ing with web elements that might take an unforeseeable amount of
time to load or become interactive.

For implementing Explicit Waits testers often use external depen-
dencies such as cypress-wait-until7. This dependency introduces a
custom command called waitUntil that enables implementing Ex-
plicit Waits. This command helps the tester to use common con-
ditions (e.g., the presence of an element, specific values for global
variables) or custom conditions.

2.3.2 Usage Scenario with Cypress. Listing 3 (line 3) uses waitUntil

to make the test execution wait up to 10 seconds for the desired
item to exist on the web page. The arrow function encapsulates the
condition, ensuring that the button is both present and acquirable.
7https://www.npmjs.com/package/cypress-wait-until

SBES’24, September 30 – October 04, 2024, Curitiba, PR Moura et al.

Upon meeting this condition, the script subsequently simulates a
user click action on the button using the click function (line 8). This
approach ensures reliable user interaction simulations in dynamic
web environments.
1 cy.get('[id="product -select "]').click ();
2
3 cy.waitUntil (() =>
4 cy.get('body').then(($body) =>
5 $body.find('[id="item -8"]').length > 0),
6 { timeout: 10000 });
7
8 cy.get('[id="item -10"]').click ();

Listing 3: Example of Explicit Wait use in Cypress.

2.3.3 Implications, Benefits and Drawbacks. Explicit Waits can en-
hance test reliability and accuracy by allowing tests to wait for
specific conditions. However, this approach also increases script
complexity and maintenance requirements, as defining and manag-
ing waiting conditions can make test scripts more challenging to
read and maintain [35]. Additionally, if not properly implemented,
Explicit Waits can still result in timeouts or missed conditions, lead-
ing to test breakages despite their improved control capabilities.

2.4 Fluent Wait
2.4.1 Description. A Fluent Wait can be seen as a customizable
version of an Explicit Wait [26]. It leverages the same commands as
Explicit Waits, but with additional parameters that testers can tweak
to tailor the waiting strategy. These parameters include options
such as polling frequency and custom error messages for timeouts.

2.4.2 Usage Scenario with Cypress. In Listing 4, the tester wants
to ensure that the execution of the test continuously checks for
the presence of a specific item on the web page over a 10-second
period. It evaluates this condition at one-second intervals. The
waitUntil command (line 3) encapsulates this condition and intro-
duces the interval and errorMsg parameters. The interval parameter
specifies that the evaluation should happen every one second, and
the errorMsg parameter provides a custom error message in case of
a timeout.
1 cy.get('[id="product -select "]').click ();
2
3 cy.waitUntil (() =>
4 cy.get('body').then(($body) =>
5 $body.find('[id="item -10"]').length > 0),
6 { timeout: 10000,
7 interval: 1000,
8 errorMsg: 'This is a custom error message '
9 });
10
11 cy.get('[id="item -10"]').click ();

Listing 4: Example of Fluent Wait use in Cypress.

2.4.3 Implications, Benefits and Drawbacks. Fluent Wait’s flexibil-
ity enables customization of wait durations and check frequencies,
enhancing test efficiency and reducing flakiness by adapting to
dynamic application behavior. To fully exploit this flexibility, it is
important to test various parameter configurations [26]. However,
this adaptability can also increase script complexity and mainte-
nance challenges. Poorly designed polling strategies may result in
excessive resource use or longer waiting times, affecting overall
performance. Thus, while Fluent Wait offers significant benefits,
careful management is crucial.

2.5 Stable DOMWait
2.5.1 Description. This mechanism addresses a critical need in E2E
testing, which is to ensure the stability of the Document Object
Model (DOM) for a specified duration before allowing the test
flow to proceed. This is achieved by using the MutationObserver8
interface to detect alterations in the DOM tree. This mechanism is
particularly useful for visual regression testing, where minor DOM
changes can impact a web page’s visual appearance. Ensuring a
stable DOM helps in capturing accurate visual snapshots.

2.5.2 Usage Scenario with Cypress. For Cypress users, this mech-
anism is accessible through an external library known as cypress-
wait-for-stable-dom9. After importing this library, a tester can access
the waitForStableDOM function, as shown in Listing 5.

1 cy.get('[id="product -select "]').click ();
2 cy.waitForStableDOM ({ pollInterval: 500, timeout: 5000 })
3 cy.get('[id="item -10"]').click ();

Listing 5: Example of Stable DOMWait use in Cypress.

In this example, the waitForStableDOM function is called with vari-
ous parameters, including pollInterval, which specifies the duration
for which the DOM must remain stable, and timeout, which sets the
time limit for waiting. Importantly, the code in line 3 is executed
only when the preceding command has completed its wait execu-
tion. This ensures that a test script interacts with a stable DOM,
enhancing the reliability of its results.

2.5.3 Implications, Benefits and Drawbacks. Stable DOMWaits play
a crucial role in test automation, particularly in scenarios requiring
visual consistency and accurate DOM interactions. By ensuring
that the DOM remains stable for a specified duration, this approach
reduces false positives from transient changes and provides reli-
able test results. However, if the DOM is frequently updated, this
mechanism may introduce delays in test execution. Balancing poll
intervals and timeouts is essential to maintain both reliability and
efficiency.

2.6 Network Wait
2.6.1 Description. Network Wait is a novel mechanism that closely
observes requests made during test execution. Its purpose is to
ensure that a test proceeds only when all these requests are com-
pleted. As new requests are initiated, a counter is incremented;
upon request completion, the same counter is decremented. The
test execution resumes its course when this counter reaches zero,
remaining in this state for a predetermined period of time.

