
Assessing Python Style Guides: An Eye-Tracking Study with
Novice Developers

Pablo Roberto Fernandes de Oliveira
Federal University of Campina Grande

Brazil
pablo@copin.ufcg.edu.br

Rohit Gheyi
Federal University of Campina Grande

Brazil
rohit@dsc.ufcg.edu.br

José Aldo Silva da Costa
State University of Paraíba

Brazil
jose.aldo@servidor.uepb.edu.br

Márcio Ribeiro
Federal University of Alagoas

Brazil
marcio@ic.ufal.br

ABSTRACT
The incorporation and adaptation of style guides play an essential
role in software development, influencing code formatting, nam-
ing conventions, and structure to enhance readability and simplify
maintenance. However, many of these guides often lack empirical
studies to validate their recommendations. Previous studies have
examined the impact of code styles on developer performance, con-
cluding that some styles have a negative impact on code readability.
However, there is a need for more studies that assess other perspec-
tives and the combination of these perspectives on a common basis
through experiments. This study aimed to investigate, through eye-
tracking, the impact of guidelines in style guides, with a special
focus on the PEP8 guide in Python, recognized for its best practices.
We conducted a controlled experiment with 32 Python novices,
measuring time, the number of attempts, and visual effort through
eye-tracking, using fixation duration, fixation count, and regression
count for four PEP8 recommendations. Additionally, we conducted
interviews to explore the subjects’ difficulties and preferences with
the programs. The results highlighted that not following the PEP8
Line Break after an Operator guideline increased the eye regression
count by 70% in the code snippet where the standard should have
been applied. Most subjects preferred the version that adhered to
the PEP8 guideline, and some found the left-aligned organization
of operators easier to understand. The other evaluated guidelines
revealed other interesting nuances, such as the True Comparison,
which negatively impacted eye metrics for the PEP8 standard, al-
though subjects preferred the PEP8 suggestion. We recommend
practitioners selecting guidelines supported by experimental evalu-
ations.

KEYWORDS
Style Guide, PEP8, Eye tracking camera.

1 INTRODUCTION
Style guides are essential in software development, guiding code for-
matting, naming conventions, and source code structure to promote
readability and facilitate maintenance. Previous studies have inves-
tigated the influence of coding styles on readability, with mixed
results, indicating that certain styles may compromise code clar-
ity [17]. Major companies, such as Google [20] and Microsoft [23],
emphasize style standardization by incorporating guidelines into

their corporate style guides, adopting practices aligned with PEP8
to improve code readability and organization.

However, the diversity of programming languages prevents a
universal set of style rules, with each language having its own defi-
nitions [1]. PEP8, for example, is a widely accepted style guide for
Python that suggests best coding practices [14]. Yet, many guides,
including PEP8, lack empirical studies as a foundation [31]. Previ-
ous studies have examined the impact of coding styles [3] on the
performance of novice developers and visual effort, but there is a
need for more rigorous assessments that consider the developer’s
perception and how eye transitions may indicate a greater visual
effort with certain style patterns.

Conformity with well-established style practices is crucial to
ensuring code quality [32]. PEP8 provides suggestions for coding
styles in Python, one of the most popular programming languages.
While the PEP8 guide provides justifications for its recommenda-
tions, it is crucial to empirically evaluate these recommendations,
particularly from dynamic perspectives that consider human fac-
tors. For instance, using eye-tracking methodology can provide
valuable insights into assessing visual effort [11, 12, 16].

The guidelines outlined in PEP8 not only provide suggestions
for improvements but also provide code examples in Python of
both incorrect and correct code, as shown in the following listing
(Listing 1 and Listing 2) taken from the PEP8 guide. The code in
Listings 1 and 2 present the guideline regarding the use of line
breaks before or after the operator. In the PEP8 compliant version
(see Listing 2), the line break should occur before the operator, not
after, as in the PEP8 non-compliant version (see Listing 1).

Listing 1: PEP8 non compliant
income = (gross_wages +

taxable_interest +
(dividend - quali) -
ira_deduction -
stud_interest)

Listing 2: PEP8 compliant
income = (gross_wages

+ taxable_interest
+ (dividend - quali)
- ira_deduction
- stud_interest)

For the guideline presented in Listing 1, the recommendation
states the following: “the eye has to do extra work to figure out
which items are added and which are subtracted” [37]. This justifi-
cation from the style guide led us to question what extra effort the
creators of the guide were referring to. In this sense, it becomes im-
portant to empirically evaluate the recommendations from the style

https://orcid.org/0000-0001-8390-2197
https://orcid.org/0000-0002-5562-4449
https://orcid.org/0000-0001-8918-1749
https://orcid.org/0000-0002-4293-4261


SBES’24, September 30 – October 04, 2024, Curitiba, PR Pablo Roberto Fernandes de Oliveira, Rohit Gheyi, José Aldo Silva da Costa, and Márcio Ribeiro

guide. In particular, we have to consider eye tracking methodology
to assess the eye effort that a particular pattern may generate.

