
Challenges and Solutions of Free and Open Source Software
Documentation: A Systematic Mapping Study

Giniele Pinho
Federal University of Ceará

Crateús, CE, Brazil
giniele@alu.ufc.br

Aguiar Jeová Caçula
Federal University of Ceará

Crateús, CE, Brazil
jeova.junior@alu.ufc.br

Lucas Costa
Federal University of Cariri
Juazeiro do Norte, CE, Brazil

lucas.germano@aluno.ufca.edu.br

Igor Wiese
Federal University of Technology -

Paraná
Campo Mourão, Paraná, Brazil

igor@utfpr.edu.br

Allysson Allex Araújo
Federal University of Cariri
Juazeiro do Norte, CE, Brazil
allysson.araujo@ufca.edu.br

ABSTRACT
Software documentation is a relevant process for delivering quality
software, as it assists stakeholders in using, understanding, main-
taining, and implementing software productively. However, notable
particularities emerge when investigating the context of Free and
Open Source Software (FOSS) projects, which require special atten-
tion. Therefore, through a Systematic Mapping Study (SMS), this
work aims to map the challenges and solutions regarding software
documentation in FOSS based on the last ten years of scientific
research (published between 2013 and 2023). From an initial set
of 1271 papers, 12 primary studies were identified from which it
was possible to categorize five challenges (Collaboration, Quality,
Incompleteness, Maintainability, and Categorization) and three gen-
eral perspectives of solutions (Strategic Use of README, Adoption
of Artificial Intelligence, and Support Tools & Approaches). As an
academic contribution, we provide an SMS revealing a set of chal-
lenges and solutions related to software documentation, a topic still
underexplored in the FOSS research context. From a practical and
industrial standpoint, this paper promotes a reflection on the use of
documentation in FOSS projects, echoing challenges and solutions
that can contribute to improving the quality of documentation.

CCS CONCEPTS
• Software and its engineering→Documentation;Open source
model.

KEYWORDS
Software Documentation, Free Software, Open Source, Systematic
Mapping Study

1 INTRODUCTION
Software documentation plays a fundamental role in the develop-
ment of high-quality software [52]. This importance stems from
documents’ ability to assist stakeholders in using, understanding,
maintaining, and developing a system more productively [2, 26]. As
discussed by Parnas [45] and Forward [22], software documenta-
tion is an artifact designed to convey information about the related
software system, serving as a written description that can be used
as evidence for knowledge management. High-quality documenta-
tion is one of the critical factors in producing high-quality software

[10]. Hence, the documentation is expected to provide accurate
and valuable information about systems, both in closed-source and
open-source projects.

Free and Open Source Software (FOSS) are solutions in which
users can freely distribute, access, adapt, modify, and redistribute
the source code for their use and the benefit of the community [36].
The community of a FOSS project consists of contributors (devel-
opers, users, etc.) who share a common interest in collaborating
on software solutions [34, 62]. Adopting a FOSS model has proven
to be a strategic opportunity for organizations in various domains,
as it offers benefits such as access to talented programmers world-
wide, potential for peer review, and the ability to freely distribute,
adapt, and modify the source code [23]. This strategic perspective
emphasizes the potential for increased innovation and software
quality among competitive organizations [66].

Despite the well-known advantages of the FOSS model, such
as the flexibility of having contributors from anywhere and the
substantial potential for peer review, it also faces distinctive par-
ticularities [34, 42]. For instance, there is the voluntary nature of
participation, which can lead to fluctuating levels of contributors
engagement, the lack of centralized management to direct devel-
oper resources and attributes, the diversity in skills and experience
among participants, and the need to recruit and retain new contrib-
utors [18, 38]. In light of these characteristics, software documenta-
tion, as a process, is impacted and consequently requires special
attention, given that it promotes valuable benefits for software de-
velopment, such as supporting asynchronous communication and
fostering knowledge management [42]. As stated by Aghajani et al.
[3], developers (and users) prefer documentation that is correct,
complete, up to date, usable, maintainable, readable and useful.

While software documentation is a widely investigated research
topic in the Software Engineering (SE) community [2, 17, 24, 26,
53, 69], there is a research gap concerning the systematic mapping
of challenges and solutions in software documentation for FOSS.
Aiming to understand the recent state-of-the-art in this intersection
of studies involving software documentation and FOSS, this work
proposes to investigate the following research question: In the past
ten years, what are the challenges and solutions regarding software
documentation in FOSS? Specifically, the choice of a ten-year time-
frame is strategic and justified, as it allows us to focus on recent
perspectives that reflect the current landscape of SE in FOSS. This

SBES’24, September 30 – October 04, 2024, Curitiba, PR Pinho et al.

timeframe also ensures that we capture the up-to-date challenges
and solutions, considering the rapid evolution and changes in the
FOSS over the past decade. In addition, this period includes the rise
of key technologies and methodologies that have impacted FOSS
development, such as the widespread adoption of GitHub and the
maturation of DevOps practices.

Considering the research question’s scope, this work adopts a
methodological approach based on a Systematic Mapping Study
(SMS). In particular, the SMS is deemed appropriate as its objec-
tive is to review, classify, and structure papers related to a specific
research field [48]. In this sense, the use of SMS is justified by its
focus on delineating a specific research field, providing an overview
of the topic, and enabling the categorization of the research topic of
interest [49]. From an initial set of 1271 papers, 12 primary studies
were identified, from which it was possible to categorize five major
challenges (Collaboration, Quality, Incompleteness, Maintainability,
and Categorization) and three general perspectives of investigated
solutions (Strategic use of README, Adoption of Artificial Intelli-
gence, and Support Tools & Approaches).

This study delivers contributions to academia and practice in the
context of SE by: 1) Unveiling a set of challenges and solutions re-
lated to software documentation, a topic relatively underexplored in
FOSS; 2) Providing an overview of the literature covering software
documentation and FOSS, thereby consolidating knowledge and
identifying trends and gaps; and 3) Promoting a concrete reflection
on the documentation process in FOSS projects, echoing practical
challenges and solutions that can support improving the quality of
documentation and the efficiency of such projects.

This paper is organized as follows. Section 2 presents the theoret-
ical foundation and related works. Section 3 clarifies our research
method, including the protocol for the SMS. Section 4 discusses the
results and analyses based on the primary studies, while Section 5
presents a general discussion of our findings. Section 6 addresses
threats to validity of this study. Finally, Section 7 approaches our
concluding remarks and perspectives of future work.

2 BACKGROUND
This section articulates the literature review and related works to
provide an overview of the literature and how our work is posi-
tioned within it in terms of contributions. Firstly, we discuss the
context of Free and Open Source Software. Then, we overview the
scientific literature covering software documentation.

2.1 Free and Open Source Software
Free and Open Source Software (FOSS) projects are quite relevant
in the modern software industry. Currently, many software systems
relevant to society rely on FOSS projects [7]. According to Van An-
geren et al. [63], the overarching concept behind free software
encompasses software artifacts, including source code, licenses,
development best practices, innovation, ethics, philosophy, social
movement, community, culture, governance, and organizational
engagement. Then, software emerges from a coordinated and un-
supervised community of developers and other contributors. This
development process is based on the principle that software should
be freely shared among users, granting them the ability to introduce
implementations and modifications [30]. Differing from traditional

and closed source software development, FOSS projects encompass
free redistribution, availability of source code, and the possibility
of modifications, which must be distributed under the same terms
as the original software [47].

As Von Krogh and Von Hippel [64] note, FOSS is commonly
created by an individual or a group of people aiming to develop
a software product to meet their needs. The initial version of the
created source code is made freely available to everyone, allow-
ing anyone to participate in the software development cycle [68].
Stamelos et al. [58] emphasize two principles broadly defining the
power of FOSS: rapid evolution so that many users/programmers
can use the new system and modify it, with no time spent on ‘un-
necessary’ management activities and many programmers working
simultaneously on the same problem.

The FOSS community comprises contributors who share a com-
mon interest and interact to share knowledge for project develop-
ment [34]. Individuals join such communities at different ages and
with diverse backgrounds, abilities, resources, and objectives, along
with varying levels of programming skills and experience [38]. Ac-
cording to Steinmacher et al. [59], the successful development of
a FOSS project essentially relies on the work of a community of
volunteer developers distributed globally and collaborating via the
Internet. In addition, Michlmayr et al. [42] highlight advantages of
the FOSS development model, such as the potential for peer review
and attracting excellent programmers worldwide.