To the best of our knowledge, the Network Wait mechanism
is unique to Cypress because it can intercept requests - a feature
not available in Selenium. This mechanism monitors client-server
communication during test execution, whereas current wait mecha-
nisms focus solely on the DOM. Therefore, existing methods cannot
replicate Network Wait behavior. We developed and published our
own external NPM dependency forNetworkWait, which is available
to the Cypress testing community10.

8https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
9https://www.npmjs.com/package/cypress-wait-for-stable-dom
10https://www.npmjs.com/package/cypress-network-wait

Addressing the Synchronization Challenge in Cypress End-to-End Tests SBES’24, September 30 – October 04, 2024, Curitiba, PR

2.6.2 Usage Scenario with Cypress. Listing 6 presents an imple-
mentation of this mechanism through Cypress native intercept com-
mand. The routeHandler function manages the pendingCount variable,
which decreases with each response, ensuring patient waiting until
all requests are completed. In our example, intercepts are configured
to cover all URLs and HTTP methods (line 7), allowing the process
to wait until the counter reaches zero before the test proceeds (lines
10-13).

ThisNetworkWait is recommended in situationswhere the subse-
quent testing step is uncertain and a more generic waiting strategy
is required, which is often the case for scriptless E2E testing [4]. It
dynamically adapts to network conditions, reducing waiting times
on faster networks and extending them on slower networks. This
adaptability may lead to an effective balance between precision and
efficiency during test execution.

1 let pendingCount = 0;
2 function routeHandler(request) {
3 pendingAPICount ++;
4 request.on('response ', () => pendingCount --);
5 }
6
7 cy.intercept('*', '*', routeHandler);
8
9 Cypress.Commands.add('waitNetworkFinished ', () => {
10 while (pendingCount > 0) {
11 cy.log('Waiting for pending requests.');
12 cy.wait (500);
13 }
14 cy.log('All requests completed!');
15 });
16
17 cy.get('[id="product -select "]').click ();
18 cy.waitNetworkFinished ();
19 cy.get('[id="item -10"]').click ();

Listing 6: Simplified implementation of Network Wait and
its use in Cypress.

2.6.3 Implications, Benefits and Drawbacks. The Network Wait
mechanism dynamically adjusts to network conditions, ensuring
tests are executed accurately without premature execution or un-
necessary delays. This approach is beneficial for scenarios with un-
predictable network behavior and multiple asynchronous requests.
However, it requires careful monitoring to manage edge cases like
incomplete or stalled requests. Additionally, the use of polling loops
(e.g., cy.wait(500)) can introduce minor delays, affecting overall test
execution time.

3 EMPIRICAL STUDIES
In this section, we present the empirical studies performed to assess
the impact that synchronization issues can cause in test suites.
We also evaluate the efficiency of various waiting mechanisms to
address this challenge. Our investigation is guided by the following
research questions:

• 𝑅𝑄1: How much of a test suite can break due to synchroniza-
tion issues?

• 𝑅𝑄2: How effective are waiting strategies to mitigate syn-
chronization issues?

𝑅𝑄1 relates to our hypothesis that synchronization issues may
cause test breakages due to temporal misalignments between test
execution and system response, especially in repeated executions
(e.g., 50 times) or less controlled environments. By addressing 𝑅𝑄1,

we hope to provide a practical understanding of how synchroniza-
tion issues affect test suites. Our second hypothesis, related to 𝑅𝑄2,
is that waiting mechanisms could minimize synchronization issues
in Cypress tests. Therefore, we aim to assess the performance of
various waiting strategies in resolving these challenges.

To answer the research questions, we conducted empirical stud-
ies in two different scenarios. The first considers a test suite devel-
oped for an open-source scalable online store application, while
the second considers a suite from an industrial project. In both
cases, we investigated the impact of synchronization issues on
the test suites and compared the effectiveness of different waiting
mechanisms. Specifically, we compared Static Wait (with a default
one-second delay), Stable DOM Wait (with a default one-second
interval), Network Wait, and Explicit Wait. Although Fluent Wait
and Implicit Wait were listed in our catalog (Section 2), we did not
include them in our studies because the former can be seen as a
customizable Explicit Wait, and the latter is an inherent setting in
Cypress, automatically applied to all test scripts.

In our studies, we used Cypress version 12.17.2 in its default
configuration (default timeout command of four seconds). The em-
pirical studies were executed on a Desktop equipped with an Intel
Core i7 10700KF processor, 32GB DDR4 3200MHz RAM, Nvidia
GTX 1060 6GB GDDR5 graphics card, and a 1TB SATA SSD with
500Mbps/s.

3.1 Investigating the Impact of Synchronization
Issues

For the first study, we selected the Sylius Standard11 (version 1.12.4).
Sylius is an open-source eCommerce framework known for its mod-
ular and flexible architecture, making it well-suited for developing
customized online stores. It offers extensive configuration options
and advanced features to manage catalogs, orders, payments, and
shipping, among other aspects of eCommerce. We selected this
application as object due to its wide range of functionalities. Ad-
ditionally, this project is easy to use and popular, as evidenced by
its high number of stars and active community engagement on
GitHub. During the study, we used the sample data provided by the
framework to populate the database and executed the entire web
application within a single Docker container using an image built
from its repository12.

Synchronization issues often occur in applications where mod-
ules are potentially hosted on distinct machines, including the front-
end, back-end, and database. Another potential scenario involves
complex functionalities that trigger asynchronous calls and lead
to prolonged database queries. To have a controlled experiment in
which we investigate the potential degradation of the test suites, we
emulate such scenarios. We deliberately introduced various levels
of network delays into our testing environment. This process was
inspired from a related work that discusses how varying loading
times can contribute to test flakiness [26]. For that, we used the
command-line utility tool Traffic Control13. Traffic Control is in-
strumental for network traffic management and manipulation, with
a specific focus on bandwidth regulation and control.

