
Investigating Benefits and Limitations of Migrating to a
Micro-Frontends Architecture

Fabio Antunes
Tecgraf / PUC-Rio

Rio de Janeiro, Brazil
fabioagpp@tecgraf.puc-rio.br

Maria Julia Dias de Lima
Tecgraf / PUC-Rio

Rio de Janeiro, Brazil
mjulia@tecgraf.puc-rio.br

Marco Antônio Pereira Araújo
UFJF / IF Sudeste MG
Juiz de Fora, Brazil

marcoaparaujo@gmail.com

Davide Taibi
University of Oulu

Oulu, Finland
davide.taibi@oulu.fi

Marcos Kalinowski
ExACTa / PUC-Rio
Rio de Janeiro, Brazil

kalinowski@inf.puc-rio.br

ABSTRACT
[Context]The adoption ofmicro-frontends architectures has gained
traction as a promising approach to enhance modularity, scalability,
and maintainability of web applications. [Goal] The primary aim
of this research is to investigate the benefits and limitations of mi-
grating a real-world application to a micro-frontends architecture
from the perspective of the developers. [Method] Based on the
action research approach, after diagnosis and planning, we applied
an intervention of migrating the target web application to a micro-
frontends architecture. Thereafter, the migration was evaluated in
a workshop involving the remaining developers responsible for
maintaining the application. During the workshop, these devel-
opers were presented with the migrated architecture, conducted
a simple maintenance task, discussed benefits and limitations in
a focus group to gather insights, and answered a questionnaire
on the acceptance of the technology. [Results] Developers’ per-
ceptions gathered during the focus group reinforce the benefits
and limitations reported in the literature. Key benefits included
enhanced flexibility in technology choices, scalability of develop-
ment teams, and gradual migration of technologies. However, the
increased complexity of the architecture raised concerns among
developers, particularly in dependency and environment manage-
ment, debugging, and integration testing. [Conclusions] While
micro-frontends represent a promising technology, unresolved is-
sues still limit their broader applicability. Developers generally
perceived the architecture as useful and moderately easy to use but
hesitated to adopt it.

KEYWORDS
Micro-frontends, Benefits and Limitations

1 INTRODUCTION
As time passes and new features are added to applications, both the
frontend and the backend code bases grow [18]. Within a mono-
lithic structure, this expansion may lead to a slowdown in develop-
ment due to conflicting code management, an increasing number
of dependencies, increased coupling, and the sheer amount of code
developers need to be familiarized with to maintain the application.

Micro-frontends have garnered attention for their potential to
address these challenges by enhancing application modularity, scal-
ability, andmaintainability [9]. It is defined as "an architectural style

where independently deliverable frontend applications are com-
posed into a greater whole" [9]. The adoption of micro-frontends
aims to achieve the same benefits that microservices bring on the
backend side in the frontend development of applications.

Nonetheless, the micro-frontend architecture is still in its early
years, and few studies have investigated it. Peltonen et al. [18]
mapped benefits and issues in a multivocal literature review, ana-
lyzing sources from academic and industry literature. Their review
could be enhanced by incorporating case studies and reports de-
tailing practical experiences related to the architectural transition.
Such insights would contribute to the consolidation of knowledge
concerning the potential benefits and limitations.

This paper aims to explore the benefits and issues of the micro-
frontends architecture migration in an industry project. Therefore,
an experienced developer of the organization (first author), together
with the project manager who has worked on the project for over
ten years and has a deep understanding of its architecture (second
author) and software engineering and micro-frontends researchers,
applied an investigation strategy based on action research to transi-
tion a monolithic web application to a micro-frontend architecture
and assess the effects from the remaining developers’ point of view.

The objective of this research can be defined using the goal-
question-metric (GQM) [4] goal definition template as follows.

Analyzemicro-frontends architecture when compared to a mono-
lithic architecture for the purpose of characterizing with respect to
benefits, issues, and technology acceptance from the point of view
of the developers in the context of scrum teams experienced in
the development of the monolithic version of the web application
chosen as the subject of this study. The following research ques-
tions (RQs) were formulated based on the benefits and issues of the
micro-frontends architecture raised by Peltonen et al. [18].

RQ1.What are the benefits and issues of themicro-frontends
architecture when compared to a monolithic architecture?
This RQ explores the influence of the architecture on the ease of
the development process. It aims to evaluate both the benefits and
challenges identified by Peltonen et al. [18]. Additionally, we intend
to evaluate the potential enhancement in the reuse of application
components that it might offer [13].

RQ2. What is the acceptance of the micro-frontends ar-
chitecture when compared to the monolithic architecture?
This RQ investigates how the developers accept the technology by



SBES’24, September 30 – October 04, 2024, Curitiba, PR Antunes et al.

using the Technology Acceptance Model (TAM) [21] to assess the
perceived usefulness, ease of use, and intention to adopt.

Our methodology phases are based on action research [19] to
achieve the stated goals and effectively address the research ques-
tions. Action research, known for its iterative and participatory
nature, emphasizes collaboration between researchers and practi-
tioners to enact meaningful change within a specific context [19].
This methodology aligns with our research objectives by facilitating
engagement with developers involved in the industry project [7].

The methodology comprises four phases: diagnosis, planning,
intervention, and evaluation of intervention results. In this study,
the initial diagnosis identified a challenge of two teams struggling
to collaborate on the same web application. The intervention com-
prised migrating the application to a micro-frontends architecture.
To evaluate the intervention, a workshop was conducted to intro-
duce the architecture to the remaining developers and engage them
in a practical exercise. Subsequently, their feedback on its benefits
and limitations was assessed via a focus group [10]. Due to practical
constraints, we did not employ a completely participatory approach
involving all employees in all steps but involved them within our
possibilities. The research team comprised an experienced devel-
oper of the organization (first author), the project manager (second
author), and three software engineering researchers, including one
micro-frontend expert. During the diagnosis, besides having access
to all artifacts, we interviewed the remaining project employees.
During the evaluation, we also had the remaining employees in
a workshop where we presented the intervention and had them
participate in the practical exercise and the focus group discussions.

The contributions of this paper comprise the architectural deci-
sion rationale of the intervention and the results of the discussions
of benefits and limitations with the practitioners. While developers
generally perceived the architecture as useful and moderately easy
to use, they also exhibited hesitance toward adopting it, mainly due
to difficulties related to dependency and environment management,
debugging, and integration testing.

2 BACKGROUND AND RELATEDWORK
2.1 Micro-frontends
Micro-frontends architecture divides web applications into smaller,
independent frontends that collaborate to create the complete ap-
plication [18]. Each micro-frontend operates with its own codebase,
fostering loose coupling and enabling autonomous execution, de-
velopment, and deployment. Four pivotal technical decisions at the
project’s outset dictate subsequent development: how the applica-
tion will be split, how its components will be assembled, how the
application routes between pages, and how the micro-frontends
communicate with each other [18, 20].