However, FOSS projects can be complex to manage and involve
continuous improvement processes. According to Jalote [33], the
software process comprises a set of activities that need to be inter-
connected by standards, and if the activities operate correctly ac-
cording to these standards, the desired outcome is achieved. Hence,
FOSS communities are examples of shared knowledge involving
assets from different individuals in the process of interaction and
learning [31]. Active community involvement is essential for the
success of a FOSS project, requiring efforts to increase community
participation and engagement through the use of tools, practices,
and processes [34]. Michlmayr et al. [42] explain three development
and quality practices essential for a good FOSS project development
structure, which are discussed below.

FOSS projects heavily depend on Infrastructure, which enables
distributed development and collaboration. Important parts of the
infrastructure include Bug Tracking Systems to gather feedback
from users and reports of actual bugs as well as feature requests;
Version Control Systems to allow multiple people to work on the
same code simultaneously and track who makes which changes;
Automated Builds to ensure that the latest code in the version con-
trol system is still compiling and Mailing Lists for communication
among developers and users.

Regarding the Process, FOSS development involves different
tasks, but some are not necessarily documented, and developers
adhere to them implicitly. Possible processes include: i) Onboard-
ing: projects require potential members to follow specific, mostly
undocumented procedures to join a project. These procedures vary
considerably among projects. Some explicitly ensure admitting only
contributors from whom high-quality submissions can be expected,
while other projects are more flexible; ii) Peer review: changes made
in the version control system are typically reviewed by project mem-
bers, although this form of peer review is often not well formalized;

Challenges and Solutions of FOSS Documentation: A Systematic Mapping Study SBES’24, September 30 – October 04, 2024, Curitiba, PR

iii) Testing: to ensure that a new version meets the standards of a
project and has no major regressions, some projects have testing
checklists. These checklists contain the most critical functions and
briefly describe how they can be tested and iv) Quality assurance:
some projects organize bug days or bug-solving parties to triage
their pending bugs. During this work, duplicate bug reports are
marked as such, old bugs are reproduced, and bugs are also fixed.

Finally, Documentation in FOSS projects regarding develop-
ment practices should be explicit, including ways to contribute and
how to join the project. There are two types of documentation that
are commonly used. The first type is coding style documentation,
which is intended for developers and outlines the style to be used
for source code. The second type is code commit documentation,
which specifies who canmake changes to a project’s version control
system and when those changes can be made.

FOSS development often rely on self-assignment of tasks with
little coordination, but all developers need to align their activities
toward a shared goal [43]. Consequently, coordinating and organiz-
ing work in FOSS projects usually involves balancing effort demand
(desired resources and known bugs that will take time and special-
ized skills to fix) with effort supply (volunteers and paid developers
who have their motivations and priorities) [36]. In this context,
software documentation stands out as a valuable guide providing
knowledge to stakeholders, aiding in understanding a particular
system, and contributing to task efficiency [27].

2.2 Software Documentation
Software documentation can be defined as an process whose pur-
pose is to communicate information about the software system to
which it belongs [22]. In other words, documentation establishes
communication among all involved parties and levels their knowl-
edge about the project, aiming to transfer and share knowledge
[57]. Software documentation is considered an integral part of the
software development process and is therefore utilized in various
ways throughout the software lifecycle, such as being a means of
communication among stakeholders, serving as a repository of in-
formation for maintaining up-to-date software or acting as a guide
for onboarding new developers [18]. Thus, documentation com-
prises a set of general and technical manuals, organized in the form
of texts and comments, utilizing tools like dictionaries, diagrams
and flowcharts, graphs, drawings, among others [15].

As Chapin [12] highlights, software can be determined by many
factors, among which documentation, including its preparation and
maintenance, can be emphasized. Consequently, attention must be
paid to the quality, obsolescence, or lack of content in documen-
tation. However, creating qualified documentation is not trivial,
and the diversity of existing document models also raises questions
[57]. For example, Coelho [15] emphasizes that developers should
find tools that facilitate understanding of documentation, both for
administrators and future software users. Moreover, Parnas [45]
reinforces that software documentation needs to be correct and
precise, meaning that the information one can obtain from the doc-
ument should be true for the system being described, leaving no
doubts about what they mean.

According to Michelazzo [41], software documentation in the
software development cycle can be organized into twomajor groups.

The first group concerns to Technical Documentation, consid-
ered more straightforward as it describes the developer’s work.
Geared towards developer use, this documentation group comprises
dictionaries and data models, process flowcharts and business rules,
function dictionaries, and code comments. The second group refers
to Usage Documentation and is considered more complex, requir-
ing special skills for writing manuals, screenshots, drawings, and
other graphical elements. Thus, this group may focus on the end-
user and system administrator, consisting of handbooks or manuals
that present how the system should be used, what to expect from
it, and how to obtain the desired information [2].

Garousi [25] further emphasizes that when a document is cre-
ated, it can be used as a tutorial report or as a reference document.
According to Cioch et al. [13], there are four stages of experience in
a software project (from newcomer, the first day at work; to expert,
after a few years of work on a system). For each stage, different
documents are proposed: newcomers need a brief overview of the
system; learners need the system architecture; interns need task-
oriented documents, such as requirements description, process
description, examples, step-by-step instructions; finally, experts
need low-level documentation, as well as requirements and design
descriptions. In the view of Ambler [5], there are two basic reasons
for documenting software: to assist communication during software
development and to aid understanding in maintenance and update
activities when necessary.

Michelazzo [41] describes four common types of software docu-
mentation. First, there is Code Documentation, which is typically
achieved through comments within the code itself and the gener-
ation of online documentation. Developers should be aware that
they will not be the sole individuals working on the system and
therefore must comment their code clearly. Next, Data Models
graphically and logically represent a system’s database, including
relationships, entities, keys, and all related data aspects. They are
foundational for system development and are usually created before
development starts, either through reverse engineering or based
on application needs. Then, there are Data Dictionaries, files or
documents defining the basic organization of a database’s data,
including tables, fields, definitions, types, and descriptions. Finally,
Flowcharts visually present the logical sequence of information in
a process or system, using geometric elements to indicate different
process parts. They offer an overview of the system’s logic, from
high-level processing to minor components, aiding in understand-
ing what needs to be done within the system.

Ambler [5] also stress that software documentation meets three
needs: (i) contractual; (ii) supporting a software development project
by allowing team members to conceive the solution to be imple-
mented gradually and (iii) enabling a software development team
to communicate implementation details over time to the mainte-
nance team. Therefore, software documentation is fundamental for
FOSS projects as it addresses two basic principles: collaborative
production and wide dissemination. When more than one person
is developing a work, communication becomes paramount [29].

As projects with open and collaborative content, FOSS commu-
nities strive to keep documentation updated. In this sense, FOSS
projects have intrinsic organization characteristics, mainly because
they must deal with developer communities [51]. Winters et al. [67],

SBES’24, September 30 – October 04, 2024, Curitiba, PR Pinho et al.

for example, discuss that onboarding new team members or code-
base requires much less effort if the process is clearly documented.
Hence, contributors are more focused when project design goals
are clearly stated. In summary, software documentation proves
to be an invaluable resource for any software project, as it helps
stakeholders use, understand, maintain, and develop a system [2].

During our literature analysis, we also found secondary studies
that were concerned with software documentation; however, none
explicitly focused on the context of challenges and solutions faced
by FOSS. Zhi et al. [69] employed a systematic-mapping methodol-
ogy to map the existing knowledge concerning software documen-
tation cost, benefit, and quality. They found that the documentation
cost aspect appears to have been neglected in the existing literature,
and there are no systematic methods or models to measure cost-
effectively. Additionally, Theunissen et al. [61] conducted a SMS
to identify and analyze research on documentation in Continuous
Software Development. They observed challenges such as under-
standing informal documentation, the perception of documentation
as waste, productivity measurement based solely on working soft-
ware, inconsistencies between documentation and software, and
a short-term focus. Furthermore, they identified practices related
to non-written and informal communication, using development
artifacts for documentation, and adopting architecture frameworks.