11https://github.com/Sylius/Sylius-Standard, https://github.com/Sylius/Sylius
12https://gitlab.com/lsi-ufcg/cytestion/sync-study/sylius-showcase
13https://linux.die.net/man/8/tc

SBES’24, September 30 – October 04, 2024, Curitiba, PR Moura et al.

A total of five Sylius application instances were created for the
purpose of our study. Four of these were equipped with Traffic
Control to introduce delays, resulting in the following treatments:
Without delay, 500 ms delay, 1000 ms delay, 1500 ms delay, and
2000 ms delay. These values were introduced with a reasonably
significant gradual increase to simulate different network delays.
Each instance has a unique Docker image tag, facilitating effortless
execution and repeated database restoration. The artifacts of our
study are available on our website14.

To create the test suite, we recruited 48 students. They are last
year Computer Science students with a solid programming and
testing background. Prior to the study, they went through a com-
prehensive two-hour training session on E2E testing and Cypress.
The students generated test cases for 25 distinct Sylius features.
Each feature corresponded to a different part of the application,
such as products, payments, and more. To maintain flexibility and
emulate real-world test suite creation, we intentionally refrained
from imposing specific requirements on what elements should be
tested within each section. Instead, each student had the freedom
to create test cases based on their understanding of the assigned
section and the system behavior.

From the test cases created by the students, we validated and se-
lected 200 tests to be used in our study. This selection was manually
done by the first author to create a suite with valid test cases. We
considered valid test cases that include interactions with multiple
actionable elements and assertions confirming the expected behav-
iors. Notably, some students incorporated static waits in their tests,
which resembles the behavior of experienced testers who would
try to predict and treat possible synchronization issues. Also, it
is important to highlight that we neither intentionally designed
the testing sections nor guided the test case creation to include
synchronization issues, as those issues could potentially arise in
any part of an application or test case.

For the five created Sylius instances (Without delay, 500 ms delay,
1000 ms delay, 1500 ms delay, and 2000 ms delay), we executed
the created suite 50 times, resulting in a total of 10,000 test case
executions per instance. By repeating a test case execution for a
given system instance, we intended to be able to detect possible
synchronization issues and evaluate the suite reliability. A similar
approach was performed in related studies [26, 27].

3.1.1 Results. Out of the 200 test cases, 35 (17.5%) exhibited flaki-
ness during at least one execution. In Figure 2, these 35 test cases are
ordered by the total number of breakages per instance. Interestingly,
we found ten test cases that experienced the highest breakage rates,
which means they were the most affected by delays (test cases 1-10).
As the delays increased, the number of executions experiencing
breakage drastically increased for those tests. We manually investi-
gated all 35 tests and found that tests 1-10 interact with elements
that trigger asynchronous calls. For instance, some of these test
cases involve selecting a product, which is listed only after clicking
the Select products drop-down input, creating a test breakage similar
to the one described in Section 1. Another example is a test case
that opens and closes a large image. This image is loaded after a
clicking action. This test encountered breakage when a close action
was performed when the image was not yet fully loaded. Tests
14https://gitlab.com/lsi-ufcg/cytestion/sync-study/execute-study

11-35, on the other hand, present a lower number of breakages and
their flakiness were due to issues not related to synchronization,
such as logic faults and dependencies on randomly generated data.
Therefore, our second study (Section 3.2) focuses only on the ten
test cases that include synchronization issues (tests 1-10).

Even though delays were applied universally, the impact on
the remaining 165 test cases may have been less evident due to
Cypress’s native waiting mechanisms for page loading and the
default implicit waits. However, the presence of asynchronous calls
can still introduce synchronization issues, emphasizing the need to
address such problems to maintain the robustness of a test suite.

Figure 2: Number of test case breakages by Sylius instance.

Figure 3: Breakage rates by test case and suite runs.

Synchronization issues often reflects in test flakiness. Therefore,
the same test case may present different outputs (pass or fail) in
different executions. Figure 3 illustrates test case and suite break-
ages for test cases 1-10 across different configurations. Each bar
represents the breakage rate of test cases (out of 500 = 10 test cases
x 50 runs) and test suite executions (out of 50 runs). While Figure
3-a refers to test case runs that experienced breakage, Figure 3-b
presents test suite breakages. A test suite breaks when at least one
of the 10 tests within the suite experiences breakage.

We can see that, even for the scenario without delays, synchro-
nization issues were found (19 breakages across 8 suite executions),
compromising the test suite reliability by 16%. When a delay of 500
ms was introduced, this rate escalated to 46% across 23 suite runs.

Addressing the Synchronization Challenge in Cypress End-to-End Tests SBES’24, September 30 – October 04, 2024, Curitiba, PR

For greater delays (1000 ms, 1500 ms, and 2000 ms) all suite execu-
tions experienced breakage. These results evidence the substantial
impact that synchronization issues might have on the reliability of
a test suite (𝑅𝑄1). Even minor delays can cause significant increases
in both individual test cases and overall suite breakages.

3.2 Evaluating Different Waiting Mechanisms
Based on the results of our first study, we selected the 10 test
cases most affected by synchronization issues (test cases 1-10). For
each of those tests, we created four refactored versions. In each
version, we applied a different waiting mechanism (Static Wait,
Stable DOM Wait, Network Wait, and Explicit Wait) trying to fix
the found synchronization issues. Finally, we reran the suite 50
times on the five Sylius instances. The goal of this second study
is to identify the best waiting mechanism that could help a tester
cope with the synchronization challenge (𝑅𝑄2). It is important to
highlight that the refactorings were manually applied by the first
author in all locations identified as having a synchronization issue
in our first study. The refactorings were later revised and confirmed
by the third and fourth authors.