In this study, we employed eye-tracking metrics and conducted
interviews with Python novices (32 undergraduate students) to eval-
uate the impact of four PEP8 guidelines on visual effort and code
readability. Our goal was to explore the nuanced relationship be-
tween coding patterns and their readability, while also considering
the subjective perceptions of developers regarding style preferences
and how visual engagement with code might highlight readability
issues. Findings suggest that even minor coding patterns recom-
mended by style guides can affect code comprehension, highlighting
the need for a more nuanced analysis that includes both objective
metrics and the developers’ subjective perception.

We evaluate four guidelines (patterns) from the PEP8 style guide:
Whitespace, Line Break Before Operator, Multiple Statements on the
Same Line, and Comparison with True. These guidelines are assessed
using a combination of traditional metrics in code comprehension
such as time and correct responses, along with eye-tracking metrics
including the number of fixations, fixation duration, eye movement
regressions, and gaze transitions. Additionally, we conducted inter-
views with 32 Python novices to understand their preferences and
reasons for a particular coding style and correlate them with the
results of the assessed metrics.

The obtained results shed light on the potential challenges posed
by certain PEP8 guidelines in the context of Python code read-
ability for novices. The findings suggest that adherence to PEP8
guidelines may not always correlate with improved performance,
as evidenced by two out of the four evaluated guidelines showing
better developer performance in standardized code without PEP8
guidelines. This raises questions about the effectiveness of certain
PEP8 recommendations in enhancing code readability, particularly
for novice programmers.

This study makes the following contribution:
• An eye tracking controlled experiment with 32 novices in
Python to investigate the impact of four guidelines from the
PEP8 style guide (Section 4);

• A discussion on the quantitative and qualitative eye-tracking
results for the four guidelines from the PEP8 style guide
(Section 5).

Additionally, the study suggests the need to revisit and possibly
update style guidelines like PEP8 based on empirical data and the
practical experiences of developers. By incorporating direct feed-
back from users and results from studies like this one, guidelines
can be refined to better meet the needs of modern developers, bal-
ancing code clarity and efficiency with ease of learning and use for
new programmers.

2 CODE STYLE AND READABILITY
In Software Engineering, readability is related to code clarity, i.e.,
how easy it is to understand the written expression of the code.
Almeida et al. [15] assert that readability is crucial for code main-
tenance; if the source code is written in a complex manner, the
process of understanding the code will require more effort from the
reader. This can result in difficulties in identifying bugs, implement-
ing new features, and making modifications. On the other hand,
more readable code tends to be easier to modify and debug, making

it more sustainable in the long term. Meanwhile, Daka et al. [13]
indicate that the visual appearance of code, or style, is generally des-
ignated as its readability. The visual organization of code, including
formatting, the use of white spaces, and consistency in naming, can
significantly affect how developers interpret and interact with the
source code. Similarly, Buse and Weimer [6] developed a metric for
code readability, demonstrating that certain characteristics of the
code can significantly influence how it is understood. This metric
considers factors such as the complexity of control structures, clar-
ity in variable and function naming, and code conciseness. Thus,
code that follows best practices in readability tends to be more
understandable, facilitating the development, maintenance, and
collaboration process among team members.

Buse and Weimer [6, 7] and Posnett et al. [26] aimed to iden-
tify specific source code characteristics that directly impact its
readability and comprehensibility. These features were assessed
through the subjective perceptions of students and programmers,
offering valuable insights into factors contributing to code’s legi-
bility. Furthermore, Lawrie et al. [21, 22] explored code identifiers,
examining how different naming styles could affect programmers’
ease of understanding. These collective research efforts highlight
the importance of deliberate and well-founded coding practices to
enhance source code accessibility and maintenance, suggesting that
seemingly minor details, like identifier choices, can significantly
influence code readability. Our work corroborates findings in this
field, focusing on the readability of small code snippets within PEP8
guidelines, with participant subjectivity serving as a key evaluation
metric.

3 STUDY DEFINITION
Following the Goal QuestionMetric approach [2], we aim to analyze
Python programs that are PEP8 compliant versus non-compliant
for the purpose of comparing them with respect to their impact on
code comprehension from the point of view of novices in Python
programming language in the context of tasks adapted from intro-
ductory programming courses.

We address the following Research Questions (RQs). Our null
hypothesis for each RQ is that there is no difference between the
PEP8 compliant and PEP8 non-compliant versions concerning the
collected metric.