Habib and Romli [28] conducted a SMS focused on exploring the
issues and importance of documentation in agile development. From
this study, the authors identified 14 aspects related to documenta-
tion in agile that were investigated, highlighting the importance
of having “just enough” documentation in agile methodologies.
Still in the context of agile software development, Islam et al. [32]
conducted a Systematic Literature Review (SLR) aiming to system-
atically identify what to document, which documentation tools and
methods are in use, and how those tools can overcome documenta-
tion challenges. Ding et al. [19] also employed an SLR method to
identify primary studies on knowledge-based approaches in soft-
ware documentation. They observed that architecture understand-
ing is the primary benefit of using knowledge-based approaches in
software documentation. However, they also noted that the cost of
retrieving information from documents remains a major concern
when employing knowledge-based approaches in documentation.

3 RESEARCH METHOD
The methodological path taken in this study was grounded in a
Systematic Mapping Study (SMS), aiming to map, based on the last
decade of scientific research, the challenges and solutions regarding
software documentation in FOSS. Unlike a Systematic Literature
Review (SLR) that involves a rigorous critical evaluation of selected
studies, SMS is more exploratory and focuses on mapping existing
studies to provide an overview of the research field under investi-
gation [35].

Figure 1 presents an overview of our methodological plan com-
prising three major stages. In Stage 1 (Planning), exploratory
searches were manually conducted using Google Scholar to refine
criteria, research questions, synonyms for the search string, and
information extraction model. Our research protocol was defined

drawing inspiration from the SMS by Trinkenreich [62], while ad-
hering to the well-known guidelines specified by Petersen et al.
[48] and Kitchenham et al. [35].

S
ta

ge
 1

 -
 P

la
nn

in
g

S
ta

ge
 2

 -
 E

xe
cu

tio
n

S
ta

ge
 3

 -
 R

ep
or

tin
g

Read the title, abstract,
and keywords, and apply

the ECs and ICs

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Step 7 Step 8 Step 9

Step 10 Step 11

Define the research
question and protocol

Define Exclusion Criteria
(EC) and Inclusion Criteria

(IC)

Define the scientific
databases and the search

string format

Execute the search string
on the databases

Remove duplicate articles
across databases

Read the full text and
apply the ECs and ICs

Apply Backward and
Forward Snowballing

Apply the ECs and ICs to
the snowball articles

Filter and select primary
studies

Read the articles and
extract data to answer the

research question

Figure 1: Methodological procedures

With the aim of selecting works that explicitly address the topic
of software documentation in FOSS, different Inclusion Criteria
(IC) and Exclusion Criteria (EC) were defined for paper filtering.
If a paper met an EC, it was promptly removed. Additionally, a
paper could only be retained if it met all ICs. Thus, the ICs and ECs
defined for the screening of works were as follows:

• (+) IC1: Papers that contain the search expression’s key-
words in the abstract, title, and/or article keywords of the
selected paper;

• (+) IC2: Papers published in peer-reviewed venues, including
workshops, conferences, symposiums, and journals;

• (+) IC3: Papers written in English;
• (-) EC1: Papers not available in full text;
• (-) EC2: Papers that lack an abstract;
• (-) EC3: Papers where software documentation is used only
as a superficial example;

• (-) EC4: Secondary or tertiary papers (e.g., systematic litera-
ture reviews, literature surveys, etc.);

• (-) EC5: Papers in the form of tutorials, editorials, etc., as
they do not provide sufficient information;

• (-) EC6: Papers that do not meet the inclusion criteria.
Moreover, the selected databases were IEEE Xplore, Web of Sci-

ence, and Scopus, because they (i) index relevant sites for this study,
(ii) support searches using a Boolean expression, (iii) provide ac-
cess to full texts, and (iv) allow the export of properly formatted
results. The search string was defined with terms relevant to the re-
search objective: "(open sourceOR open-sourceOR OSSOR free
software OR FOSS OR FLOSS) AND (software development OR
software engineering)AND (documentation OR document OR
guide OR writing OR artifact OR specification OR notes
OR knowledge base OR report OR whitepaper)". We conducted
exploratory searches using Google Scholar to establish the search

Challenges and Solutions of FOSS Documentation: A Systematic Mapping Study SBES’24, September 30 – October 04, 2024, Curitiba, PR

terms. From our exploratory search and experience, we also chose
three relevant studies as control papers [8, 11, 54]. In our pilot
studies to test the protocol, we found all three control papers. As
can be seen, we seek to combine various terms and synonyms re-
lated to FOSS development and software documentation. In this
case, we covered different variations such as open source and
open-source, as well as acronyms like OSS and FOSS. We also in-
cluded terms related to documentation, such as guide, writing,
artifact, specification, notes, knowledge base, report, and
finally, whitepaper. Works explicitly addressing documentation in
FOSS projects with an empirical research method were considered.
The search was conducted in July and August 2023.

In Stage 2 (Execution), the search string was executed in the
selected databases, returning 574 papers in IEEE Xplore, 457 papers
in Web of Science, and 240 papers in Scopus, totaling initially 1271
papers. The filtered papers were organized into a spreadsheet in
Google Sheets for better visualization and data organization. Firstly,
duplicate papers between the databases were removed. Thus, 164
duplicate papers were removed, leaving 1107 papers to be analyzed.
The filtered papers were then divided into two groups to leverage
the reliability and rigor, with two co-authors applying the ECs and
ICs (one person per group), while the main author performed a
double-check on all papers (from both groups). The researchers met
virtually to resolve decision conflicts and reached a preliminary
selection consensus. Two more experienced authors were invited
to discuss the final decision in case conflicts persisted. Thus, in
addition to the main author, four other individuals were involved
in the paper filtering process, reinforcing the rigor of the explored
research protocol.

During paper filtering, researchers used a dialectical approach
for decision-making where each paper argued for keeping or re-
moving the paper, and then a consensus was reached after debates
[56]. This approach helped systematically evaluate arguments for
keeping or removing a paper and avoid decision-making bias by
heavily relying on initial impressions about a paper. After applying
the ECs and ICs, the set was reduced to 11 papers. From the list of
11 papers, a backward snowballing approach was independently
applied to complement the obtained papers. In this sense, we man-
ually reviewed all the bibliographic references of each primary
study. Duplicates and references not within the ten-year period
stipulated by the research criteria were excluded. Subsequently, we
applied the inclusion and exclusion criteria to each reference. As a
result of the backward snowballing, one more paper was included
in the primary studies, totaling a final list of 12 papers. We also
conducted the Snowball Forward process looking to the citations
of our primary studies, but no new primary study was found in line
with the inclusion and exclusion criteria. Figure 2 synthesizes our
step-by-step selection process.

Finally, in Stage 3 (Reporting), the final list of papers was or-
ganized for the purpose of generating the analytical report. A total
of 12 primary studies were selected. Concerning the data extrac-
tion, the studies were organized in a spreadsheet in Google Sheets
with standard data fields: Title of the work, authors’ names, coun-
try, keywords, year of publication, type of publication, publication
venue, database, identified challenges, and explored solutions. Table
1 summarizes the 12 papers that form the primary sources for the

study. All research data is available in the article’s support repos-
itory [50], thus promoting transparency and accessibility to the
processes explored in our SMS.

A qualitative-quantitative perspective was explored for the data
analysis. Regarding quantitative analysis, descriptive statistics were
used to analyze data on distribution by year of publication, studies
by databases, and publication venues. As for the qualitative per-
spective, open coding was explored with the aim of categorizing
and obtaining relevant data from the studies to answer our research
question [55]. Initially, the first author conducted the coding inde-
pendently, deriving them from the excerpts in the papers. These
post-formed codes were then associated and categorized following
a chain of evidence. To ensure reliability, two other experienced co-
authors with expertise in Software Engineering research reviewed
and discussed the codes until reaching consensus. Four meetings
were held among these authors to refine the codes and increase
the reliability of the results. All steps of the study, including the
extracted codes, are documented in our Zenodo package [50].

Execute the search string on the
databases Scopus

(240)
IEEE Xplore

(574)
Web of Science

(457)

Remove duplicate articles across
databases Removed: 164

Read the title, abstract, and
keywords, and apply the ECs and

ICs

Read the full text and apply the
ECs and ICs

Apply Backward Snowballing

Filtered: 11

Filtered: 1Added: 225

INITIAL SEARCH: 1271

TOTAL PRIMARY STUDIES: 12

Apply Forward Snowballing
Filtered: 0 Added: 104

Filtered: 23

Figure 2: Step by step selection of primary studies

4 RESULTS AND ANALYSIS
4.1 Primary Studies Characterization
Figure 3 displays the distribution of primary studies by year. The
filtering period spanned from 2013 to 2023. There is a four-year
interval without publications, from 2013 to 2023. The oldest papers
were published in 2014. Since 2021, at least one article has been
published each year. 2014 and 2023 had the highest number of
published papers, with three papers each.