3.2.1 Results. We present the results of our second study in Figure
4 that depicts the occurrences of test case and test suite breakages,
along with the average test suite execution time. These results are
showcased for the five delay settings (Without delay, 500 ms, 1000
ms, 1500 ms, and 2000 ms) and four waiting mechanisms (Static
Wait, Stable DOM Wait, Network Wait, and Explicit Wait).

For the Without delay scenario, only the test artifacts that used
Static Wait exhibited test case (0.02%) and suite breakages (2.0%).
However, for the 500 ms delay, all waiting mechanisms mitigated
all synchronization issues, showing 0.0% of breakage rate for test
cases and test suite.

As for the 1000ms delay setting, StaticWait experienced breakage
rates of 16.8% for test cases and 70.0% for test suites. Furthermore,
Stable DOMWait showed breakages at 2.0% for test cases and 16.0%
for test suites. On the other hand, Network Wait and Explicit Wait
remained with no breakages.

For the 1500 ms delay, breakages notably increased: 44.2% and
98.0% test case and suite breakage rates, respectively, for Static Wait.
Stable DOMWait rates increase to 27.0% for test cases and 94.0% for
the test suite. On the other hand, Network Wait and Explicit Wait
remained without breakages.

Finally, for the most degraded setting (2000 ms delay), break-
age rates rose to 60.2% for Static Wait and 98% for test cases and
test suite, respectively. Similarly, the Stable DOM Wait mechanism
increased breakage rates to 55.8% for test cases and 100% for the
test suite. Again, Network Wait and Explicit Wait maintained their
effectiveness without presenting any breakages.

We conducted a manual investigation of these breakages. For
Static Wait, most of the breakages occurred because the set waiting
time was not sufficient to overcome the synchronization issues. As
for the Stable DOM Wait breakages, the common found issue was
due to the solution inherent assumption of DOM stability while
rendering the loading of the executed action. For extended periods,
it led to premature execution release and breakages.

To assess breakage rate differences, we applied the Fisher’s exact
test, along with odds ratios for effect size evaluation [2]. For the
scenarios Without delay and 500 ms delay, all mechanisms showed
similar performance (p-value = 1). However, at delays of 1000ms
and 1500ms, Network Wait and Explicit Wait outperformed Stable
DOM Wait, which in turn surpassed Static Wait (p-value < 0.05).
The same pattern occurred at a 2000 ms delay, except where Stable
DOM Wait equaled Static Wait (p-value = 0.1784347).

Network Wait and Explicit Wait exhibited no breakages during
the experiment. However, it is essential to weigh trade-offs. On
average, Network Wait took slightly longer to execute the test suite
compared to Explicit Wait across all delay settings, with a range
of 65 to 137 seconds. When evaluating waiting mechanisms, it is
crucial to consider both breakage rates and execution time, which
can vary across projects. The prolonged execution times with Net-
work Wait can be attributed to waiting for non-essential requests.
Although effective in reducing breakages, it may come at the cost
of longer execution times.

Figure 4: Results from the Sylius study: test case breakages, suite run breakages, and average suite execution time.

SBES’24, September 30 – October 04, 2024, Curitiba, PR Moura et al.

We conducted a Mann-Whitney U test for each delay config-
uration to evaluate execution time differences between Network
Wait and Explicit Wait [2]. In all delay configurations, significant
p-values (all < 10−17) were observed, indicating substantial dif-
ferences. Vargha-Delaney effect sizes ranged from -16.28471 to
-8.055329, indicating consistently longer execution times for Net-
work Wait compared to Explicit Wait.

These results contribute to answer 𝑅𝑄2 by highlighting the di-
verse effectiveness of waiting mechanisms in handling synchroniza-
tion issues. Notably, both Network Wait and Explicit Wait demon-
strate resilience, exhibiting no breakages across various delay sce-
narios. However, the observed differences in execution times un-
derscore the significance of a strategic selection tailored to each
scenario.

3.3 A Case Study with an Industrial Application
To complement the previous results and assess the impact of syn-
chronization related issues and the use of various waiting mecha-
nisms in a real-world scenario, we conducted a case study involving
an industrial application from a partner company. This project is
a React-based15 application designed for managing government
auditing processes and features a robust Cypress test suite that
runs multiple times a day. It works as a regression suite that the
development team runs before any modification is integrated into
the main codebase.

Table 1 presents the project metrics, including lines of code,
lines of test code, test cases, and waiting points. Waiting points are
specific code areas in the test suite where synchronization between
the test script and the AUT is necessary. The reported 866 waiting
points were identified by the project testing team. It was reported
that synchronization issues have caused several practical problems
to the team such as release delays and wasted efforts evaluating
false bugs. To address this, the team applied a one-second Static
Wait to each identified waiting point.

Metric Value
Lines of Code 136,128
Lines of Test Code 5,933
Test Cases 169
Waiting Points 866

Table 1: Metrics for the study object.

The web application operates entirely within a single Docker
container using the designated code version. Database, front- and
back-end components are preloaded before running the Cypress
test suite. This scenario resembles the environment reported in our
first studies with Sylius (Sections 3.1 and 3.2).

For this study, we used the following procedure: the existing
project suite already uses the Static Wait mechanism, which we
called the Static Wait version. We created three additional versions
of this test suite, refactoring all waiting points to apply Stable DOM
Wait, Network Wait, and Explicit Wait. Similarly to our previous
studies, we executed each version of the suite 50 times within the

15https://react.dev

AUT, and we registered the number of test case breakages, test suite
breakages, as well as the average test suite execution time.