Splitting the Frontend. There are two options available for split-
ting the frontend: vertical and horizontal. In a vertical split, only
one micro-frontends is displayed at a time, often segmented based
on business domains [13]. On the other hand, a horizontal split
simultaneously displays multiple interface sections.

Composition Techniques. Three primary composition techniques
exist: client-side, edge-side, and server-side [13]. Client-side com-
position loads micro-frontends in the browser, while edge-side
assembly occurs at the Content Delivery Network (CDN) level,

employing technologies like Edge Side Include (ESI). Server-side
composition can occur during compile or runtime, with methods
like server-side includes (SSI) or ESI [18].

Routing. There are three possible routing methods that vary
based on composition type [13]. For server-side composition, it is
possible to have the logic that determines the route defined on the
server. On a client-side composition, routing can be defined by the
application shell by evaluating its state. Alternatively, independent
of the composition type, it is possible tomanage routing on the CDN,
employing transclusion technologies such as Lambda@Edge [13].

Communication. Data communication between micro-frontends
can use built-in browser structures like Web Storage or query
strings [11, 15]. In the case of a client-side composition, where
interactions between micro-frontends are more complex, it might
be necessary to have a publish-subscribe pattern with an event bus
that can be observed by all micro-frontends [13].

2.2 Benefits and Issues of Micro-frontends
Based on previous research, micro-frontends architecture may offer
several benefits (B) and issues (I) [18]. Given that our research is
related to these benefits and issues, we summarize them hereafter.

B1 - Support for different technologies: Enables coexistence
of diverse technologies, facilitating flexible development
choices.

B2 - Autonomous cross-functional teams: Empowers teams
towork independently on application parts, enhancing agility
and ownership.

B3 - Independent development, deployment, and managing:
Decouples modules, enabling parallel work without coordi-
nation overhead.

B4 - Better testability: Changes in one micro-frontend have
limited impact, speeding up testing and deployment.

B5 - Improved fault isolation: Failures in onemodule do not
affect the entire application, enhancing resilience.

B6 - Highly scalable: Easy addition of new teams and tasks,
fostering parallel development.

B7 - Faster onboarding: New teammembers require less time
to understand and contribute due to compartmentalization.

B8 - Fast initial load: On-demand loading of modules speeds
up application setup.

B9 - Improved performance: Performance degradation in one
part minimally affects the overall frontend.

B10 - Future proof: Easy adoption of new technologies and
abandonment of outdated ones due to decoupled structure.

I1 - Increased payload size: Multiple frameworks lead to in-
creased data fetching, impacting performance.

I2 - Code duplication and I3 - Shared dependencies: Replicated
dependencies result in increased complexity and potential
redundancy.

I4 - UX consistency: Achieving consistency acrossmicro-frontends
is challenging due to team independence.

I5 - Monitoring complexity: Tracking bugs acrossmicro-frontends
and communication layers is complex.

I6 - Increased complexity: Architecture complexity requires
substantial analysis and decision-making.



Investigating Benefits and Limitations of Migrating to a Micro-Frontends Architecture SBES’24, September 30 – October 04, 2024, Curitiba, PR

I7 - Governance challenges: Collaboration and alignment across
teams pose governance challenges.

I8 - Islands of knowledge: Isolation between teams can lead
to knowledge silos and duplicated efforts.

I9 - Environment differences: Discrepancies between envi-
ronments may lead to unexpected behavior in production.

I10 - Higher risk in updates: Reduced interval between de-
velopment and release increases the risk of runtime errors.

I11 - Accessibility challenges: Embedding iframesmay pose
accessibility issues, requiring careful consideration.

2.3 Related Work
Peltonen et al. [18] conducted a multivocal literature review on
micro-frontends architecture, which guided the theoretical founda-
tion of this paper. Taibi et al. [20] provided insights into principles,
implementations, and pitfalls of micro-frontends, informing techni-
cal decisions of this study.

Harms et al. [8] experimented with different frontend architec-
tures connected to microservices backends. Their findings high-
lighted good testability and modifiability in micro-frontends, with
variations in performance and UI consistency.

Mena et al. [12] developed a multi-platform web application us-
ing micro-frontends and microservices to maintain user experience
across diverse devices. While their article’s main focus was the
application’s requirements, they mention using micro-frontends
to isolate the development of the different components and avoid
conflicts within the codebase.

Pavlenko et al. [17] detailed the development of a React single-
page application using micro-frontends. The article reported that
the architecture presents an increased complexity and suitability
for applications with significant front-end logic and larger teams.

Männistö et al. [14] migrated from a monolithic application to a
micro-frontend architecture using a frameworkless approach with
Web Components [5]. Conducted on a small organization with few
developers, their study indicates that even small teams can benefit
from micro-frontends, particularly in terms of configurability. They
also highlight that the frameworkless approach can be a feasible
alternative, as it avoids the issues typically induced by frameworks.

3 RESEARCH STRATEGY
The research strategy employed in this work followed the con-
ventional structure of action research, which includes four phases:
diagnostic, planning, intervention, and evaluation [19]. In line with
ethical guidelines, we explained the purpose and procedures of our
study, communicated the risks and benefits of participating, and
gathered the consent of the participants, explaining to them the
anonymity of the data and their confidentiality[3].

3.1 Context
This study focuses on a system developed by a research institute
for a large oil and gas company. Since 2001, the system has served
as a support platform for constructing and integrating geophysi-
cal processing applications and orchestrating in-house algorithms’
workflows on high-performance computing infrastructures. Over
the years, multiple teams have contributed to the system’s devel-
opment, underscoring the importance of a flexible and decoupled

architecture for the evolution and integration of new applications.
Gradually, the system has been transitioning to a web architecture
to adapt to changing technological landscapes.

The application that is the focus of our intervention supports
geophysicists, who execute algorithm workflows following a se-
quence of phases that automatically configure most of these algo-
rithms’ parameters. The phases are built into users’ projects using
a pre-configured hierarchical model within the applications. The
pre-configured phases model organizes the possible sequence of
paths that the user can follow and establishes the input and output
dependencies between the algorithm workflows of each phase.

The application consists of two pages: An initial project-page
enables users to maintain project information, as well as navigate to
the project’s corresponding algorithm page; An algorithm-page
houses a graphical representation of the different sequences of algo-
rithms ran for that project in a tree form. The root node symbolizes
the project and each subsequent node represents a phase of the
algorithmic sequence. Users can select parameters for executing
the algorithm of a phase multiple times. Being satisfied with the
outcomes, geophysicists can generate child nodes, progressing the
sequence of algorithms. The algorithm-page also allows users to
edit project parameters by interacting with the root node.