Regarding the databases and publication venues, it was found
that Web of Science had the highest number of selected papers,
accounting for 41.7% (5 papers), followed by IEEE Xplore with
33.3% (4 papers), and Scopus with 25% (3 papers). As for publication
venues, three of the twelve selected primary studies were published
in the International Conference on Mining Software Repositories

SBES’24, September 30 – October 04, 2024, Curitiba, PR Pinho et al.

Table 1: List of Primary Studies (PS).

ID References Year Publication Venue
PS01 Carvalho et al. [11] 2014 Computer Science and Information Systems
PS02 Ding et al. [20] 2014 International Conference on Engineering of Complex Computer Systems
PS03 Bigliardi et al. [9] 2014 International Conference on Quality Software
PS04 Aversano et al. [8] 2017 International Conference on Evaluation of Novel Approaches to Software Engineering
PS05 Ma et al. [40] 2018 International Conference on Mining Software Repositories
PS06 Prana et al. [53] 2019 Empirical Software Engineering
PS07 AlOmar et al. [4] 2021 Journal of Software: Evolution and Process
PS08 Pasuksmit et al. [46] 2022 International Conference on Mining Software Repositories
PS09 Puhlfürß et al. [54] 2022 International Conference on Software Maintenance and Evolution
PS10 Sun et al. [60] 2023 International Conference on Mining Software Repositories
PS11 Wermke et al. [65] 2023 Symposium on Security and Privacy
PS12 Ciurumelea et al. [14] 2023 Empirical Software Engineering

Fr
eq
ue
nc
y

Figure 3: Year of publication of primary studies

(MSR). The remaining paperswere distributed among different areas
and events/journals. Additionally, the results showed that seven
papers (58.3%) were published in Conferences. The journal with
the most articles (2) was Empirical Software Engineering (EMSE).

4.2 Challenges
The literature presents different perspectives regarding the use of
documentation in FOSS projects, leading to different challenges
faced by stakeholders. In theory, good documentation is an invalu-
able resource for any software project, as it helps stakeholders
use, understand, maintain, and develop a system [2]. Therefore,
recognizing that documentation assists software engineers in per-
forming maintenance and development tasks more efficiently, it is
necessary to understand the recent emerging challenges to ensure
functional and quality documentation [26]. Figure 4 summarizes the
challenges to software documentation in FOSS extracted and cate-
gorized from our primary studies, namely Collaboration,Quality,
Incompleteness,Maintainability, and Categorization. These
challenges are discussed below.

Collaboration in software documentation for FOSS projects
encounters challenges from distributed teams, hindering real-time
communication and causing delays [1, 16]. Inconsistencies arise

Identified
challenges

Collaboration

Quality

Incompleteness

Maintainability

Categorization

FOSS projects often require dealing with issues like
dispersed teams, diverse skill levels, and attracting

and retaining new contributors. As a result,
documentation plays a secondary role in addressing

these issues [PS09, PS10].

Assessing documentation quality proved difficult due
to its subjective nature and multiple factors involved

[PS01, PS04].

Arise if the documentation does not contain the
information needed for practitioners/users to perform

their tasks [PS02, PS06, PS07].

Related to the ease of making changes or
corrections to the documentation. However,

documentation does not always keep pace with
system updates, as it is not prioritized [PS03,

PS08].

Refers to the difficulty in organizing and classifying
various documents within a software development

context, such as user manuals, technical
specifications, API documentation, etc [PS05,

PS11, PS12].

Figure 4: Summary of the identified challenges

from varying expertise levels, conflicting priorities, and dynamic
development necessitates continuous revision. Sun et al. [60] {PS10}
stated that a better understanding of developer collaboration can
lead to the development of superior artifacts. However, beyond
identifying collaborative patterns in FOSS projects, the authors
emphasized that the most collaborative type of files are test files,
with documentation taking a secondary role in collaborative work.
The rationale is that test files involve multiple stakeholders and
provide immediate feedback. In turn, Puhlfürß et al. [54] {PS09}
explained that some popular projects use GitHub to make their
code public rather than to develop a collaborative community that
prioritizes comprehensive publicly available documentation.

The Quality of software documentation is a multifaceted chal-
lenge. However, to effectively impact software development, qual-
ity assurance must systematically address software documentation
quality as well [52]. Aversano et al. [8] {PS04} conducted a case study
to assess the quality of documentation in open-source systems to
understand the support it can offer. According to the authors, the
results indicate that documentation is not always available and only
partially meets developers’ needs, often being incorrect, incomplete,
outdated, and ambiguous. Conversely, Carvalho et al. [11] {PS01}

Challenges and Solutions of FOSS Documentation: A Systematic Mapping Study SBES’24, September 30 – October 04, 2024, Curitiba, PR

provide a discussion into the difficulty of assessing documentation
quality due to the subjectivity involved. Their work described three
characteristics that directly impact overall documentation quality:
i) Readability: The text’s readability can be subjective, but there
are linguistic characteristics that generally hinder reading. Some
can even be measured, such as the number of syntax errors or ex-
cessive use of abbreviations; ii) Timeliness: This is an important
documentation characteristic and for other textual files; they must
be up-to-date and refer to the software’s latest version; and iii)
Completeness: this characteristic indicates how comprehensive the
documentation is and if it covers all necessary topics.

The documentation Incompleteness arise if the documentation
does not contain the information about the system needed by prac-
titioners/users to perform their tasks [69]. Ding et al. [20] {PS02}
argue that instead of collecting and documenting FOSS project in-
formation, developers prefer to use forums, discussion lists, and
social media to obtain information and thus expend less effort. Ac-
cording to the authors, architecture documentation is not widely
created and used in FOSS projects. Furthermore, documentation
related to refactoring is also uncommon in open-source software.
However, according to AlOmar et al. [4] {PS07}, providing sufficient
documentation related to software refactorings is essential to facil-
itate code review processes. Additionally, Prana et al. [53] {PS06}
introduces that a repository’s README files on GitHub are usually
the first documents developers access, but there is no systematic
standard regarding the types of documents exposed in README
files, contributing to the lack of documents or relevant content.

Moreover, documentationMaintainability concerns issues re-
lated to how easy it is to apply changes or corrections to it [2].
Bigliardi et al. [9] {PS11} stated that each open-source project has
its peculiarities, but some show a positive correlation with mainte-
nance effort as the system evolves, while others show the opposite
behaviour. From a quantitative perspective, the authors observed
that a significant portion of artefacts not related to source code
does not evolve alongside the FOSS project.

Lastly,Categorizing different types of documentation has proven
to be challenging, as described in the existing literature. More specif-
ically, this challenge refers to the difficulty in organizing and clas-
sifying various documents within a software development context,
such as user manuals, technical specifications, API documentation,
etc [3]. Ma et al. [40] {PS05} investigated how artifacts can be cate-
gorized and what types of artifacts are created during FOSS devel-
opment. The authors emphasized that categorizing documentation
can provide insights into software projects from both technical and
managerial perspectives. Additionally, Wermke et al. [65] {PS11}
highlighted that perspectives on documentation provision seem to
depend on the team’s context; support for documentation appears
to be correlated with team size and the number of less experienced
developers. Following a specific formatting and well-defined struc-
ture style, code comments also serve as a type of documentation
that can provide significant support to developers [14].

4.3 Solutions
According to our analysis, strategic pathways have been identi-
fied as solutions in the context of FOSS projects. This perspective
aligns with the idea that open-source communities need a concise

view of different types of actions to select viable and suitable for
their needs and the challenges they face [62]. The three solutions
(Strategic Use ofREADME,Adoption ofArtificial Intelligence,
and Support Tools & Approaches) explored by primary studies
are summarized in Figure 5, which will be discussed below.

Explored
solutions

Strategic Use of
README

Adoption of
Artificial

Intelligence

By strategically utilizing README files, FOSS
projects can enhance accessibility, improve user
onboarding, and facilitate effective collaboration

among team members [PS06, PS09, PS10].

Leverage artificial intelligence to automate and
enhance documentation creation, management, and

accessibility [PS01, PSO2, PS04, PS05, PS12].

Diverse set of tools and approaches designed to
assist (directly or indirectly) in improving software
documentation practices in FOSS projects [PS03,

PS07, PS08, PS11].

Support Tools &
Approaches

Figure 5: Summary of the explored solutions.