3.3.1 Results. Regarding 𝑅𝑄1, the data obtained from this study re-
inforces that the synchronization challenge can significantly affect
the reliability of a test suite. As shown by the test results in Figure
5, the Static Wait version (original version) experienced 70 test case
breakages out of 8450 (0.83%). While this percentage might seem
relatively low, it becomes concerning when considering that these
breakages occurred in 16 different test suite executions, represent-
ing 32%. We interviewed the project developers and testers that
confirmed the occurrence of these flaky tests on a daily basis and
that their common practice to deal with that issue is to re-execute
the test suite, which often is found as very costly. This underscores
the impact of synchronization challenges on the reliability of the
test suite.

Figure 5: Case study results, including test cases breakages,
suite run breakages and average test suite execution time.

Regarding 𝑅𝑄2, while both the Network Wait and Explicit Wait
versions resulted in identical results for test case and test suite break-
ages, significant differences emerged in average execution times.
Explicit Wait outperformed with an average test suite execution
time of 00:26:28, surpassing even the Static Wait version (00:48:26),
while Network Wait exhibited the longest average execution time
at 01:29:20.

However, it is crucial to consider the implementation complex-
ities associated with these mechanisms. While implementing the
Network Wait involved a simple replace operation, implementing
the ExplicitWait was a very complex task. This complexity stemmed
from the necessity to establish suitable wait conditions, requiring
coordinated efforts from multiple authors over approximately four
hours to address all 866 waiting points. Such complexities should
be factored into the decision-making process when selecting the
preferred mechanism.

Although the results regarding breakage rates were similar in our
case study and in the Sylius one, they differed for execution time.
We attribute this variation to the inherent nature of the Network
Wait mechanism, which waits for all requests, including unneces-
sary ones, to be fulfilled before proceeding with the test execution.
This difference may be attributed to the industrial case study inher-
ently having more network requests than Sylius, influencing the
overall execution time. In contrast, Explicit Wait sets conditions
that indirectly require minimal or no requests before a specific
element becomes explicitly available on the GUI.

Addressing the Synchronization Challenge in Cypress End-to-End Tests SBES’24, September 30 – October 04, 2024, Curitiba, PR

Finally, we analyzed the two breakages that remained for both
Network Wait and Explicit Wait. We observed that those break-
ages refer to waiting points that were not noticed/identified by the
project testing team. They only became apparent after undergoing
100 test suite executions. We later included those points in the refac-
tored versions of Network Wait and Explicit Wait and no breakages
were found. This revelation was attributed to a temporary limitation
of hardware resources during the execution, exposing a waiting
point that went unnoticed because it normally loads quickly.

3.4 Learned Lessons
Taking into account the results of our studies, we can answer 𝑅𝑄1
and 𝑅𝑄2:

RQ1: Synchronization issues can significantly impact a test suite
reliability. For some scenarios, we found that up to 32% of a suite can
fail due to those issues.

RQ2: Network Wait and Explicit Wait were the most effective mecha-
nisms, with equal breakage rates for test cases and suites, but Explicit
Wait had better execution times.

We believe that the results achieved can be valuable for testers
implementing E2E Cypress suite. They evidence the importance of
caution when writing test scenarios involving asynchronous calls.
By understanding the common pitfalls and sources of flakiness,
testers can act proactively to reduce breakages, leading to more
robust and reliable tests. Moreover, by knowing how to apply the
different waiting mechanisms in Cypress scripts, testers can have
the proper tools to deal with such challenges and fine-tune their
test cases.

Explicit Wait is a well-known mechanism for Selenium suites.
Our findings showed its effectiveness for Cypress suites as well.
However, it is important to weigh the associated complexity of
implementing it, requiring a thorough understanding of subsequent
testing actions and conditions, which can be error-prone and affect
the overall script efficiency.

Testers can identify waiting points reactively or proactively. Re-
actively, after a breakage, testers can rerun the test with Cypress’s
GUI, monitoring the logging to pinpoint and address synchroniza-
tion problems. On the other hand, whenworking proactively, testers
can identify waiting points before they cause breakages, especially
for elements triggering asynchronous events like select input and
dropdown interactions. Incorporating waiting mechanisms in rele-
vant test cases can preempt potential issues.

We believe our results can also benefit tool builders and re-
searches. New tools can integrate effective waiting mechanisms
like Network Wait and Explicit Wait, providing testers with more
reliable synchronization solutions. The new Network Wait mech-
anism enhances software testing with its generic, cost-effective
approach, offering opportunities for further exploration by tool
makers. For instance, scriptless E2E testing often deals with non-
deterministic scenarios where the goal is to navigate through the
application in search of visible failures [22]. Traditional waiting
mechanisms often fall short due to the difficulty in determining

the appropriate wait conditions. Network Wait addresses this chal-
lenge, providing a solution that does not require the definition of a
specific condition. Additionally, researchers can use our studies to
validate existing techniques and develop advanced synchronization
algorithms and tools for automated testing practices, resulting in
more robust solutions for real-world applications.

4 THREATS TO VALIDITY
In terms of external validity, our results cannot be generalized be-
yond the context of the specific projects used in our study. Since we
based our study on two web applications and their test suites, one
open-source and one industrial, we acknowledge that the sample
lacks diversity. Nevertheless, given the substantial size of these sys-
tems and the number of test cases they encompass, we argue that
they serve as good representatives of the broader web application
and E2E testing domain. Furthermore, in the Sylius study, we utilize
a test suite generated by students, whereas the second study em-
ploys a test suite developed by a team of professionals. Despite their
differences, both suites include synchronization issues, indicating
that tests with synchronization issues are not solely attributable to
lack of experience and can manifest in any E2E test suite.