The participants include developers from two scrum teams fa-
miliar with the subject application, totaling 10 professionals. Their
software development experience spans four to twenty years, with
two to six years in frontend web application development.

3.2 Diagnostic
This stage’s purpose is to explore the research field, stakeholders,
and their expectations in order to identify primary causes and
circumstances faced by the organization [7]. Diagnostics was split
into an analysis of the system and an interview with the developers.

3.2.1 System Analysis. The application under analysis was devel-
oped by one of the teams while they were still gaining experience
in web development and learning to use a specific frontend frame-
work (Angular 12). The first author, who is employed at the institute
and actively involved in the project, led the analysis conducted in
this step, with support from the project manager and the academic
advisor. Being part of the development team, he had access to all
necessary artifacts, ensuring comprehensive data collection. The
project manager’s long-term involvement and the academic advi-
sor’s expertise in software architecture contributed to a thorough
and robust analysis.

Upon analyzing the project structure and source code, it became
clear that each page’s components had a high degree of interaction
with each other. Some event-driven structures had already been put
in place to reduce the coupling between components. However, the
pages still require a considerable amount of setup and coordination
in order for everything to work according to specifications. In
addition, all the components share some common model objects,
which means an additional shared dependency and that a new
application would require it to use the exact same models in order
to reuse the components.

The analysis indicated that a decoupled architecture would be
desirable, enabling development teams to work simultaneously and
efficiently on the same application. The goal of this architecture



SBES’24, September 30 – October 04, 2024, Curitiba, PR Antunes et al.

would be to gain agility through the composition of components
that are common to these applications.

3.2.2 Interview. The interview consisted of a one-on-one discus-
sion between the researcher and developers from both teams. Due to
the project’s schedule, seven developers were available for this step.
It followed a questionnaire [2] created based on the researcher’s
observations during the system analysis. Its intent was to first raise
any concerns the developers could spontaneously recall without
external influence and then get their opinions on scaling up the de-
velopment teams and improving code reusability. Key points raised
during the diagnostic interviews include:

• Issues with the organization of a common library, slow test
pipeline, and replicated code in end-to-end test suites.

• Challenges in adding team members included insufficient
documentation, time required for understanding the appli-
cation, and coordination difficulties for parallel team work.

• Division of application into separate repositories was viewed
positively for limiting the scope, facilitating learning, and re-
ducing maintenance efforts. However, concerns were raised
about increased complexity and potential conflicts.

• Reusability of current components in new applications was
perceived as feasible but requiring improvements in general-
ity, modularity, and communication between components.

• Centralization of data was noted for reducing divergent in-
formation but increasing component coupling. Distributing
data management responsibilities between components was
seen as potentially reducing coupling but requiring caution
for consistency and additional testing.

3.3 Planning
Once the need to improve the capacity of increasing the number
of developers working in parallel on the same application with
minimal code conflict was established, a search in the literature
about micro-frontends was conducted. According to Peltonen et
al. [18], this architecture is naturally loosely coupled, so it allows
for easier onboarding of new teams and independent development
of the different parts of the interface.

After reviewing the available literature, taking into considera-
tion the context of the project and the benefits and issues raised by
Peltonen et al. [18], it was decided to apply micro-frontends archi-
tecture to the application and analyze how it would compare to the
team’s past experience. The architecture would possibly solve the
team’s current inability to work together. Its loose coupling would
also help to fulfill the foreseen requirement of making application
replicas based on reusing different parts. To plan the migration,
we analyzed the reported benefits and issues in the context of the
system to be migrated. This rationale follows.

3.3.1 Micro-frontends Benefits Analysis. Micro-frontends offer sev-
eral advantages outlined by Peltonen et al. [18], including the ability
for multiple teams to work independently (B2, B3). This aligns with
the system’s need to reduce code conflicts and complexities, allow-
ing teams to focus on specific parts of the application. The loose
coupling of micro-frontends (B6) facilitates reuse and reduces re-
dundant work. Additionally, it addresses knowledge dispersion (B7)
by enabling swift comprehension of unfamiliar system parts.

Improvements in testing (B4) are anticipated, with smaller li-
braries and fewer tests. Although diverse technologies offer allure
(B1), sticking to a singular framework streamlines integration. Fu-
ture transitions to diverse technologies may require additional work
(B10). Some benefits such as fault isolation (B5), fast initial load
(B8), and improved performance (B9) may not be immediately ap-
parent because the web application is embedded on a desktop-based
system, but could become significant as it transitions to the web.

3.3.2 Micro-frontends Issues Analysis. Several challenges identified
by Peltonen et al. [18] can be addressed through strategic planning
in micro-frontends. Issues like "Increased payload size" (I1), "Code
Duplication" (I2), and "Shared Dependencies" (I3) stem from diverse
technologies across micro-frontends. Adopting the same framework
through all libraries and micro-frontends would reduce the amount
of dependencies. Additionally employing appropriate composition
technology can further mitigate these issues by avoiding the same
library to be loaded multiple times.

Addressing the issue of "UX consistency" (I4), a common library
housing UI components and stylesheets emerge as a potential so-
lution. However, this approach presents its own set of challenges.
First, the possibility of conflicts arises as multiple teamsmay concur-
rently contribute to this shared resource. Second, any modifications
to this library can inadvertently impact multiple micro-frontends.
To strike a balance, teams must commit to following semantic ver-
sioning practices, thereby managing and mitigating these concerns.

Existing measures, such as an automated build and test pipeline
linked to a repository manager, help to alleviate the "Increased
level of complexity" (I6). Additionally, the presence of multiple
homologation environments designed to simulate the production
environment reduces the likelihood of bugs stemming from "En-
vironment differences" (I9) and mitigates the "Higher risk when
releasing updates" (I10) issue. Furthermore, potential "Governance"
(I7) challenges are mitigated by the presence of a shared Project
Owner overseeing both teams. While the new architecture may
amplify these challenges, its overall impact is expected to remain
minimal due to these preexisting safeguards.

The challenge of "Islands of Knowledge" (I8) is already prevalent
in the current operational setup, given that teams work on distinct
applications. In this regard, the adoption of smaller, more man-
ageable projects aligned with the micro-frontends approach can
potentially facilitate "Faster Onboarding" (B7) and help mitigate
this problem. "Accessibility challenges" (I11) are less pertinent due
to internal use, eliminating stringent accessibility requirements
associated with public-facing applications.