• RQ1: To what extent do the PEP8 guidelines affect the
task completion time? To answer this question, we mea-
sured how much time the subject needed to specify the cor-
rect output for the task. We also measured how much time
the subject spent only in specific areas of the code.

• RQ2: To what extent do the PEP8 guidelines affect the
number of answer attempts? To answer this question, we
measured the number of attempts the subject made until
answering the task correctly, having in mind that the subject
is free to make as many attempts as needed.

• RQ3: To what extent do the PEP8 guidelines affect the
fixations duration and count? To answer this question,
we measured the number and duration of each fixation found
in the data captured from the novices. In the code compre-
hension scenario, fixations with high duration have been
associated with an increase in the level of attention [8]. A



Assessing Python Style Guides: An Eye-Tracking Study with Novice Developers SBES’24, September 30 – October 04, 2024, Curitiba, PR

Figure 1: Experiment Steps: Questionnaire, Warm-up, Task,
Interview, and Survey.

large number of fixations has been associated withmore time
to process and understand code statements [4], increased
attention to complex code [9], and more visual effort to re-
member identifier names [34].

• RQ4: To what extent do the PEP8 guidelines affect the
regressions count? Just as Rayner [27] observed in reading,
regressions can indicatemisunderstanding, a concept applied
to programming by Busjahn et al. [8]. The study assessed
regressions in PEP8 code, measuring backward saccades to
quantify readability.

4 METHODOLOGY
The study was structured in five steps (see Figure 1). Initially, we
gave the participants a questionnaire to assess their proficiency
in Python and introduced them to relevant code examples. The
participants were informed about the best posture for eye-tracking
data capturing and reminded of their option to leave the study at
any time. Following these preparatory steps, we detailed the eye-
tracking camera calibration process to the participants, ensuring
they were comfortable and correctly positioned for the procedure.
This calibration involved participants following on-screen cues to
guarantee accurate eye movement tracking, with recalibrations
performed as necessary to ensure data reliability.

In the second step, we simulated the execution of the experi-
ment with a simple warm-up task. While they solved the task, we
demonstrated how subjects could specify the output, how the sub-
ject could close their eyes for two seconds before and after solving
the task, how we signaled the correct and incorrect answers, and
how we signaled the time limit. The idea is that the subject can feel
comfortable with the experiment setup and the equipment.

In the third step, we conducted the actual experiment with eight
programs, half adhering to PEP8 guidelines and the other half
functionally equivalent but non-compliant with PEP8 guidelines.
To avoid learning effects, we used a Latin Square design [5].

In the fourth step, we concluded the experiment with a semi-
structured interview. The goal was to obtain qualitative feedback
on how subjects examined the programs and their subjective im-
pressions. We went through each of the eight programs and asked
three questions: (1) How difficult was it to find the output: very easy,
easy, neutral, difficult, or very difficult? (2) Why this perception?
(3) How did you find the output?

Finally, we applied a survey in which we presented code excerpts
highlighting the use of the PEP8 guideline or not, and we asked the
subject’s preference, the motivation for the preference, or if they
were indifferent to the use of any of those compared excerpts. We
were careful with environmental aspects to reduce noise in the data.

For example, we did not use a swivel chair because, in previous
pilot studies, subjects tended to move, reducing the accuracy of the
eye-tracking equipment. Despite the measures we took, obtaining
perfect data is virtually impossible, given the limitations of the
camera. Therefore, the collected data were processed, analyzed, and
interpreted, correcting the data whenever necessary.

4.1 Subjects
Our study included 32 undergraduate students currently pursuing
their degrees in the Computer Science field. We considered our
subjects as “novices” in Python because they reported having on av-
erage seven months of experience in Python, the language in which
the programs were written. In general, the subjects had a minimum
of six months and a maximum of 42 months of experience with
programming languages, including Python, Java, JavaScript, C, and
C++. They were recruited from three universities in Brazil, mainly
through in-person invitations or text messages. All subjects were
Brazilian Portuguese speakers enrolled in academic institutions.

Regarding the sample size, we performed a calculation consider-
ing the desired effect, significance level, and statistical power. The
goal was to ensure a minimum power of 0.8, with a significance
level of 0.05, using the t-test sample size calculation. Our analysis
indicated that 26 subjects in two groups would be required to meet
these criteria. Alternatively, given that we had 32 subjects instead
of 26, our study can identify a moderate effect size of 0.5, main-
taining a statistical power of 0.8 and a significance level of 0.05. A
larger sample size provides sufficient sensitivity to detect a slightly
smaller effect while maintaining statistical robustness.