In terms of internal validity, we utilized the Cypress default
settings to configure command timeout. This implies that our evalu-
ations of waiting mechanisms can be seen as a blend of implicit and
other waits. We acknowledge that different configurations for those
settings could impact our results. Nevertheless, these settings are
intrinsic to the framework’s API that requires some value assign-
ment. We opted to use Cypress default settings to resemble how
most testers use it. Furthermore, our empirical study involved two
manual actions by the first author, potentially threatening internal
validity: the manual validation and selection of tests, as well as the
subsequent manual refactoring to incorporate waiting mechanisms.
To mitigate these threats, the selected tests and refactored code
were reviewed and validated by the third and fifth authors.

In terms of conclusion validity, the use of external libraries,
such as cypress-wait-for-stable-dom and cypress-wait-until, poses
a potential validity threat to our study conclusions due to their
impact on our results. We acknowledge that errors or limitations
in these libraries could influence our findings, and the validity of
our conclusions depends on this factor. To address this concern, we
meticulously reviewed the documentation and source code of these
libraries and performed additional validation testing.

In terms of construct validity, we compared Static Wait (one-
second delay) and Stable DOM Wait (one-second interval). While
different values could produce different outcomes, we chose one-
second delays because of their common usage in the projects we
studied. However, this choice might have affected our findings, and
varying delay times could influence our conclusions.

5 RELATEDWORK
Synchronization issues have been investigated in the context of
automated web testing. Lam et al. [17] examined the life cycle of
flaky tests across six extensive Microsoft projects and highlighted
their detrimental effects. Their analysis revealed that flaky tests are
most commonly associated with asynchronous calls lacking proper
waiting.

SBES’24, September 30 – October 04, 2024, Curitiba, PR Moura et al.

Nass et al. [25] conducted a systematic literature review that
identified key-challenges in GUI-based test automation. They clas-
sified these challenges as essential or accidental and mentioned
them as an open research topic. The synchronization challenge is
categorized as an accidental one.

Sousa et al. [37] analyzed causes and fixing strategies for flaky
tests in automated GUI tests across 24 open-source projects. They
found that race conditions account for 60% of flaky test causes.
Among the fixing strategies, the addition of waiting mechanisms
was the most prevalent, appearing in 53% of the related commits.

Garcia et al. [12] extensively analyze Selenium, particularly its
waiting strategies. They advocate for design patterns like Page
Objects and the Screenplay pattern to enhance test reusability and
readability. The study emphasizes reducing maintenance efforts
through efficient waiting strategies and highlights challenges such
as test flakiness and troubleshooting.

Habchi et al. [13] conducted a systematic literature review and
interviewed 20 software practitioners to explore flaky tests in soft-
ware testing ecosystems. They report synchronization points in GUI
tests as a significant cause of flakiness. The authors also emphasize
the importance of implementing mitigation measures, enhancing
testing infrastructure, and establishing testing practice guidelines.

Leotta et al. [19] conducted a survey with 78 industry experts.
They found that synchronization issues (referred to as asynchro-
nous) are widely recognized as a challenge for E2E testing with
Selenium. Moreover, they found that testers frequently apply wait-
ing strategies to address it. However, these strategies, while some-
times effective, can increase execution time and introduce testing
flakiness. The authors emphasize the importance of choosing an
appropriate waiting strategy and advocate for further research into
developing more effective waiting strategies and tools.

Pei et al. [31, 32] conducted an empirical study on Async Wait
flakiness in front-end testing. The study identified time-based and
DOM-related issues as primary concerns. They recommended syn-
chronizing on DOM elements rather than using explicit time-based
mechanisms to reduce flakiness and enhance test reliability. Ad-
ditionally, Pei et al. introduced TRaf, an automated method for
mitigating flaky tests by recommending suitable waiting times for
asynchronous calls based on code similarity and change history.

Feng et al. [9] present AdaT, a lightweight approach for acceler-
ating Android GUI testing by dynamically adjusting event timing
based on GUI rendering status. By leveraging deep learning and real-
time GUI streaming, AdaT accurately infers rendering states and
synchronizes testing events, achieving efficiency and effectiveness
improvements in automated testing.

Olianas et al. [26, 27] focus on reducing flakiness in E2E testing
with Selenium by replacing static waits with explicit waits. In the
first paper, they provide a procedure to eliminate flakiness, while
the second introduces a tool-based approach for refactoring test
suites to minimize the usage of thread sleeps, reducing execution
time, and improving test suite reliability.

Liu et al. [20] present WEFix, an automated tool that inserts
explicit waits to address flaky tests in web e2e testing. By analyzing
browser-side DOM mutations, WEFix generates wait oracles to
predict client-side operations, effectively reducing flakiness and
runtime overhead.

These studies highlight significant synchronization issues affect-
ing test reliability and system quality. Notably, only the work of
Liu et al. has explored this challenge within the Cypress context,
focusing solely on applying the Explicit Wait mechanism. Our work
goes further by compiling a catalog of waiting mechanisms for Cy-
press and introducing the novelNetworkWait. This newmechanism
is unique due to Cypress’s ability to intercept requests, a feature
not present in Selenium. Traditional waiting mechanisms focus
on DOM-related events and miss server-side interactions or asyn-
chronous actions post-page load. Therefore, existing methodologies
cannot replicate Network Wait’s unique functionality. Additionally,
our empirical studies evidence the impact of synchronization is-
sues in Cypress suites and may guide testers in selecting the most
adequate fixing strategies.