The StrategicUse ofREADME file in FOSS projects has emerged
as a potential solution that is worth highlighting. These files are of-
ten included to provide essential information about the project, such
as instructions for installation, usage guidelines, and key features
[37]. By utilizing README files strategically, software projects
can enhance accessibility, improve user onboarding, and facilitate
effective collaboration among team members [39].

Sun et al. [60] {PS10} investigated the collaboration frequency
in different types of files in open-source software projects using
Author Cross Entropy (ACE) and leveraging data from the World
of Code dataset and the GitHub API. Since file types vary in size
and characteristics, the Mann-Whitney U classification was used to
compare the ACE distribution across each file type. Upon analyzing
the commits and README files, they found that test files and doc-
umentation manifest a notable degree of collaboration. According
to the authors, collaboration on documentation in the GitHub plat-
form is a positive bias, as a versatile degree of change commits can
be observed in the documentation. Furthermore, authors often add
comments to explain their changes after modifying documentation
to reinforce collaboration with team members.

Puhlfürß et al. [54] {PS09}, through exploratory content analysis,
found that a structured README on GitHub facilitates collabora-
tion. Contributors prefer placing all documentation in README
files if they need to document many pages. GitHub features such
as issue tracker, wiki, and pull requests are used to create subse-
quent connections in the project. Another factor is that the studied
projects used combinations of various types of textual artifacts
to document product features, demonstrating each contributor’s
preferences. However, the authors conclude that the lack of linkage
between documentation and source code can limit understanding
and project maintenance capability over time. Thus, a straightfor-
ward approach to achieving better linkage between documentation,
code, and promoting collaboration would be a section at the top
of the README file describing the project structure, and a best
practice would be using hyperlinks to facilitate efficient navigation
between product feature documentation and source code.

Additionally, Prana et al. [53] {PS06} proposed an approach for
automated classification of GitHub README content. The built

SBES’24, September 30 – October 04, 2024, Curitiba, PR Pinho et al.

classifier explored a binary relevance method for multi-label classifi-
cation, where each multi-label classification problem is transformed
into a set of binary classifications. Authors used linguistic patterns,
single-word header in non-English languages, repository name, and
non-ASCII content. The most prevalent categories in the classifi-
cation were: i) ‘What’ category based on titles like “Introduction”
and “About” providing a brief introduction to the project; ii) ‘How’
category, including instructions on how to use the project, with
programming-related content (e.g., setup, installation, dependen-
cies, and errors/bugs), and iii) ‘Who’ category including information
about licenses, contact details, and code of conduct. Based on the
sample provided by the authors, 97% of files contain at least one
section describing the ‘What’ of the repository, and 88.5% provide
some ‘How’ content. In addition to automatically classifying con-
tent, the classifier can allow access to unstructured information
contained in a GitHub README and visually label artifact types
based on the information contained in them.

On the other hand, theAdoption of Artificial Intelligence has
been also emerged as a possible trend in software documentation
for FOSS projects. This trend involves leveraging artificial intelli-
gence to automate and improve various aspects of documentation
creation, management, and accessibility. Carvalho et al. [11] {PS01}
introduced a data mining-based approach that provides a systematic
tool for collecting metrics about software documentation content
and evaluating its quality. Quality metrics are processed according
to pre-established characteristics by the authors, such as readabil-
ity, timeliness, and completeness of documentation. Through FOSS
Documentation Mining (DMOSS), it was possible to extract insights
and useful information regarding documentation. The authors be-
gan the study by collecting content written in natural language,
processing it to calculate metrics, and finally analyzing these met-
rics to draw conclusions. Data is analyzed from the Annotated Tree
structure. In this tree, nodes represent files and directories, and
edges describe the hierarchical structure of the package. The tree
is generated automatically by DMOSS, functioning by recursively
traversing the file system hierarchy, adding nodes for each file and
directory. For each node that has a documentation format, simple
text content is extracted and added to the corresponding node as
an attribute. DMOSS’s main contribution is to provide structured
documentary analysis that can be used to implement and integrate
new metrics and analyze documentation rapidly. Thus, it sought to
provide information about the content found in artifacts and assess
quality according to an ordered understanding of the knowledge
granted in artifacts.

Aversano et al. [8] {PS04} delved into the evaluation of software
document quality across various types using metrics and quality
indicators. They highlighted that assessing these metrics demands
the application of Natural Language Processing, Information Extrac-
tion, and Information Retrieval techniques. The evaluated metrics
were i) Completeness: this indicator verifies if the documentation
describes all items (packages, classes, methods) in the source code;
ii) Alignment: checks if the documentation is up to date with the
current release; iii) Dimension: analyzes if document phrases are
too long or too short, aiming to verify if the text is too difficult to
understand; iv) Structure: aims to evaluate the structure in terms
of number of chapters, sections, sub-section nesting, document

length, and density of tables and figures, and v) Readability: exam-
ines if sentences express clear and understandable concepts. On
the other hand, Ciurumelea et al. [14] {PS12} used neural language
models to analyze structural elements in documentation comments
to evaluate how code comments can assist developers in writing
documentation. The models used were the Sequence LM Model,
Context LMModel, Section Context LMModel, and Section-Specific
Context LMs. The models were evaluated using the Top-k technique
to test their performance. According to the authors’ analyses, docu-
mentation comments are widely used, especially in Python and Java
projects. Thus, having structural elements improves artefact read-
ability and allows automated processing to generate documentation
or provide metrics that support development environments.

Ma et al. [40] {PS05} proposed an automated approach based on
Machine Learning techniques to identify various types of software
artifacts. Decision tree approaches, support vector machines, and
Bayesian networks were used. Using heuristics, the authors catego-
rized artifacts into two groups: those that can be classified based
solely on file name and extension (e.g., bat files, and those that
require a deeper analysis to be classified, such as text documents.
Thus, the results of the empirical study indicate that the automated
approach based on Machine Learning techniques was able to au-
tomatically classify software artifacts with an average accuracy of
85% and recall of 82% using 10-fold cross-validation on the valida-
tion dataset. Additionally, it was shown that besides source code,
about 14.88% of open-source projects contain other forms of arti-
facts, such as requirements documents and architecture documents,
which are of interest to software engineering researchers.

Regarding architecture documentation, Ding et al. [20] {PS02}
clarified that this type of documentation is essential to promote
anarchic collaboration while preserving centralized control over in-
terfaces in successful open-source projects. The authors concluded,
from an exploratory survey, that the likelihood of an FOSS project
documenting software architecture increases with the number of
developers involved, suggesting that architectural documentation
seems more useful for larger projects. Thus, the amount of archi-
tecture documentation largely depends on contextual development
factors, with architectural element models, system, and project
mission as frequently documented architectural information.

Finally, a category of solution focused on Support Tools & Ap-
proaches has been identified. This category encompasses tools and
approaches designed to assist in improving software documenta-
tion practices. AlOmar et al. [4] {PS07} conducted an exploratory
study on how developers document their refactoring activities in
commit messages. They used the Refactoring Miner tool to identify
refactoring operations occurring in projects. The Refactoring Miner
iterates over a repository’s commit history chronologically and
compares changes made to source code files to detect refactorings.
They found that developers tend to use a variety of textual patterns
to document their refactoring activities, such as refactor, move,
and extract. Automatically classifying a large set of commits con-
taining refactoring activities triggers motivations beyond the basic
need for system documentation improvement, as it demonstrates
guiding practices for refactoring activities that include the follow-
ing categories: Functional, Bug Fixing, Internal Quality Attribute,
Code Smell Resolution, and External Quality Attribute. The authors

Challenges and Solutions of FOSS Documentation: A Systematic Mapping Study SBES’24, September 30 – October 04, 2024, Curitiba, PR

explain that contributors who frequently refactor code tend to doc-
ument changes less than developers who refactor occasionally.

Pasuksmit et al. [46] {PS08} proposed a prediction model called
DocWarn to estimate the probability of changes in documentation
during the sprint time. Applying DocWarn’s semantic difference
criteria, based on authors’ qualitative evaluation, 40% to 68% of
predicted documentation changes are related to scope modifica-
tion. With DocWarn’s probability estimation, the team will be more
aware of possible documentation changes during sprint planning,
allowing the team to manage uncertainty and reduce the risk of
erroneous effort and planning estimates. Wermke et al. [65] {PS11}
complements that the quality and available documentation for FOSS
software are often directly correlated with project popularity. Fur-
thermore, more popular projects have higher rates of hours dedi-
cated to documentation maintenance and creation.