We conducted the experiment at three locations to gather more
subjects and to have a variety of subjects from different higher
education institutions. However, different locations may influence
subjects’ visual attention. To mitigate this, we carefully organized
the rooms to have similar conditions. For instance, the rooms were
quiet, with minimal distractions, similar temperatures, and artifi-
cial light sources. We documented which subject performed the
experiment at each location to account for potential differences.

4.2 Design
As illustrated in Figure 2, each subject analyzed eight programs
(P1-P8). To mitigate learning effects, we employed the Latin Square
design [5]. Sixteen different programs were designed, divided into
two sets of programs (SP1 and SP2). A subject analyzed four pro-
grams from set SP1 and four programs from set SP2. Another subject
analyzed four programs from set SP1 and four programs from set
SP2. Programs within the same set, although having different code
programs, resulted in the same output. In all programs, subjects
were required to specify the correct output, with no multiple-choice
options. Given the program’s input, subjects had to perform tasks
such as calculating operations, and summing lists, among others.

4.3 Evaluated PEP8 Style Guide Guidelines
We evaluated four guidelines from the PEP8 style guide (see Ta-
ble 1):Whitespace, Line Break Before Operator, Multiple Statements
on the Same Line, and Comparison to True. Following the guide’s
suggestions, we referred to the snippets as PEP8 compliant and



SBES’24, September 30 – October 04, 2024, Curitiba, PR Pablo Roberto Fernandes de Oliveira, Rohit Gheyi, José Aldo Silva da Costa, and Márcio Ribeiro

Figure 2: Latin Square Structure. Each subject received four
programs (P1-P4), which were PEP8 compliant (C). These
programs belonged to Program Set 1 (SP1). Additionally, the
subject received four programs (P5-P8) from Program Set 2
(SP2), comprising PEP8 non-compliant (NC).

PEP8 non-compliant. We selected PEP8 guidelines suitable for code
snippets for novices in Python.

Table 1: PEP8 guidelines evaluated in this study.

Guideline PEP8 compliant PEP8 non-compliant

White-
space

hypot2 = x*x + y*y
c = (a+b) * (a-b)

hypot2 = x * x + y * y
c = (a + b) * (a - b)

Line Break
Before Op-
erator

income = (gross_wages
+ taxable
+ dividends
- ira_deduction
- student)

income = (gross_wages +
taxable +
dividends -
ira_deduction -
student)

Multiple
Statements
on the
Same Line

while t < 10:
t = delay()

while t < 10: t = delay()

Comparison
to True

if greeting: if greeting == True:

The selected code snippets and guidelines for analysis were care-
fully chosen with a focus on the target demographic’s background
knowledge, the novice Python students. We have considered that
Python served as the primary language covered in the Algorithms
or Structured Programming courses at the universities where our
experiment was conducted. Our objective was to explore and eval-
uate guidelines that align with the prevalent coding styles adopted
by novice Python learners in these academic settings.

4.4 Programs
We selected code snippets from repositories such as GeekForGeeks1
and Leetcode2, for introductory programming activities. We pri-
oritized problems with up to 11 lines of code, adapted for camera
constraints, as illustrated in Figure 3. Following a common method-
ology employed by code comprehension experiments [25] [18] [33],
1https://www.geeksforgeeks.org/
2https://leetcode.com/

Figure 3: Programs presented to the participants.

we asked subjects to predict the correct output of code snippets,
without syntactic errors, addressing the four PEP8 guidelines eval-
uated in this study (Table 1).

The programs, displayed in Consolas 16, underwent a careful
approach. Each program, whether the PEP8 compliant or PEP8 non-
compliant version, had a single instance of one of the PEP8 style
guide patterns. With a Latin Square design, no subject saw both
the PEP8 compliant or PEP8 non-compliant versions of the same
program.

In Figure 3, we present examples of the programs used in the
experiment, with one version containing the PEP8 non-compliant
pattern and another version containing the PEP8 compliant pattern
of PEP8 for the four styles evaluated. In Figure 3, we depict a set of
programs with PEP8 non-compliant versions (left-hand side) of the
code, including guidelines such as Whitespace, Line Break Before
Operator, Comparison to True, and Multiple Statements on the
Same Line. The shaded areas indicate Areas of Interest (AOIs), cor-
responding to lines of code where the PEP8 non-compliant and PEP8
compliant versions differ. We chose to use small-sized programs,



Assessing Python Style Guides: An Eye-Tracking Study with Novice Developers SBES’24, September 30 – October 04, 2024, Curitiba, PR

with up to 11 lines of code, to fit the code on the screen. This choice
may limit the applicability to more extensive programs.