6 CONCLUDING REMARKS
In this paper, we delve into the synchronization challenge in Cy-
press tests, a critical issue for automated E2E testing. Synchroniza-
tion issues can cause test cases to become flaky and challenge the
reliability of a test suite. We compiled a catalog of waiting mech-
anisms reported in the literature and discussed how they can be
applied in Cypress tests. We believe our catalog is the first in this
context and that it can significantly assist Cypress testers in gain-
ing a better understanding of synchronization issues and how to
address them. Additionally, we introduced a new mechanism, Net-
work Wait, and provided its implementation for testing community
as an external Cypress dependency. Within days of publication,
without any advertising, this dependency was downloaded almost
2000 times*, underscoring its practical significance.

We also conducted three empirical studies that demonstrated
the great impact that synchronization-related issues can have on
different test suites. Finally, we compared the effectiveness of four
waiting mechanisms to deal with the issues. The Explicit Wait and
Network Wait yielded the best results. Although the first is faster, it
requires the tester to have a precise understanding of subsequent
testing actions and conditions to avoid synchronization issues. The
Network Wait emerges as a valuable option, as it monitors server
requests to ensure correct test execution. This proposed approach
proved to be effective.

Regarding future work, we plan to: i) expand our empirical stud-
ies by including a larger number of open-source projects and in-
dustrial case studies; ii) assess how our results can be related to
and/or adapted for scriptless E2E testing [22]; iii) create guidelines
on how testers can prevent synchronization issues in Cypress tests;
and iv) develop an IDE plug-in that detects synchronization issues
in legacy test suites and automatically addresses them.

REFERENCES
[1] Nauman Bin Ali, Emelie Engström, Masoumeh Taromirad, Mohammad Reza

Mousavi, Nasir MehmoodMinhas, Daniel Helgesson, Sebastian Kunze, andMahsa
Varshosaz. 2019. On the search for industry-relevant regression testing research.
Empirical Software Engineering 24 (2019), 2020–2055.

[2] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability 24, 3 (2014), 219–250.

[3] Satya Avasarala. 2014. Selenium WebDriver practical guide. PACKT publishing.

*Data collected in June 2024.

Addressing the Synchronization Challenge in Cypress End-to-End Tests SBES’24, September 30 – October 04, 2024, Curitiba, PR

[4] Axel Bons, Beatriz Marín, Pekka Aho, and Tanja EJ Vos. 2023. Scripted and
scriptless GUI testing for web applications: An industrial case. Information and
Software Technology 158 (2023), 107172.

[5] Maura Cerioli, Maurizio Leotta, and Filippo Ricca. 2020. What 5 million job
advertisements tell us about testing: a preliminary empirical investigation. In
Proceedings of the 35th Annual ACM Symposium on Applied Computing. 1586–
1594.

[6] Diego Clerissi, Maurizio Leotta, Gianna Reggio, and Filippo Ricca. 2017. Towards
the generation of end-to-end web test scripts from requirements specifications.
In 2017 IEEE 25th International Requirements Engineering Conference Workshops
(REW). IEEE, 343–350.

[7] Cypress.io. 2018/2023. Key Differences. https://docs.cypress.io/guides/overview/
key-differences. Accessed: 10-10-2023.

[8] Edward Dunn Ekelund and Emelie Engström. 2015. Efficient regression test-
ing based on test history: An industrial evaluation. In 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 449–457.

[9] Sidong Feng,MulongXie, and ChunyangChen. 2023. EfficiencyMatters: Speeding
Up Automated Testing with GUI Rendering Inference. https://doi.org/10.1109/
icse48619.2023.00084

[10] Cypress framework. 2018/2023. Why Cypress? https://docs.cypress.io/guides/
overview/why-cypress . Accessed: 10-10-2023.

[11] Boni Garcia. 2022. Hands-On Selenium WebDriver with Java. " O’Reilly Media,
Inc.".

[12] Boni García, Micael Gallego, Francisco Gortázar, and Mario Munoz-Organero.
2020. A survey of the selenium ecosystem. Electronics 9, 7 (2020), 1067.

[13] Sarra Habchi, Guillaume Haben, Mike Papadakis, Maxime Cordy, and Yves
Le Traon. 2022. A qualitative study on the sources, impacts, and mitigation
strategies of flaky tests. In 2022 IEEE Conference on Software Testing, Verification
and Validation (ICST). IEEE, 244–255.

[14] Mouna Hammoudi, Gregg Rothermel, and Andrea Stocco. 2016. WATERFALL:
an incremental approach for repairing record-replay tests of web applications.
https://doi.org/10.1145/2950290.2950294

[15] MounaHammoudi, Gregg Rothermel, and Paolo Tonella. 2016. Why do Record/Re-
play Tests of Web Applications Break? https://doi.org/10.1109/icst.2016.16

[16] Md Hossain, Hyunsook Do, and Ravi Eda. 2014. Regression testing for web
applications using reusable constraint values. In 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation Workshops. IEEE, 312–
321.

[17] Wing Lam, Kıvanç Muşlu, Hitesh Sajnani, and Suresh Thummalapenta. 2020.
A study on the lifecycle of flaky tests. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 1471–1482.

[18] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. 2016. Ap-
proaches and tools for automated end-to-end web testing. In Advances in Com-
puters. Vol. 101. Elsevier, 193–237.

[19] Maurizio Leotta, Boni García, Filippo Ricca, and JimWhitehead. 2023. Challenges
of end-to-end testing with selenium WebDriver and how to face them: A survey.
In 2023 IEEE Conference on Software Testing, Verification and Validation (ICST).
IEEE, 339–350.