Bigliardi et al. [9] {PS03} conducted a quantitative study to inves-
tigate whether the maintenance effort in documentation increases
as the system evolves. They analyzed the ranking correlation be-
tween project age (i.e., time) and evolution of commit percentage
on artifacts using Shapiro-Wilk’s normality test and the Gini coeffi-
cient for data analysis. The analysis was done on all commits from
oldest to newest, whether in updates or removal of files. They found
that the behaviour is inherently relative to the type of project, with
maintenance effort increasing over time in some and not in others.

5 DISCUSSION
In this SMS, wemapped the challenges and solutions concerning the
documentation in FOSS over papers published in the past decade. As
discussed by Aghajani et al. [3] and Ding et al. [18], software docu-
mentation provides developers and users with a description of what
a system does, how it operates, and how it should be used. Thus, it
is critical to comprehend the challenges and solutions associated
with documentation in FOSS projects within their context.

The identified challenges encompassed a range of factors lead-
ing to difficulties faced by FOSS projects. We detail in Figure 4 the
documentation challenges depicted by our primary studies, which
include Collaboration, Quality, Incompleteness,Maintainabil-
ity, and Categorization. Each challenge has nuances, but they all
converge when discussing the role of documentation in the FOSS
processes. It is noteworthy that documentation also contributes
to recording software evolution, laying the groundwork for subse-
quent processes such as training, usage, and maintenance [22, 44].

TheCollaboration reflected well-known particularities faced by
FOSS, including dispersed teams, diverse skill levels, and the need to
attract and retain new contributors [1, 16]. This intricate dynamism
of software development may led to continuous revisions due to
conflicting priorities and varying expertise levels, resulting in doc-
ument inconsistencies [60]. While collaborative patterns primarily
favoured test files over documentation in FOSS, the importance of
documentation in fostering collaborative communities remained
understated [54]. Quality issues in documentation also constituted
another challenge. Despite being an indispensable resource, doc-
umentation often fell short of meeting developers’ needs due to
inaccuracies and ambiguity [8]. In this sense, assessing documen-
tation quality proved intricate owing to its subjective nature and
involve multiple factors (readability, timeliness, etc) [11, 52].

The challenge of Incompleteness accentuated the deficiency of
essential information in the documentation required for practition-
ers’ tasks [69]. Indeed, forums and social media became alternative
sources of information for developers, but the scarcity of com-
prehensive architecture and refactoring documentation persisted
as an open issue in FOSS projects [4, 20]. Additionally, the lack
of systematic standards for README files evidences the scarcity
of relevant documentation [53]. The Maintenance perspective
also highlighted the need to provide ease of making changes or
corrections in documents [2]. While some projects exhibited posi-
tive correlations between maintenance effort and documentation
evolution, others did not [9]. The Categorization of documenta-
tion types also proved to be relevant by laying in organizing and
classifying diverse documents like user manuals, technical specifi-
cations, and API documentation, reflecting the multifaceted nature
of documentation in FOSS projects [3, 40]. Furthermore, the level
of documentation support appeared to correlate with team size and
experience levels, underscoring the contextual dependencies [65].

The solutions emerged by our primary studies (see Figure 5)
include the Strategic Use of README, Adoption of Artificial
Intelligence, and Support Tools & Approaches. These solutions
demonstrate the ongoing efforts to enhance documentation prac-
tices and support efficient collaboration and maintenance in FOSS
initiatives. In particular, the Strategic Use of README files in
FOSS projects emerged as a artifact to pay attention. These files
typically contain information about the project, such as installation
instructions, usage guidelines, and key features [37]. By strategi-
cally utilizing README files, FOSS projects can enhance accessibil-
ity, improve user onboarding, and facilitate effective collaboration
among team members [39].

Another perspective of solution gaining traction stems from the
Adoption of Artificial Intelligence. This trend involves leverag-
ing artificial intelligence to automate and enhance documentation
creation, management, and accessibility. Ciurumelea et al. [14]
{PS12}, for example, explored neural language models to analyze
structural elements in documentation comments to evaluate how
code comments can assist developers in writing documentation.
Lastly, Support Tools & Approaches have been identified as in-
strumental in improving software documentation practices in FOSS
projects. AlOmar et al. [4] {PS07} conducted an exploratory study
on developers’ documentation of refactoring activities in commit
messages with the support of the Refactoring Miner tool. Addition-
ally, Pasuksmit et al. [46] {PS08} proposed DocWarn, a prediction
model estimating the probability of documentation changes during
sprint time, aiding in effort estimation and risk reduction.

When considering the relationship between the challenges and
solutions, we may observe that Strategic use of README can help
streamline the collaboration process, for example, by facilitating
the onboarding of newcomers or by serving as a summary of docu-
ment categories. Additionally, the Adoption of Artificial Intelligence
could help generate documentation automatically by analyzing the
code, and subsequently improve the quality of documentation and
help to keep it up to date, overcoming incompleteness. Finally, the
Support Tools & Approaches may enhance documentation mainte-
nance through automation, version control integration, collabora-
tive editing, template standardization, promoting best practices, etc.

SBES’24, September 30 – October 04, 2024, Curitiba, PR Pinho et al.

For instance, automated tools like Sphinx or Javadoc can update
documentation based on code changes, reducing manual effort.

As we can see, the findings from this work have implications be-
yond academic context and may be helpful in the software industry.
Understanding the challenges and solutions can help FOSS stake-
holders make informed decisions on prioritizing documentation
efforts, encouraging collaboration and utilizing efficient approaches.
Hopefully, these outcomes may contribute to promoting concrete
reflection and bringing awareness to the documentation process
in FOSS projects and, consequently, lead efforts to improve the
quality, accessibility, and sustainability of software documentation
practices in line with FOSS evolving demands and complexities.

6 THREATS TO VALIDITY
To properly clarify our validity threats and corresponding mitiga-
tion actions, we explored the checklist proposed by Ampatzoglou
et al. [6] to identify threats in secondary studies in SE research.

Study inclusion/exclusion bias: This work recognizes that
there may be other papers on software documentation in FOSS that
were not included in the sampling frame explored. These papers
may fall outside the publication period between 2013 and 2023 or
may not use terms included in the search string. However, measures
were taken to mitigate this threat. Initially, we explicitly justified
this timeframe as strategic since it allows us to focus on recent per-
spectives. Moreover, this decision is clearly stated in the research
question. The period between 2013 and 2023 was specified in the
filters of each database used in the search, considering the focus of
this SMS. Even with this restriction, the considerable number of pa-
pers (1271) obtained after executing the search is worth noting. We
also crafted a search string combining various terms and synonyms
related to FOSS and software documentation. This issue included
different variations like open source and open-source, as well as
acronyms like OSS and FOSS. Terms related to documentation or
documents were also included. Furthermore, we used backward and
forward snowballing processes to identify potential missed studies.

Researcher Bias and Repeatability: The search process rig-
orously explored our search string across different well-known
databases, thereby enhancing research repeatability and transparency.
The first author conducted the initial search in each database and
removed duplicate papers. In the application of Inclusion Criteria
(IC) and Exclusion Criteria (EC), the full paper list was divided into
two groups, and other two co-authors applied IC and EC, while the
main author conducted a double check on all papers (from both
groups). Researchers met virtually to resolve decision conflicts and
reached a preliminary selection consensus. Two more experienced
co-authors were invited to discuss the final decision if conflicts
persisted. This process contributed to enhancing data accuracy.

Robustness of Classification: Our qualitative analysis of chal-
lenges and solutions may face a potential threat due to inherent
subjectivity. Although the analysis was based on findings from
selected papers, the categorizing process is influenced by the au-
thors’ interpretations, which is natural and valuable in qualitative
research [21]. However, this open coding process underwent dis-
cussions among the first author and two other co-authors with
experience SE research to strengthen understanding and rigor.

7 CONCLUSION
This paper investigated the challenges and solutions associated with
software documentation in Free and Open Source Software (FOSS).
Through a Systematic Mapping Study (SMS) focused on the papers
published between 2013 and 2023, a search string was explored to se-
lect primary studies, supplemented by backward snowballing. Our
search strategy yielded a total of 12 primary studies. The findings
unveiled five major challenges (Collaboration, Quality, Incomplete-
ness, Maintainability, and Categorization) and three overarching
solution perspectives (Strategic Use of README, Adoption of Arti-
ficial Intelligence, and Support Tools & Approaches) pertinent to
documentation in FOSS. These findings helped us to answer our
research question.