4.5 Eye Tracking System
Our research employed the Tobii Eye Tracker 4C with a sampling
rate of 90 Hz. The eye tracker calibration followed the standard
procedure, involving gazes at five calibration points, twice, and ver-
ification with eight points. The device was mounted at a distance
of 50-60 cm from the subject on a laptop screen. Code tasks were
displayed in full-screen mode, without the use of an Integrated
Development Environment (IDE). We calculated a precision error
of 0.7 degrees from this distance. For eye gaze analysis and metric
collection, we developed a Python script. We used camera settings
used in previous studies [11, 12] on code comprehension using eye-
tracking cameras. We used a Dispersion-Based algorithm to classify
the fixations. In particular, we used the Dispersion-Threshold Iden-
tification [30]. We also classified gaze samples as belonging to a
fixation if the samples are located within a spatial region of approx-
imately 0.5 degrees [24]. We also implemented a simple Python
script to create diagrams from data points using open source li-
braries to draw arrows and images, and create heatmaps.

4.6 Study Pilot
We conducted pilot studies with four participants to refine materials
and adjust the experiment’s design, excluding these subjects from
the final analysis. The process allowed us to simplify the program-
ming tasks and focus exclusively on the impact of PEP8 guidelines
on the codes, identifying and eliminating other variables that could
influence the results.

The study material included a collection of programs, a question-
naire for characterizing participants, and semi-structured interview
questions. Program snippets were sourced from the PEP8 guide
and introductory programming course datasets. Various aspects
like code difficulty, font size, style, spacing, and indentation were
evaluated. Tasks generally took under two minutes to complete,
and questionnaire questions were refined. Identifiers were carefully
chosen to convey information, such as using abbreviations like
elem and specific terms like bonus for context clarity.

5 RESULTS AND DISCUSSION
In Table 2, we summarize the quantitative results of the collected
metrics for each guideline with the statistical analysis. We present
two perspectives of the metrics evaluated in this work, one exam-
ining only the AOI and the other examining the code as a whole.
While time in the code, for example, consists of the time needed
to examine and solve the task, regardless of the fixations made,
time in the AOI consists of the time dedicated to examining only
the region containing a style following or not following the PEP8
guidelines.

Table 2 also presents the data for the PEP8 non-compliant version
(column NC) and PEP8 compliant version (column C) on the metrics
highlighted in the second column. In the PD% column, we present
the percentage difference between the two versions concerning
the particular metric. The percentage was calculated with respect
to the NC version with an arrow that indicates how much the C
version increased or decreased this percentage compared to the

NC version. The NC and C columns are based on the median as
a measure of central tendency, except for less sensitive attempts
which are based on the mean. While time in the code represents
the total effort to examine and solve the task, time in the AOI offers
more specific insights, focusing exclusively on the region relevant
to the PEP8 guideline.

Concerning our RQ1, the PEP8 compliant version of the PEP8
guideline Line Break Before Operator resulted in a reduction by
48.7% in time in the AOI and 35.27% in total time compared to the
NC version. This suggests that following the PEP8 guideline can
optimize the time spent on code analysis. It also highlights the
importance of considering not only the total duration but also the
efficiency in the code analysis. Notably, this distinction between
time in the code and time in the AOI is vital when evaluating the
NC and C versions, as it provides a more refined perspective on how
following the PEP8 guidelines can influence not only the total time
invested but also the efficiency and accuracy in the code analysis.
This difference between the NC and C versions can be critical for
understanding the overall impact of coding practices according to
the established guidelines.

By following the Line Break Before Operator guideline, Table 2
highlights a decrease by 37.14% in Fixation Duration, our RQ3. This
result points to a reduction in visual effort concentrated in the area
associated with the evaluated pattern when PEP8 guidelines are
followed compared to the NC version. Additionally, when analyzing
the metrics of Horizontal Regressions and Vertical Regressions for
theWhite Space guideline in our RQ4, we observe that following the
PEP8 guidelines is associated with a 25% reduction in Horizontal
Regressions, indicating a smoother and continuous reading.

Concerning the Comparison to True guideline, Table 2 presents
important nuances regarding the influence of PEP8 guidelines on
various metrics. Although following this guideline resulted in an
8.94% reduction in time in the AOI, it showed an increase of 16.84%
in time in the code (RQ1). There is also a simultaneous increase
of 16.66% in Fixation Duration and 8.25% in Fixation Count (RQ3).
These results suggest a potential trade-off between overall efficiency
and detail in the code analysis, indicating that, while following the
PEP8 guideline may speed up the analysis, there may be a cost
associated with the frequency and duration of revisions.