[20] Xinyue Liu, Zihe Song, Weike Fang, Wei Yang, and Weihang Wang. 2024. WEFix:
Intelligent Automatic Generation of Explicit Waits for Efficient Web End-to-End
Flaky Tests. arXiv preprint arXiv:2402.09745 (2024).

[21] Fatini Mobaraya, Shahid Ali, et al. 2019. Technical Analysis of Selenium and
Cypress as Functional Automation Framework for Modern Web Application
Testing. Department of Information Technology, AGI Institute, Auckland, New
Zealand (2019).

[22] Thiago Santos de Moura, Everton LG Alves, Hugo Feitosa de Figueirêdo, and
Cláudio de Souza Baptista. 2023. Cytestion: Automated GUI Testing for Web
Applications. In Proceedings of the XXXVII Brazilian Symposium on Software
Engineering. 388–397.

[23] Waweru Mwaura. 2021. End-to-End Web Testing with Cypress: Explore techniques
for automated frontend web testing with Cypress and JavaScript. Packt Publishing
Ltd.

[24] Takao Nakagawa, Kazuki Munakata, and Koji Yamamoto. 2019. Applying modi-
fied code entity-based regression test selection for manual end-To-end testing of
commercial web applications. In 2019 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). IEEE, 1–6.

[25] Michel Nass, Emil Alégroth, and Robert Feldt. 2021. Why many challenges with
GUI test automation (will) remain. Information and Software Technology 138
(2021), 106625.

[26] Dario Olianas, Maurizio Leotta, and Filippo Ricca. 2022. SleepReplacer: A novel
tool-based approach for replacing thread sleeps in selenium webdriver test code.
Software Quality Journal 30, 4 (2022), 1089–1121.

[27] Dario Olianas, Maurizio Leotta, Filippo Ricca, and Luca Villa. 2021. Reducing
flakiness in End-to-End test suites: An experience report. In International Con-
ference on the Quality of Information and Communications Technology. Springer,
3–17.

[28] Ana CR Paiva, Nuno H Flores, João P Faria, and José MG Marques. 2018. End-to-
end automatic business process validation. Procedia Computer Science 130 (2018),

999–1004.
[29] Narayanan Palani. 2021. Automated Software Testing with Cypress. CRC Press.
[30] Owain Parry, Gregory M Kapfhammer, Michael Hilton, and Phil McMinn. 2021. A

survey of flaky tests. ACM Transactions on Software Engineering and Methodology
(TOSEM) 31, 1 (2021), 1–74.

[31] Yu Pei, Sarra Habchi, Renaud Rwemalika, Jeongju Sohn, andMike Papadakis. 2022.
An empirical study of async wait flakiness in front-end testing.. In BENEVOL.

[32] Yu Pei, Jeongju Sohn, Sarra Habchi, and Mike Papadakis. 2023. TRaf: Time-
based Repair for Asynchronous Wait Flaky Tests in Web Testing. arXiv preprint
arXiv:2305.08592 (2023).

[33] Kai Presler-Marshall, Eric Horton, Sarah Heckman, and Kathryn Stolee. 2019.
Wait, wait. no, tell me. analyzing selenium configuration effects on test flakiness.
In 2019 IEEE/ACM 14th International Workshop on Automation of Software Test
(AST). IEEE, 7–13.

[34] Sujay Raghavendra. 2021. Python Testing with Selenium: Learn to Implement
Different Testing Techniques Using the Selenium WebDriver. Springer.

[35] Filippo Ricca, Maurizio Leotta, and Andrea Stocco. 2019. Three Open Problems
in the Context of E2E Web Testing and a Vision: NEONATE. , 89–133 pages.
https://doi.org/10.1016/bs.adcom.2018.10.005

[36] Alan Romano, Zihe Song, Sampath Grandhi, Wei Yang, and Weihang Wang. 2021.
An empirical analysis of UI-based flaky tests. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 1585–1597.

[37] Érica Sousa, Carla Bezerra, and Ivan Machado. 2023. Flaky Tests in UI: Under-
standing Causes and Applying Correction Strategies. In Proceedings of the XXXVII
Brazilian Symposium on Software Engineering. 398–406.

[38] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. 2018. Visual web test
repair. https://doi.org/10.1145/3236024.3236063

[39] Tanja EJ Vos, Pekka Aho, Fernando Pastor Ricos, Olivia Rodriguez-Valdes, and
Ad Mulders. 2021. testar–scriptless testing through graphical user interface.
Software Testing, Verification and Reliability 31, 3 (2021), e1771.

[40] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In Proceedings of the 18th international
conference on evaluation and assessment in software engineering. 1–10.

https://docs.cypress.io/guides/overview/key-differences
https://docs.cypress.io/guides/overview/key-differences
https://doi.org/10.1109/icse48619.2023.00084
https://doi.org/10.1109/icse48619.2023.00084
https://docs.cypress.io/guides/overview/why-cypress
https://docs.cypress.io/guides/overview/why-cypress
https://doi.org/10.1145/2950290.2950294
https://doi.org/10.1109/icst.2016.16
https://doi.org/10.1016/bs.adcom.2018.10.005
https://doi.org/10.1145/3236024.3236063

	Abstract
	1 Introduction
	2 A Catalog of Waiting Mechanisms
	2.1 Implicit Wait
	2.2 Static Wait
	2.3 Explicit Wait
	2.4 Fluent Wait
	2.5 Stable DOM Wait
	2.6 Network Wait

	3 Empirical Studies
	3.1 Investigating the Impact of Synchronization Issues
	3.2 Evaluating Different Waiting Mechanisms
	3.3 A Case Study with an Industrial Application
	3.4 Learned Lessons

	4 Threats to Validity
	5 Related Work
	6 Concluding Remarks
	References