This study makes novel contributions to both academia and
practice. From an academic perspective, this study offers a SMS
that reveals a set of challenges and solutions related to software
documentation, a topic that has been relatively underexplored in
FOSS despite its significant relevance. As far as we know, no other
paper has addressed this objective yet. Our study also offers a
comprehensive perspective of the research topic under investiga-
tion, presenting existing knowledge and highlighting research gaps.
Moreover, our results evidence valuable opportunities for future
research. From a practical standpoint, this work promotes a reflec-
tive examination of the use of documentation in FOSS, highlighting
challenges and solutions that can contribute to enhancing docu-
mentation quality process. This discussion can aid in understanding
the challenges and solutions that promote increased documentation
quality and project efficiency in FOSS projects.

Future work could investigate the applicability of the challenges
and solutions identified in our SMS to GitHub projects. This inves-
tigation could provide valuable findings into how these challenges
and solutions manifest and are addressed within a platform that
hosts diverse software projects. In addition, future research could
eventually explore the contrasts and similarities in software docu-
mentation practices between closed-source and FOSS projects.

ARTIFACTS AVAILABILITY
All data supporting this study are openly available through our
supporting repository [50], ensuring transparency, replicability, and
accessibility in regard to our Systematic Mapping Study protocol.

REFERENCES
[1] Mark Aberdour. 2007. Achieving quality in open-source software. IEEE software

24, 1 (2007), 58–64.
[2] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele

Bavota, Michele Lanza, and David C Shepherd. 2020. Software documentation:
the practitioners’ perspective. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. 590–601.

[3] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software documenta-
tion issues unveiled. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 1199–1210.

[4] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Chris-
tian D Newman, and Ali Ouni. 2021. Behind the Scenes: On the Relationship
Between Developer Experience and Refactoring. arXiv e-prints (2021), arXiv–
2109.

[5] Scott W Ambler. 2001. Agile Documentation. 2001-2004. The Official Agile
Modeling (AM) Site (2001).

[6] Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and
Alexander Chatzigeorgiou. 2019. Identifying, categorizing and mitigating threats
to validity in software engineering secondary studies. Information and Software

Challenges and Solutions of FOSS Documentation: A Systematic Mapping Study SBES’24, September 30 – October 04, 2024, Curitiba, PR

Technology 106 (2019), 201–230.
[7] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander

Serebrenik. 2019. On the abandonment and survival of open source projects: An
empirical investigation. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 1–12.

[8] Lerina Aversano, Daniela Guardabascio, and Maria Tortorella. 2017. Evaluating
the quality of the documentation of open source software. In International Confer-
ence on Evaluation of Novel Approaches to Software Engineering, Vol. 2. SciTePress,
308–313.

[9] Luca Bigliardi, Michele Lanza, Alberto Bacchelli, Marco D’Ambros, and Andrea
Mocci. 2014. Quantitatively exploring non-code software artifacts. In 2014 14th
International Conference on Quality Software. IEEE, 286–295.

[10] Lionel C Briand. 2003. Software documentation: howmuch is enough?. In Seventh
European Conference onSoftwareMaintenance and Reengineering, 2003. Proceedings.
IEEE, 13–15.

[11] Nuno Ramos Carvalho, Alberto Simoes, and José Joao Almeida. 2014. DMOSS:
Open source software documentation assessment. Computer Science and Infor-
mation Systems 11, 4 (2014), 1197–1207.

[12] Chapin. 2000. Trends in preserving and enhancing the value of software. In
Proceedings 2000 International Conference on Software Maintenance. IEEE, 6–8.

[13] Frank A Cioch, Michael Palazzolo, and Scott Lohrer. 1996. A documentation suite
for maintenance programmers. In 1996 Proceedings of International Conference on
Software Maintenance. IEEE Computer Society, 286–286.

[14] Adelina Ciurumelea, Carol V Alexandru, Harald C Gall, and Sebastian Proksch.
2023. Completing Function Documentation Comments Using Structural Infor-
mation. Empirical Software Engineering 28, 4 (2023), 86.

[15] Hilda Simone Coelho. 2009. Documentação de software: uma necessidade. Texto
Livre: linguagem e tecnologia 2, 1 (2009), 17–21.

[16] Kevin Crowston, Qing Li, Kangning Wei, U Yeliz Eseryel, and James Howison.
2007. Self-organization of teams for free/libre open source software development.
Information and software technology 49, 6 (2007), 564–575.

[17] Sergio Cozzetti B de Souza, Nicolas Anquetil, and Káthia M de Oliveira. 2005. A
study of the documentation essential to software maintenance. In Proceedings of
the 23rd annual international conference on Design of communication: documenting
& designing for pervasive information. 68–75.

[18] Wei Ding, Peng Liang, Antony Tang, and Hans van Vliet. 2014. Knowledge-
based approaches in software documentation: A systematic literature review.
Information and Software Technology 56, 6 (2014), 545–567. https://doi.org/10.
1016/j.infsof.2014.01.008

[19] Wei Ding, Peng Liang, Antony Tang, and Hans Van Vliet. 2014. Knowledge-
based approaches in software documentation: A systematic literature review.
Information and Software Technology 56, 6 (2014), 545–567.

[20] Wei Ding, Peng Liang, Antony Tang, Hans Van Vliet, and Mojtaba Shahin.
2014. How do open source communities document software architecture: An
exploratory survey. In 2014 19th International conference on engineering of complex
computer systems. IEEE, 136–145.

[21] Tore Dybå, Rafael Prikladnicki, Kari Rönkkö, Carolyn Seaman, and Jonathan
Sillito. 2011. Qualitative research in software engineering. Empirical Software
Engineering 16 (2011), 425–429.

[22] Andrew Forward. 2002. Software documentation: Building and maintaining arte-
facts of communication. University of Ottawa (Canada).

[23] Oscar Franco-Bedoya, David Ameller, Dolors Costal, and Xavier Franch. 2017.
Open source software ecosystems: A Systematic mapping. Information and
software technology 91 (2017), 160–185.

[24] Felipe Fronchetti, David C. Shepherd, Igor Wiese, Christoph Treude, Marco Au-
rélio Gerosa, and Igor Steinmacher. 2023. Do CONTRIBUTING Files Pro-
vide Information about OSS Newcomers’ Onboarding Barriers?. In Proceedings
of the 31st ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (, San Francisco, CA, USA,)
(ESEC/FSE 2023). Association for Computing Machinery, New York, NY, USA,
16–28. https://doi.org/10.1145/3611643.3616288

[25] Golara Garousi. 2012. A Hybrid Methodology for Analyzing Software Documenta-
tion Quality and Usage. Master’s thesis. Graduate Studies.

[26] Golara Garousi, Vahid Garousi, Mahmoud Moussavi, Guenther Ruhe, and Brian
Smith. 2013. Evaluating usage and quality of technical software documentation:
an empirical study. In Proceedings of the 17th international conference on evaluation
and assessment in software engineering. 24–35.

[27] Golara Garousi, Vahid Garousi-Yusifoğlu, Guenther Ruhe, Junji Zhi, Mahmoud
Moussavi, and Brian Smith. 2015. Usage and usefulness of technical software
documentation: An industrial case study. Information and software technology 57
(2015), 664–682.

[28] Basit Habib and Rohaida Romli. 2021. A systematic mapping study on issues and
importance of documentation in agile. In 2021 IEEE 12th International Conference
on Software Engineering and Service Science (ICSESS). IEEE, 198–202.

[29] James D. Herbsleb and Audris Mockus. 2003. An empirical study of speed and
communication in globally distributed software development. IEEE Transactions
on software engineering 29, 6 (2003), 481–494.

[30] Leila Lage Humes. 2007. Communities of practice for open source software.
In Handbook of Research on Open Source Software: Technological, Economic, and
Social Perspectives. IGI Global, 610–623.

[31] Zilia Iskoujina and Joanne Roberts. 2015. Knowledge sharing in open source
software communities: motivations and management. Journal of Knowledge
Management (2015).

[32] Md Athikul Islam, Rizbanul Hasan, and Nasir U Eisty. 2023. Documentation
Practices in Agile Software Development: A Systematic Literature Review. In
2023 IEEE/ACIS 21st International Conference on Software Engineering Research,
Management and Applications (SERA). IEEE, 266–273.

[33] Pankaj Jalote. 2012. An integrated approach to software engineering. Springer
Science & Business Media.