3.4 Intervention
The existing monolithic web application was restructured into
smaller, self-contained components, facilitating micro-frontends
integration within the application shell. This horizontal split deci-
sion was driven by the shared component responsible for project
updates and the promotion of common concepts for future reuse.
Due to the team’s expertise, all micro-frontends continued to use
the Angular framework.

While the applications could potentially bundle all micro-frontends
together at compile time, the decision was made to experiment with
separate access via different URLs. The composition is performed



Investigating Benefits and Limitations of Migrating to a Micro-Frontends Architecture SBES’24, September 30 – October 04, 2024, Curitiba, PR

on the client side using Module Federation, a technology already in-
tegrated into the application’s bundler (webpack [16]). This choice
facilitates the definition of shared libraries, loading them only once,
and benefits from an existing Angular library that leverages Module
Federation for loading separately compiled and deployed code [1].

The selected composition technology influences page routing
within the application shell. Angular Architect’s library enables
association of remote modules to router URLs, enabling logic for
micro-frontend display based on emitted events.

Communication between micro-frontends is facilitated by in-
jecting an event emitter into each one of them via an Angular
service. Additionally, direct access to the application’s second page
is enabled through URL-encoded variables.

To mitigate risks associated with the changes, all proposed mod-
ifications were implemented within separate repositories, distinct
from those used in production. This approach allowed us to as-
sess the intervention’s impact without committing to changes. If
approved, the adjustments can be integrated into the project; oth-
erwise, they can be discarded without necessitating a rollback.

The extracted micro-frontends and created auxiliary libraries
are briefly described hereafter.

3.4.1 Micro-frontends. The migrated application was divided into
the following 5 micro-frontends, delimited by red rectangles in
Figure 1 and Figure 2.

The project-selection-microfrontend (Figure 1 left side) dis-
plays a list of project cards and a button to create new projects.
This micro-frontend is always visible on the first page. The project-
info-microfrontend (Figure 1 right side) features three tabs for
editing project data.

The pipeline-microfrontend (Figure 2 upper left) shows a
tree-like graph of phase sequences created by the user and is al-
ways visible on the second page. The phase-parametrization-
microfrontend (Figure 2 right side) allows users to parameterize
and execute selected phases. Its fields adjust based on phase type
and parent parameters. Finally, the execution-table-microfrontend
(Figure 2 lower left) lists all executions for the selected phase. Both
these micro-frontends are visible only on the second page when a
phase is selected.

Figure 1: Application: First page

Based on our proposal for micro-frontends, we determined that
implementing the execution-table-microfrontend was unnec-
essary because it primarily serves as a view-only component. Its

Figure 2: Application: Second page

functionalities were adequately covered by other components, of-
fering no additional benefits.

3.4.2 Auxiliary Libraries. In addition to the micro-frontends, sev-
eral libraries were created to establish a shared code base for inte-
grating the application. Figure 3 illustrates the architecture, delin-
eating the dependencies and development dependencies between
the shell application, micro-frontends, and libraries. The diagram
reveals two distinct categories for the auxiliary libraries (common
library and feature library).

Figure 3: Library breakdown

Common libraries, imported by all micro-frontends, aggregate
services and components aiding integration.microfrontends-core
serves as the main library, defining services for environment prop-
erties and session variables. microfrontends-ui maintains UX
consistency across micro-frontends. flow-in-memory-db simu-
lates the backend, exclusively for development.

Feature libraries categorize application data into projects, files,
and phases. Corresponding libraries consist of models, utility com-
ponents, and services. The feature service provides access to and
modification of data. Services’ methods initiate authorization re-
quests, interact with the backend, and update data. Careful handling
of feature libraries is crucial to avoid breaking retro-compatibility.



SBES’24, September 30 – October 04, 2024, Curitiba, PR Antunes et al.

3.5 Evaluation Strategy
The evaluation seeks to discuss the benefits, issues, and technology
acceptance of the migrated architecture (intervention) with the
developers. To achieve this, the developers engaged in a workshop
in which the migrated architecture was presented, briefly used
in practice, and discussed. The workshop was structured into the
following three phases:

3.5.1 Presentation Phase (45 minutes). During this phase, the re-
searcher provided participants with an overview ofmicro-frontends,
explaining fundamental concepts, benefits, and challenges associ-
ated with the architecture. This sets the stage for participants to
grasp the theoretical underpinnings of micro-frontends.

Then, the changes to migrate the application’s software archi-
tecture to micro-frontends were presented. Technical decisions
regarding the four micro-frontends principles were outlined. It
was also highlighted how the adoption of micro-frontends was
intended to address specific pain points and enhance the software’s
modularity and scalability.

3.5.2 Practical Application Phase (45 minutes). Participants were
assigned the task of adding a new form field to the project-info-
microfrontend. This exercise simulated a real-life maintenance
task. The time for completion was 30 minutes, followed by a pre-
sentation of a potential solution to address any remaining doubts
or incomplete tasks. In order to enable participants to complete
the task in the allotted time, they were provided with an updated
version of the library containing the models that should be updated
and the shell application that contained the mocked backend.

3.5.3 Focus Group Discussion Phase (60 minutes). Following the
practical exercise, a focus group discussion ensued, allowing each
participant to voice opinions on the benefits and challenges of
the architecture delineated in the literature review by Peltonen et
al. [18]. This forum provided a platform for participants to share
their perspectives, experiences, and concerns regarding the mi-
grated micro-frontends architecture.

Additionally, each participant completed a characterization form
to furnish background information, alongside a Technology Accep-
tance Model questionnaire[21] to assess their willingness to adopt
the new architecture. The next section provides a more detailed
view of this phase and its results.

4 EVALUATION
A focus group was selected as an evaluation method for its suitabil-
ity to gather practitioner insights [10]. It fosters open discussions,
allowing participants to share diverse viewpoints and uncover nu-
anced perspectives. As a result, we collected comprehensive feed-
back on the architecture and generated new discussion points. A
repository was created containing all the artifacts of both the work-
shop and the focus group [2].

4.1 Focus Group Planning
The focus group centered on the benefits and issues uncovered by
Peltonen et al. [18] and was conducted virtually via Zoom, using
a Miro board for discussion. The board consisted of 21 statements
related to the issues and benefits, each rated by developers on a

Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree).
Organized into lanes, each statement had six columns (see Figure
4). Participants, distinguished by assigned colors, affixed post-its
beneath their respective grades and provided justifications. This
was followed by a designated period for verbal discussion. The
post-it justifications and complete transcriptions of the discussions
are available in our open science repository [2]).

The only issue that wasn’t treated was I11 since the software
does not have accessibility requirements. Instead, we added a ques-
tion (Q11) that focused on the potential reusability benefit men-
tioned by Mezzalira in his book [13].