Additionally, we observed that in general, there were no signifi-
cant differences in time spent and the number of answer attempts
between the different PEP8 patterns for theWhite Space Multiple
Statements on the same Line and Comparison to True criteria. How-
ever, there was a noteworthy decrease in fixation duration and
count for the Line Break Before Operator and Multiple Statements
on the same Line patterns, indicating enhanced efficiency in under-
standing and processing these patterns. Moreover, a decrease in
the number of horizontal and vertical regressions was observed
for these same patterns, suggesting a more linear and organized
reading of the code. Interestingly, certain metrics, such as time
and fixation count, exhibited performance differences between the
PEP8 patterns compared to the control group Comparison to True,
suggesting variations in the ease of understanding and processing
the different patterns. Next we discuss our results in more details.



SBES’24, September 30 – October 04, 2024, Curitiba, PR Pablo Roberto Fernandes de Oliveira, Rohit Gheyi, José Aldo Silva da Costa, and Márcio Ribeiro

Table 2: Summary ofmetrics: time, submissions, fixation duration, fixation count, horizontal regressions, and vertical regressions
for each PEP8 guideline. NC represents the PEP8 non-compliant version and C the PEP8 compliant version; PD represents the
percentage difference; n/a represents unassigned value. Bold font represents statistically significant differences.

In the AOI In the Code
PEP8 Guidel. Metrics NC C PD% p-val. NC C PD% p-val.

White
Space

Time 6 5.69 ↓5.25 0.82 20 18.91 ↓5.45 0.63
Submissions n/a n/a n/a n/a 1 1 0 0.36
Fixations Duration 10 9.5 ↓5 0.86 23.5 27 ↑12.7 0.97
Fixations Count 2.92 2.96 ↑1.54 0.7 7.17 8.59 ↑19.73 0.91
Horizontal
Regressions 2 1.5 ↓25 0.46 4 4 0.86 0.86
Vertical
Regressions 0 0 n/a n/a 6 7 ↑8.33 0.96

Line
Break
Before

Operator

Time 14.27 7.32 ↓48.7 0.002 30.7 19.8 ↓35.27 0.005
Submissions n/a n/a n/a 0.0 1.13 1 ↓11.11 0.04
Fixations Duration 17.5 11 ↓37.14 0.02 36 31.5 ↓12.5 0.11
Fixations Count 5.46 4.21 ↓22.8 0.01 11.06 10.11 ↓8.63 0.04
Horizontal
Regressions 6 2 ↓66.66 0.03 6 4 ↓27.27 0.02
Vertical
Regressions 2.5 1 ↓60 0.03 12 85 ↓29.16 0.007

Multiple
Statements
on the same

Line

Time 28.95 22.89 ↓20.92 0.2 42.9 32.5 ↓24.16 0.06
Submissions n/a n/a n/a n/a 1.5 1.13 ↓25 0.1
Fixations Duration 46.5 32.5 ↓30.1 0.36 62 45 ↓27.41 0.21
Fixations Count 14.99 11.58 ↓27.74 0.37 20.04 15.58 ↓22.24 0.15
Horizontal
Regressions 13 14 ↑7.69 0.76 13 10 ↓24 0.33
Vertical
Regressions 2.5 4 ↑60 0.63 11 9.5 ↓13.63 0.8

Comparison
to True

Time 2.46 2.24 ↓8.94 0.87 13.6 15.9 ↑16.84 0.05
Submissions n/a n/a n/a n/a 1 1 0 n/a
Fixations Duration 3 3.5 ↑16.66 0.56 18 22 ↑22.22 0.28
Fixations Count 1.11 1.03 ↑8.25 0.31 7.02 6.21 ↑13.12 0.16
Horizontal
Regressions 0.5 0 0 0.05 2 3 ↑25 0.16
Vertical
Regressions 0 0 n/a n/a 5 6 ↑20 0.15

5.1 Preferences of the Subjects
After solving all programming tasks, we showed the PEP8 compliant
and PEP8 non-compliant versions, side by side, for each PEP8 guide-
line, to the subjects. The differences in the code snippets between
the PEP8 compliant and PEP8 non-compliant versions were high-
lighted. Figure 4 depicts the subjects’ overall responses, indicating
their preferences among the presented versions, expressingwhether
they had a Strong Preference, Preference, or were Indifferent to
the versions presented: Strongly Prefers (SP) PEP8 non-compliant
(SPNC) or PEP8 compliant (SPC), Prefers (P) PEP8 non-compliant
(PNC) or PEP8 compliant (PC), and Indifferent (I).

Subjects predominantly preferred or strongly preferred the PEP8
non-compliant version for the White Spaces guideline. However,
concerning the guideline for Multiple Statements on the Same Line,
the majority preferred or strongly preferred the PEP8 compliant
version. For Line Break Before Operator and Comparison to True, the
majority preferred the PEP8 compliant version with PEP8 guidelines.
This response pattern may suggest that while some PEP8 guidelines
are widely accepted, others are considered less critical or subject to
personal interpretation.