[34] Rajdeep Kaur, Kuljit Kaur Chahal, andMunish Saini. 2022. Understanding commu-
nity participation and engagement in open source software Projects: A systematic
mapping study. journal of king saud university-computer and information sciences
34, 7 (2022), 4607–4625.

[35] Barbara Kitchenham, Stuart Charters, et al. 2007. Guidelines for performing
systematic literature reviews in software engineering version 2.3. Engineering
45, 4ve (2007), 1051.

[36] Daniel Klug, Christopher Bogart, and James D Herbsleb. 2021. " They Can
Only Ever Guide" How an Open Source Software Community Uses Roadmaps
to Coordinate Effort. Proceedings of the ACM on Human-Computer Interaction 5,
CSCW1 (2021), 1–28.

[37] Miika Koskela, Inka Simola, and Kostas Stefanidis. 2018. Open source software
recommendations using github. In Digital Libraries for Open Knowledge: 22nd
International Conference on Theory and Practice of Digital Libraries, TPDL 2018,
Porto, Portugal, September 10–13, 2018, Proceedings 22. Springer, 279–285.

[38] Modi Lakulu, Rusli Abdullah, Mohd Hasan Selamat, Hamidah Ibrahim, and Mohd
Zali Mohd Nor. 2010. A framework of collaborative knowledge management
system in open source software development environment. Computer and Infor-
mation Science 3, 1 (2010), 81.

[39] Yuyang Liu, Ehsan Noei, and Kelly Lyons. 2022. How ReadMe files are structured
in open source Java projects. Information and Software Technology 148 (2022),
106924.

[40] Yuzhan Ma, Sarah Fakhoury, Michael Christensen, Venera Arnaoudova, Waleed
Zogaan, andMehdiMirakhorli. 2018. Automatic classification of software artifacts
in open-source applications. In Proceedings of the 15th International Conference
on Mining Software Repositories. 414–425.

[41] PA Michelazzo. 2008. Documentação de software, 2006.
[42] Martin Michlmayr, Francis Hunt, and David Probert. 2005. Quality practices

and problems in free software projects. In Proceedings of the first international
conference on open source systems. 24–28.

[43] Martin Michlmayr, Francis Hunt, and David Probert. 2007. Release management
in free software projects: Practices and problems. In Open Source Development,
Adoption and Innovation: IFIP Working Group 2.13 on Open Source Software, June
11–14, 2007, Limerick, Ireland 3. Springer, 295–300.

[44] Vanessa B Nunes, Andrea O Soares, and Ricardo A Falbo. 2004. Apoio à Docu-
mentação em um Ambiente de Desenvolvimento de Software. In Memorias de VII
Workshop Iberoamericano de Ingeniería de Requisitos y Desarrollo de Ambientes de
Software-IDEAS. 50–55.

[45] David Lorge Parnas. 2010. Precise documentation: The key to better software. In
The future of software engineering. Springer, 125–148.

[46] Jirat Pasuksmit, Patanamon Thongtanunam, and Shanika Karunasekera. 2022.
Towards reliable agile iterative planning via predicting documentation changes of
work items. In Proceedings of the 19th International Conference on Mining Software
Repositories. 35–47.

[47] Bruce Perens et al. 1999. The open source definition. Open sources: voices from
the open source revolution 1 (1999), 171–188.

[48] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. System-
atic mapping studies in software engineering. In 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE) 12. 1–10.

[49] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for
conducting systematic mapping studies in software engineering: An update.
Information and software technology 64 (2015), 1–18.

[50] Giniele Pinho, Aguiar Jeová Caçula, Lucas Costa, Igor Wiese, and Allysson Allex
Araújo. 2024. Challenges and Solutions of Free and Open Source Software
Documentation: A Systematic Mapping Study - Supporting repository. https:
//doi.org/10.5281/zenodo.12953652

[51] Victor Hugo Miranda Pinto. 2021. O papel da documentação no desenvolvimento
de software open source: Uma análise e um estudo de caso. (2021).

[52] Reinhold Plösch, Andreas Dautovic, andMatthias Saft. 2014. The value of software
documentation quality. In 2014 14th International Conference on Quality Software.
IEEE, 333–342.

[53] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung, Thushari Atapattu,
and David Lo. 2019. Categorizing the content of github readme files. Empirical
Software Engineering 24 (2019), 1296–1327.

[54] Tim Puhlfürß, Lloyd Montgomery, andWalid Maalej. 2022. An Exploratory Study
of Documentation Strategies for Product Features in Popular GitHub Projects.

https://doi.org/10.1016/j.infsof.2014.01.008
https://doi.org/10.1016/j.infsof.2014.01.008
https://doi.org/10.1145/3611643.3616288
https://doi.org/10.5281/zenodo.12953652
https://doi.org/10.5281/zenodo.12953652

SBES’24, September 30 – October 04, 2024, Curitiba, PR Pinho et al.

In 2022 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 379–383.

[55] Johnny Saldaña. 2021. The coding manual for qualitative researchers. (2021).
[56] David M Schweiger, William R Sandberg, and James W Ragan. 1986. Group

approaches for improving strategic decision making: A comparative analysis of
dialectical inquiry, devil’s advocacy, and consensus. Academy of management
Journal 29, 1 (1986), 51–71.

[57] André Santiago da Fonseca Silva. 2020. Documentação de software: uma análise
comparativa entre documentação tradicional e living documentation. Master’s
thesis. Universidade Federal do Rio Grande do Norte.

[58] Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L Bleris.
2002. Code quality analysis in open source software development. Information
systems journal 12, 1 (2002), 43–60.

[59] Igor Steinmacher, Ana Paula Chaves, Tayana Uchoa Conte, and Marco Aurélio
Gerosa. 2014. Preliminary empirical identification of barriers faced by newcomers
to Open Source Software projects. In 2014 Brazilian Symposium on Software
Engineering. IEEE, 51–60.

[60] Weijie Sun, Samuel Iwuchukwu, Abdul Ali Bangash, and Abram Hindle. 2023.
An Empirical Study to Investigate Collaboration Among Developers in Open
Source Software (OSS). In 2023 IEEE/ACM 20th International Conference on Mining
Software Repositories (MSR). IEEE, 352–356.

[61] Theo Theunissen, Uwe vanHeesch, and Paris Avgeriou. 2022. Amapping study on
documentation in Continuous Software Development. Information and software
technology 142 (2022), 106733.

[62] Bianca Trinkenreich. 2021. Please Don’t Go—A Comprehensive Approach to
Increase Women’s Participation in Open Source Software. In 2021 IEEE/ACM
43rd International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion). IEEE, 293–298.

[63] Joey Van Angeren, Jaap Kabbedijk, Slinger Jansen, and Karl Michael Popp. 2011.
A Survey of Associate Models used within Large Software Ecosystems.. In
IWSECO@ ICSOB. 27–39.

[64] Georg Von Krogh and Eric Von Hippel. 2006. The promise of research on open
source software. Management science 52, 7 (2006), 975–983.

[65] Dominik Wermke, Jan H Klemmer, Noah Wöhler, Juliane Schmüser, Harshini Sri
Ramulu, Yasemin Acar, and Sascha Fahl. 2023. " Always Contribute Back": A
Qualitative Study on Security Challenges of the Open Source Supply Chain. In
2023 IEEE Symposium on Security and Privacy (SP). IEEE, 1545–1560.

[66] Joel West and Marcel Bogers. 2014. Leveraging external sources of innovation: A
review of research on open innovation. Journal of product innovation management
31, 4 (2014), 814–831.

[67] Titus Winters, Tom Manshreck, and Hyrum Wright. 2020. Software engineering
at google: Lessons learned from programming over time. O’Reilly Media.

[68] Ming-Wei Wu and Ying-Dar Lin. 2001. Open Source software development: An
overview. Computer 34, 6 (2001), 33–38.

[69] Junji Zhi, Vahid Garousi-Yusifoğlu, Bo Sun, Golara Garousi, Shawn Shahnewaz,
and Guenther Ruhe. 2015. Cost, benefits and quality of software development
documentation: A systematic mapping. Journal of Systems and Software 99 (2015),
175–198.

	Abstract
	1 Introduction
	2 Background
	2.1 Free and Open Source Software
	2.2 Software Documentation

	3 Research Method
	4 Results and Analysis
	4.1 Primary Studies Characterization
	4.2 Challenges
	4.3 Solutions

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	References