Figure 4: Focus Group board after discussion (online at [2])

Initially scheduled to last 60 minutes with a possible 30-minute
extension, the focus group surpassed the anticipated duration. Given
that participants had only covered half the board by the scheduled
conclusion, a second session was arranged for the next day, with
post-it assignments made beforehand to ensure timely completion.

Data from the focus group was captured through two methods.
Firstly, participants provided justifications on the board. Secondly,
the discussions were recorded, transcribed, and translated into Eng-
lish. Additionally, participants filled out a Technology Acceptance
Model (TAM) questionnaire after the sessions.

4.2 Focus Group Results: Benefits and Issues
In this subsection, we answer RQ1 by presenting the results for each
benefit and issue discussed in the focus group and offer a synthesis
of the developers’ opinions. Figure 4 illustrates the final state of the
board after the discussion. Figure 5 presents a consolidated view of
the final ratings for ease of interpretation.

Q1 - Provides better support for using different technolo-
gies. (B1) Participants unanimously agree that micro-frontends
facilitate the use of diverse technologies within a single applica-
tion, allowing for tailored solutions to address specific challenges
effectively. However, they acknowledge the need for careful man-
agement to mitigate maintenance costs associated with utilizing
multiple technologies.

Q2 - Improves the autonomy of teams working simultane-
ously on the same application. (B2) While opinions are divided,
there is consensus that micro-frontends can enhance team auton-
omy to some extent, although effective alignment and communica-
tion remain crucial for smooth collaboration.



Investigating Benefits and Limitations of Migrating to a Micro-Frontends Architecture SBES’24, September 30 – October 04, 2024, Curitiba, PR

Figure 5: Focus Group results

Q3 - Allows teams to deploy their changes independently.
(B3) Similarly, views on the ability of micro-frontends to enable in-
dependent deployment of changes vary, with concerns raised about
the need for alignment between teams to avoid inconsistencies.

Q4 - Facilitates testing the application. (B4) There’s a mixed
perspective on whether micro-frontends facilitate testing the ap-
plication. While some believe that it simplifies unit testing and
improves test scope definition, others express concerns about po-
tential complexities, such as code repetition in component tests and
difficulties in integration testing and maintenance.

Q5 - Improves the application’s fault resiliency. (B5) The
discussion on whether micro-frontends improve fault resiliency
reveals varying perspectives, with considerations about the impact
of failures and the dependence on application division granularity.

Q6 - Improves application’s development scalability. (B6)
While participants agree that micro-frontends have the potential to
enhance application development scalability, they highlight chal-
lenges related to component communication and team division.

Q7 - Facilitates the comprehension and swift delivery for
new developers. (B7) All the participants partially agree that
micro-frontends can aid in new developers’ comprehension and
help their integration into projects. The focused development scope
within each micro-frontend enables swift onboarding. However, set-
ting up the development environment and comprehending the inte-
gration of all components, including the shell and micro-frontends,
may pose challenges.

Q8 - Reduces the application’s initial load time. (B8)While
there is recognition that the chosen approach for application com-
position, the division of the application, and the architecture play
crucial roles, developers don’t think the architecture necessarily
improve initial load time. Responses highlight factors such as de-
pendency duplication, the potential for improved loading through
module loading, and the possibility of making parts of the applica-
tion available before all components are fully loaded.

Q9 - Improves the application’s performance. (B9) In gen-
eral, they think that micro-frontends can boost performance by
enabling different parts of the application to load independently, en-
hancing user experience and providing better control over loading.
However, developers stress that their effectiveness in improving
performance depends on factors like architectural design, division
strategies, and scalability measures.

Q10 - Facilitates future transition into new technologies.
(B10) They believe that micro-frontends offer advantages in terms
of flexibility and gradual migration, simplifying the transition to
new technologies. However, developers also highlight challenges
such as the need to replicate changes across multiple submodules,
complexity in integrating different parts, and the risk of compati-
bility issues with common libraries.

Q11 - Improves code reusability. Three developers partially
agree that micro-frontends might offer potential for code reuse,
especially if the same micro-frontend can be utilized across differ-
ent applications, while four neither agree nor disagree. However,
concerns have been raised about the effectiveness of code reuse
within the application itself, with some developers expressing uncer-
tainty or skepticism about whether micro-frontends truly enhance
code reusability compared to monolithic architectures. Developers
highlight that the architecture’s gain in reusability depends on the
choice of split and may still require customization to adapt the
micro-frontend to its new use.

Q12 - Increases the application’s payload size. (I1)There is a
consensus among the developers thatmicro-frontends can lead to an
increase in payload size. This might be due to various factors, such
as duplicated dependencies, code, and components across different
micro-frontends. Developers express concerns about managing and
mitigating the duplication of dependencies and the potential impact
on overall application performance. While some acknowledge the
possibility of mitigating this issue through strategies like lazy-
loading and caching, there is an overall recognition that micro-
frontends introduce challenges in minimizing payload size.

Q13 - Increases the amount of duplicated code. (I2)Developers
express concerns about code duplication, particularly with scripts,
configuration files, deployment-related code, and backend data pro-
cessing logic. They attribute this duplication to independent com-
ponent development by different teams and the limited awareness
or visibility of existing code across various parts of the application.
Some suggest it’s possible to place it in a common library. However,
they also acknowledge the additional effort required.

Q14 - Presents more challenges in managing dependencies.
(I3) There are notable concerns about the complexity and added
management burden linked to dependencies in micro-frontends
versus monolithic architectures. Developers point out challenges
like conflicts from using varying dependency versions, the intricacy
of managing dependencies across projects, and ensuring compati-
bility and coherence across modules. They also stress the challenge
of updating shared dependencies across multiple locations and the
risk of infrastructure issues during dependency installation.

Q15 - Hinders UI/UX consistency maintenance. (I4) The
developers express concerns about the challenges in maintaining a
consistent UI/UX across different micro-frontends, citing factors
such as the need for increased attention, potential difficulties in
coordination between UI/UX teams and developers, and the risk



SBES’24, September 30 – October 04, 2024, Curitiba, PR Antunes et al.

of inconsistencies arising from decentralized development. Devel-
opers emphasize the importance of proactive measures such as
synchronization of design efforts and the use of design systems
to minimize inconsistencies but acknowledge that some level of
inconsistency is likely to persist.

Q16 - Impedes the application debugging process. (I5)While
micro-frontends don’t outright impede the application debugging
process, they introduce added complexities and make debugging
more laborious compared to monolithic architectures. Developers
note the challenge of debugging the entire application, often ne-
cessitating debugging each micro-frontend separately. They also
emphasize the extra effort required to debug interactions between
different micro-frontends, such as assessing the impact of a library
on another micro-frontend. While some developers believe debug-
ging individual parts of the application is manageable, they admit
it’s more challenging than debugging a monolithic application.