In addition to expressing preferences among the presented ver-
sions, the subjects were asked about the reasons behind their

Figure 4: Subject’s preferences for the PEP8 compliant and
PEP8 non-compliant versions of the PEP8 guidelines. We
used the following acronyms: Strongly Prefers PEP8 com-
pliant (SPC); Prefers PEP8 compliant (PC); Indifferent (I);
Prefers PEP8 non-compliant (PNC); Strongly Prefers PEP8
non-compliant (SPNC).

choices. The more in-depth analysis of these interview data is en-
riched through triangulation with eye tracking metrics. The discus-
sion of this triangulation is presented in the subsequent sections as
we investigate each pattern of the PEP8 guidelines.



Assessing Python Style Guides: An Eye-Tracking Study with Novice Developers SBES’24, September 30 – October 04, 2024, Curitiba, PR

5.2 PEP8 Guidelines
In this section, we triangulate and discuss each guideline evalu-
ated, starting with White Space (see Section 5.2.1), followed by
Line Break Before Operator (see Section 5.2.2), Multiple Clauses (see
Section 5.2.3), and finally, Comparison to True (see Section 5.2.4).

5.2.1 White Space. Regarding our RQ1, it was observed that sub-
jects spent more time in the AOI in the PEP8 non-compliant. Appar-
ently, adding space between the multiplication operator also caused
subjects to regress more in the PEP8 non-compliant version. Not
following the PEP8 guideline impacted the number of horizontal
eye regressions for the novices, reducing it by approximately 25%.
To clarify this aspect further, we will discuss how eye regression
can indicate issues in code readability with the PEP8 non-compliant
version of the PEP8 recommendation forWhite Space.

Still concerning our RQ4, it was noted that the PEP8 non-
compliant version exhibited a slightly higher number of horizontal
regressions in the AOI. From data extracted from one of the sub-
jects in the experiment, Figure 5 presents the horizontal regressions
captured by this subject’s eye tracking camera. On the left-hand
side of Figure 5, we have the code snippet containing the PEP8 non-
compliant version of PEP8 guideline White Space (Table 2), and on
the right-hand side, the version with the PEP8 compliant guideline.
Each line between code blocks indicates either a code regression,
where the gaze returns to a previous section of code, or progression,
where the gaze moves on to a further section. The spacing around
the multiplication operator (seen on the left-hand side of Figure 5)
may account for an increase in horizontal regressions, potentially
indicating a greater visual effort and reading repetition.

Figure 6 showcases two code excerpts marked with gaze tran-
sitions from different subjects, one with the PEP8 non-compliant
version (a) and the other with the PEP8 compliant version (b), accord-
ing to PEP8’sWhite Space standard. The color-coded lines track the
sequence of eye movements across the code versions. It is observed
that the PEP8 compliant version (b) had fewer regressions, suggest-
ing that code adhering to the PEP8 White Space guideline is easier
to follow and understand, as opposed to the PEP8 non-compliant
version (a), where more frequent regressions occurred, especially in
the section not following the PEP8White Space guideline, a pattern
repeated across subjects.

Regarding the subjects’ preferences, approximately 81% of the
subjects preferred the PEP8 non-compliant version of PEP8 guide
forWhite Space. When we asked why they preferred one style over
the other, one of the subjects responded as follows: “...I don’t like
the idea of [the operator followed by the variable without using
space], I think the lack of spacing is confusing...”. The absence of
space between the multiplication operator displeases some subjects,
whichmay justify the preference for the PEP8 non-compliant pattern.
However, we can conclude that although the majority of subjects
preferred the PEP8 non-compliant pattern, it negatively impacted
code readability when considering overall time and eye regression
data. Interestingly, participants’ comments on specific tasks indicate
that, despite a preference for more spaces, understanding of the
code was not necessarily improved by this practice.

5.2.2 Line Break Before Operator. For the Line Break Before Opera-
tor guideline, the PEP8 guide provides the following justification:

Figure 5: Eye regression and progression of reading in the AOI
of theWhite Space pattern for the PEP8 non-compliant ver-
sion (left-hand side) and PEP8 compliant version (right-hand
side) of a subject. The green region contains the portion of
the code where the PEP8 pattern has been applied or not.
Arrows pointing from right to left represent reading progres-
sion, and from left to right, eye returning to the previous
region of the code. The numbers on the arrows represent the
number of times progression or regression occurred.

Figure 6: Sequential gaze transitions when reading a program
with the White Space pattern for the PEP8 non-compliant (a)
and PEP8 compliant (b) versions of different subjects.