Q17 - Increases the application’s complexity. (I6) The devel-
opers’ grading of this statement varied widely. Various aspects were
cited to justify their choices, including managing dependencies, in-
teractions, deployment, testing, and maintenance. They express
concerns about the growing number of micro-frontends and the
challenges in managing and integrating them. They also highlight
the difficulty in ensuring consistency and maintaining dependen-
cies across multiple micro-frontends. However, some developers
acknowledge that there is a trade-off. In terms of code, complexity
might actually decrease, and a well-defined architecture may help
mitigate some challenges.

Q18 - Requires more coordination between the teams. (I7)
Participants recognize the importance of communication and align-
ment among teams to prevent conflicts and ensure the smooth func-
tioning of different application parts. While micro-frontends may
enable teams to work more independently on specific components,
some developers suggest that this independence could potentially
increase the need for coordination, especially for broader changes
and when components require interaction. However, other partic-
ipants believe that there will always be a necessity of alignment
between teams, regardless of the approach.

Q19 - Increases the fragmentation of knowledge about
the application. (I8) All developers partially agree that adopting
micro-frontends can fragment knowledge about the application.
This fragmentation arises from independent development and the
flexibility to use various technologies. While some recognize similar
fragmentation in monolithic architectures, micro-frontends tend
to exacerbate this division, with teams concentrating on specific
project groups. Furthermore, developers suggest that distributing
responsibilities and stories among teams, combined with coordina-
tion by product owners, may alleviate this challenge.

Q20 - Increases the risks of behaving differently on the pro-
duction environment. (I9) Participants were evenly split between
grades 4 and 5. They attribute the increased risk to the complexity
of the environment, dynamic component updates, and the isolated
nature of the work. Although integration tests in the shell may
mitigate this risk, challenges remain in accurately reflecting the
production environment in testing. Additionally, factors such as
dependency management and coordination during deployment con-
tribute to the heightened risk compared to monolithic architectures.

Q21 - Increases the chances that bugs will slip to produc-
tion environment. (I10)Developers agree that there is an increase
in the likelihood of bugs slipping into the production environment.
This is due to the complexity of the environment and the challenges
associated with testing integration. While integration tests in the
shell and team maturity in testing the application as a whole may
help mitigate this risk, the potential for configuration and depen-
dency variations complicates testing across different environments.

4.3 Technology Acceptance Results
According to our evaluation strategy, before the focus group, devel-
opers were assigned an exercise to enable them to explore aspects
of the migrated architecture’s implementation, such as dependency
management and the setup of multiple micro-frontends for develop-
ment. This hands-on experience with the technology was expected
to enrich the subsequent focus group discussion.

Therefore, ahead of the workshop day, each participant received
instructions to set up certain aspects of their local development
environment for the exercise. During the session, developers were
assigned to individual breakout rooms and were asked to screen
share, allowing researchers to move between rooms and observe
their problem-solving approaches. Participants could request assis-
tance from researchers at any point if they encountered difficulties.
Among the eight participants, two were unable to complete the
exercise due to setup challenges, while the remaining six completed
it with varying levels of assistance.

At the end of the workshop, to address RQ2, each participant
filled out a Technology Acceptance Model (TAM) based question-
naire. Figure 6 illustrates the results. The first four questions (Q1-Q4)
aimed to evaluate developers’ perceptions of the architecture’s use-
fulness, while the subsequent four (Q5-Q8) focused on its perceived
ease of use. Responses to both sets of questions tended to range
from neutral to positive.

The final question (Q9) assessed developers’ intentions to adopt
the architecture. In contrast to the generally positive or neutral
responses to previous questions, this question revealed a slightly
negative trend, with the majority falling within the neutral cate-
gory. This suggests that while participants generally perceive the
architecture as useful and moderately easy to use, they exhibit hes-
itance towards adopting it. The current context of the project could
help to explain this hesitation. With the project divided into several
applications, each with its own repository, teams already have the
ability to work independently, provided they are not collaborating
on the same application. Consequently, this existing setup may
diminish their willingness to embrace the increased complexity of
the new architecture, especially if the benefits are not perceived as
particularly significant.

5 DISCUSSION
The synthesis of the focus group discussion revealed a nuanced
understanding among developers regarding the implementation of
micro-frontends. In general, the developers agree, to some extent,
with most of the benefits and issues raised by Peltonen et al. [18].

According to what was discussed, micro-frontends offer devel-
opers flexibility in technology selection, enabling the integration
of diverse technologies within the same application. This flexibility



Investigating Benefits and Limitations of Migrating to a Micro-Frontends Architecture SBES’24, September 30 – October 04, 2024, Curitiba, PR

Figure 6: Technology Acceptance Model Results

allows for tailored solutions to specific challenges, empowering de-
velopment teams to leverage suitable tools for different parts of the
system. At the same time, concerns were raised on the desirability
to have the application composed of several different technologies,
and the added complexity this may imply.

Additionally, micro-frontends improve team autonomy by di-
viding work effectively and reducing conflicts over shared code.
They also hold promise for scalability and performance, provid-
ing the framework for independent loading and development, thus
potentially enhancing application scalability and user experience.
Furthermore, micro-frontends offer a gradual transition path to
new technologies, allowing for evaluation without the need for a
complete overhaul of the existing application architecture.

However, the discussion also highlighted several challenges as-
sociated with micro-frontends. Chief among these is the complexity
introduced by the architecture, spanning aspects such as depen-
dencymanagement, debugging, andmaintaining UI/UX consistency.
Effective coordination and communication between teams emerge
as critical factors in navigating these challenges, underscoring the
importance of alignment to prevent conflicts and ensure smooth
collaboration. Testing and deployment present additional hurdles,
with concerns about integration testing, deployment consistency,
and discrepancies between testing and production environments.
Moreover, while micro-frontends hold promise for code reusability,
concerns persist regarding their effectiveness compared to mono-
lithic architectures and the prevalence of duplicated code.

Overall, anyone intending to adopt this architecture should ana-
lyze if the gains in flexibility and scalability are worth the added
complexity in infrastructure and organization. But there are other
interesting points that can be taken from the discussion.

Managing Dependencies vs Duplicating Code. One of the
primary concerns raised by the developers was the management of
dependencies. This issue, typically familiar to them, stood out as
a significant challenge during the discussion, signaling potential
underlying complexities. An alternative approach, discussed by one
developer, suggests replicating parts of the code, such as models
and backend communication services, across all micro-frontends

instead of relying heavily on unifying libraries. While this alterna-
tive simplifies repository management and reduces the coupling
between micro-frontends, it introduces the task of maintaining du-
plicated code across multiple locations. Effectively handling shared
code emerges as a critical challenge for improving the usability of
micro-frontends architectures. Developing tools to enhance depen-
dency version tracking or managing replicated code as a unified
library could mitigate some of these issues, thereby expanding the
applicability of micro-frontends architectures in various scenarios.

Client-side Composition vs Composition During Compila-
tion Time. As detailed in the intervention description, an option
existed to compose the application during compilation, given the
absence of customization for each user. However, the decision was
made to compose it on the client side, utilizingmodule federation, to
explore new potentialities of this architecture. The former approach
may have been more suitable for the context of this application, as
it permits the development of each micro-frontend as a library and
bundling everything as a single app. This simplifies some of the in-
frastructure complexities that developers viewed unfavorably, such
as serving each micro-frontend at a distinct URL and managing
their versions appropriately in each environment. Conversely, the
chosen approach offers greater flexibility in terms of deployment
independence and application customization possibilities.

Choosing the Appropriate Split and Structuring the Ap-
plication. During the discussion, the topic of how to partition the
application was frequently raised, with a perception of its critical
importance and the potential costs associated with altering it later.
There was a sentiment that the architecture would enhance micro-
frontend reusability, particularly with a horizontal split. However,
some caveats of this division were highlighted, such as the per-
ceived increase in overall complexity and the potential limitation
on team autonomy. These perceptions give rise to several questions.
For example, how does the partitioning affect dependencies? In a
vertical split where communication is limited to a between-page ap-
proach, could dependencies be reduced?Whenmight it be advisable
to restructure the application’s use cases to adopt this split? And
which aspects should be prioritized in this restructuring process?

Integration Tests. As our group delved deeper into web de-
velopment, we became increasingly interested in end-to-end tests
using Cypress[6] to automate tasks that would otherwise bemanual.
These tests, which simulate user interactions with the application,
offer greater resilience against becoming outdated compared to
traditional unit tests. Consequently, they have become our team’s
preferred method for preventing interface bugs. However, a sig-
nificant drawback of our current approach is the extensive code
duplication between different applications. This duplication likely
contributed to developers’ reservations about the architecture. If
each micro-frontend had to replicate our current implementation, it
would inflate the code base and increase maintenance costs. More-
over, these tests significantly prolong the build pipeline execution
time. If the architecture leads to cascading pipelines, as seems likely
to ensure reliable bug detection, it could severely disrupt the code
integration process. Addressing these issues could significantly en-
hance the architecture’s usability. Establishing guidelines for testing
micro-frontends to minimize duplication and accelerate develop-
ment pipelines would be advantageous. Additionally, resolving the



SBES’24, September 30 – October 04, 2024, Curitiba, PR Antunes et al.

dependencymanagement challenge by centralizing common testing
code could streamline the process further.

6 THREATS TO VALIDITY
This section discusses the different threats to validity identified
and the corresponding mitigation actions, following the categories
suggested by Wohlin et al. [22].

Internal Validity.Aswe implement this architectural transition,
it’s expected that various changes and optimizations will naturally
occur, potentially confounding our ability to attribute all system
modifications directly to the micro-frontends adoption. In essence,
some system adjustments may be driven by general improvements
or enhancements that are standard practice during ongoing devel-
opment efforts. Additionally, the influence of more experienced
peers in the focus group discussions might lead some developers
to align with their views rather than express their own insights.
Moreover, developers did not have an extensive experince with
the architecture. However they were presented to the restructured
application and had a practical exercise to get familiar with the
new architecture before the focus group discussion. This, allied
with their experience with development, allowed them to present
their opinion on the matters evaluated. Indeed, the openly available
board information and transcripts allow understanding that the
focus group enabled valuable discussions.

Construct Validity. It is essential to consider the construct
validity within the framework of our experiment, as the implemen-
tation of a micro-frontends architecture can vary significantly. In
our specific experiment, the choices made in adopting this architec-
ture were tailored to align with the unique context of the software
under examination. Consequently, it’s important to recognize that
the conclusions drawn from our experiment may not universally
apply to all projects utilizing micro-frontends. The context-specific
nature of our decisions should be kept in mind when interpreting
our findings. Notably, the influence of the choice of division of
shared dependencies was particularly evident among participants.
The intervention decisions were internally discussed within the
team of authors, including researchers active with MFE research
and practice. Hence, we believe that, while the decisions are spe-
cific, they are a representative instance for decisions typically taken
when decomposing software projects into MFEs. Moreover, a po-
tential source of bias arises from the involvement of the intervener,
who is a member of the development team. This proximity to the
project could inadvertently influence data collection, particularly
during interviews and focus group discussions.

Conclusion Validity. The scope of the intervention is inher-
ently bound by the number of developers associatedwith the project.
Consequently, there are limitations to the inclusion of additional
subjects. However, it is important to note that the evaluation of
the intervention involves a multi-faceted approach. This includes a
presentation and group discussion conducted with all subjects con-
currently, ensuring consistency andminimizing potential variations
in treatment delivery.

External Validity. In alignment with the principles of conven-
tional action research, it is imperative to recognize the inherent
limitations pertaining to external validity. Given that the interven-
tion is tailored to a specific industrial case, and the structure of

the focus group may introduce bias, we exercise caution in making
broad claims about the generalizability of our findings to other con-
texts. However, it is worth emphasizing that our research unfolds
within an industrial environment. The empirical observations and
insights derived from this context can serve as valuable catalysts
for generating hypotheses. These hypotheses, when subjected to
rigorous testing and replication in diverse settings, can contribute
to a more comprehensive understanding of the broader applicability
and potential variations of our findings.

7 CONCLUDING REMARKS
This paper investigated the migration of an industry project to a
micro-frontends architecture. Based on the data generated by the
focus group conducted during the evaluation step, we were able to
further explore the benefits and issues raised by Peltonen et al. [18].
This exploration contributes to the current empirical evidence with
insights from industry practitioners, helping to provide a nuanced
understanding.

We provide technical details of the intervention, which comprises
a specific migration to a micro-frontends architecture. Software
teams embarking on the journey towards micro-frontends would
benefit from the reported technical considerations, organizational
challenges, and implementation strategies, offering actionable in-
sights for software development teams.

As an outcome of our evaluation, besides the architectural de-
cision rationale and in-depth discussions of the benefits and lim-
itations, we conclude that, while micro-frontends is a promising
technology, unresolved issues (e.g., complexity of managing depen-
dencies) still limit their broader applicability. Hence, developers
generally perceived the architecture as useful and moderately easy
to use but exhibited hesitance toward adopting it.

Future research should address the limitations of this study by
exploring a wider array of implementation approaches and involv-
ing additional projects and developers. Also, while running exper-
iments in professional contexts is extremely costly and difficult,
simulating the maintenance task on both the monolithic and micro-
frontends versions of the application could allow for a more direct,
quantitative comparison of both architectures. Moreover, efforts
to streamline development using the architecture and addressing
issues like dependency management and integration tests could
enhance the technology’s acceptance.

ONLINE RESOURCES
Our data, artifacts, and additional resources are openly available at
Zenodo [2] under Creative Commons Attribution license.

ACKNOWLEDGMENTS
We thank all the participants of the Tecgraf Institute and the Brazil-
ian Council for Scientific and Technological Development (CNPq
process #312275/2023-4) for the financial support.

REFERENCES
[1] Angular Architects. 2024. Angular Architects: Module Federation. https://www.

npmjs.com/package/@angular-architects/module-federation. Accessed: 2024-
01-13.

https://www.npmjs.com/package/@angular-architects/module-federation
https://www.npmjs.com/package/@angular-architects/module-federation


Investigating Benefits and Limitations of Migrating to a Micro-Frontends Architecture SBES’24, September 30 – October 04, 2024, Curitiba, PR

[2] Fabio Antunes, Maria Julia Lima, Marco Araujo, Davide Taibi, and Marcos Kali-
nowski. 2024. Investigating Benefits and Limitations of Migrating to a Micro-
Frontends Architecture. https://doi.org/10.5281/zenodo.10951484

[3] Deepika Badampudi. 2017. Reporting ethics considerations in software engi-
neering publications. In 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 205–210.

[4] Victor R Basili and H Dieter Rombach. 1988. The TAME project: Towards
improvement-oriented software environments. IEEE Transactions on software
engineering 14, 6 (1988), 758–773.

[5] Mozilla Corporation. 2024. Web Components. https://developer.mozilla.org/en-
US/docs/Web/API/Web_components. Accessed: 2024-06-23.

[6] Cypress.io, Inc. 2024. Cypress. https://www.cypress.io/. Accessed: 2024-04-13.
[7] Paulo Sergio Medeiros Dos Santos and Guilherme Horta Travassos. 2011. Action

research can swing the balance in experimental software engineering. InAdvances
in computers. Vol. 83. Elsevier, 205–276.

[8] Holger Harms, Collin Rogowski, and Luigi Lo Iacono. 2017. Guidelines for
Adopting Frontend Architectures and Patterns in Microservices-Based Systems.
ESEC/FSE (2017).

[9] Cam Jackson. 2019. Micro Frontends. https://martinfowler.com/articles/micro-
frontends.html. Accessed: 2024-04-13.

[10] Jyrki Kontio, Johanna Bragge, and Laura Lehtola. 2008. The Focus Group Method
as an Empirical Tool in Software Engineering. Springer London, London, 93–116.
https://doi.org/10.1007/978-1-84800-044-5_4

[11] MDN Web Docs. 2023. Web Storage API. https://developer.mozilla.org/en-US/
docs/Web/API/Web_Storage_API#web_storage_concepts_and_usage. Accessed:
2023-07-29.

[12] Manel Mena, Antonio Corral, Luis Iribarne, and Javier Criado. 2019. A Progressive
Web Application Based on Microservices Combining Geospatial Data and the

Internet of Things. IEEE Access 7 (2019), 104577–104590. https://doi.org/10.1109/
ACCESS.2019.2932196

[13] Luca Mezzalira. 2021. Building Micro-Frontends. O’Reilly Media, Inc.
[14] Jouni Männistö, Antti-Pekka Tuovinen, and Mikko Raatikainen. 2023. Experi-

ences on a Frameworkless Micro-Frontend Architecture in a Small Organization.
In 2023 IEEE 20th International Conference on Software Architecture Companion
(ICSA-C). 61–67. https://doi.org/10.1109/ICSA-C57050.2023.00025

[15] Network Working Group. 1999. RFC 2616 – Hypertext Transfer Protocol –
HTTP/1.1. https://www.ietf.org/rfc/rfc2616.txt. Accessed: 2023-07-29.

[16] OpenJS Foundation. 2024. Module Federation. https://webpack.js.org/concepts/
module-federation/. Accessed: 2024-01-13.

[17] Andrey Pavlenko, Nursultan Askarbekuly, Swati Megha, and Manuel Mazzara.
2020. Micro-frontends: application of microservices to web front-ends. J. Internet
Serv. Inf. Secur. 10, 2 (2020), 49–66.

[18] Severi Peltonen, Luca Mezzalira, and Davide Taibi. 2021. Motivations, bene-
fits, and issues for adopting Micro-Frontends: A Multivocal Literature Review.
Information and Software Technology 136 (2021).

[19] Miroslaw Staron. 2020. Action research in software engineering. Springer.
[20] Davide Taibi and Luca Mezzalira. 2022. Micro-Frontends: Principles, Imple-

mentations, and Pitfalls. SIGSOFT Softw. Eng. Notes 47, 4 (sep 2022), 25–29.
https://doi.org/10.1145/3561846.3561853

[21] Mark Turner, Barbara Kitchenham, Pearl Brereton, Stuart Charters, and David
Budgen. 2010. Does the technology acceptance model predict actual use? A
systematic literature review. Information and software technology 52, 5 (2010),
463–479.

[22] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

https://doi.org/10.5281/zenodo.10951484
https://developer.mozilla.org/en-US/docs/Web/API/Web_components
https://developer.mozilla.org/en-US/docs/Web/API/Web_components
https://www.cypress.io/
https://martinfowler.com/articles/micro-frontends.html
https://martinfowler.com/articles/micro-frontends.html
https://doi.org/10.1007/978-1-84800-044-5_4
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API##web_storage_concepts_and_usage
https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API##web_storage_concepts_and_usage
https://doi.org/10.1109/ACCESS.2019.2932196
https://doi.org/10.1109/ACCESS.2019.2932196
https://doi.org/10.1109/ICSA-C57050.2023.00025
https://www.ietf.org/rfc/rfc2616.txt
https://webpack.js.org/concepts/module-federation/
https://webpack.js.org/concepts/module-federation/
https://doi.org/10.1145/3561846.3561853

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Micro-frontends
	2.2 Benefits and Issues of Micro-frontends
	2.3 Related Work

	3 Research Strategy
	3.1 Context
	3.2 Diagnostic
	3.3 Planning
	3.4 Intervention
	3.5 Evaluation Strategy

	4 Evaluation
	4.1 Focus Group Planning
	4.2 Focus Group Results: Benefits and Issues
	4.3 Technology Acceptance Results

	5 Discussion
	6 Threats to Validity
	7 Concluding Remarks
	References