“the eye has to do extra work to figure out which items are added
and which are subtracted” [37]. In our study, we found that the PEP8
non-compliant version reduced the performance of the subjects in
nearly all evaluated metrics, as shown in Table 2, corroborating
the findings of Rossum et al. [37]. Statistically, the version recom-
mended by PEP8 for Line Broke Before Operator demonstrated better
performance. Regarding our RQ4, there is indeed an indication of
more vertical and horizontal regressions for the PEP8 non-compliant
guideline, supporting PEP8’s assertion.

In Figure 7(a) and (b), we illustrate the eye transition where two
subjects regress their gaze to the operator at a certain point in the
program reading, suggesting an extra visual effort to return to the
operator (PEP8 non-compliant version). This behavior was also
observed in the data from other subjects. However, in the snip-
pet from Figure 7(c) with the PEP8 compliant version, one subject
demonstrates a sequential reading flow without regressing, mean-
ing they do not go back to the operator. This observation was noted
in the data from other subjects for the PEP8 compliant version of
the pattern discussed in this subsection.

For the Line Break Before Operator guideline, the majority prefers
the PEP8 compliant version. The main reasons were “left alignment”
and “ease of reading”, stating that they are more accustomed to a
left-aligned format for mathematical operations. This observation
complements the discussion on the preference for line breaks before
or after a binary operator, which revealed divided opinions among



SBES’24, September 30 – October 04, 2024, Curitiba, PR Pablo Roberto Fernandes de Oliveira, Rohit Gheyi, José Aldo Silva da Costa, and Márcio Ribeiro

Figure 7: Eye transition for Line Break Before Operator guide-
line from three subjects, with code snippets (a) and (b) rep-
resenting the PEP8 non-compliant version of the guideline
and code (c) representing the PEP8 compliant version.

participants. Some found that breaking lines facilitated understand-
ing by visually separating the components of complex calculations,
despite not being accustomed to this formatting. Others, however,
expressed that this approach caused estrangement and preferred
the presentation of calculations in a single line, arguing that this
made the sequence of operations more straightforward and easier
to follow. This divergence of opinions highlights how personal fa-
miliarity significantly influences the perception of code readability,
with some valuing the clarity provided by line breaks in exten-
sive operations, while others see it as a barrier to the immediate
understanding of mathematical operations.

5.2.3 Multiple Clauses on the Same Line. Answering our RQ2, the
number of submissions for the PEP8 non-compliant version was
slightly higher than for the PEP8 compliant one regarding the guide-
line Multiple Statements on the Same Line. To better understand
it, we analyze one of the subjects’ comments: “...separating, we
understand better what the if does because we can get confused
if the if is inside the while...”. In this comment, it is possible to
identify that the lack of indentation can cause confusion. According
to this subject, there is confusion when one clause is followed by
another on the same line.

Concerning the fixations count, our RQ3, we observed that the
PEP8 compliant version reduced the number of fixations by up to
30% and the duration of these fixations by up to 27% in the AOI for
the guideline discussed in this subsection, compared to the PEP8
non-compliant pattern. From the heatmap and fixation count, it was
possible to notice that, for two subjects, we were able to identify
some nuances that may justify these data (Figure 8).

The right-hand side (a) in Figure 8 demonstrates the code with
the PEP8 compliant version. Both code snippets on side (a) and
on side (b) have the same algorithmic complexity. However, we
noticed that the performance of the subject who solved the PEP8
non-compliant version was worse in terms of time, our RQ1, number
of fixations and fixation duration, our RQ3, in the AOI. The overall
data presented in Table 2 also reflects this difference.

Regarding preference, Figure 4 shows that almost all subjects
prefer the PEP8 compliant version of PEP8 for the guidelineMultiple
Clauses in the Same Line. The reason reported by some Python

novices was that in the PEP8 compliant version, there is more clarity
about whether the if statement is inside the while loop or not.

The strong preference for compliance with PEP8 underscores
the importance of readability and clarity in code, reflecting familiar-
ity with coding practices that prioritize these aspects. Participants
found tasks easier due to the clear structure of the code, as rec-
ommended by PEP8, which facilitates comprehension even with
multiple variables and operations. These well-defined and trans-
parent standards improve code readability and assist beginners in
learning programming.

5.2.4 Comparison to True. In Figure 9(a), we observed that a sub-
ject analyzed the else block in the code, which would not be an
expected behavior, given that the value of status is True. In Fig-
ure 9(b), it can be noted that the subject returned several times
to the if block, probably to check the value of status. One of
the subjects even mentioned that the value of status without the
comparison to True is not clear. This comment justifies the gaze
behavior in the section related to status.

Regarding the regression analyses (RQ4), Figure 10 depicts two
graphs where the node represents a line of code (left and right-hand
sides), and the edges indicate regressions, progressions, or returns
to the same line of code. The PEP8 non-compliant pattern shows
a lower number of gaze returns compared to the PEP8 compliant
pattern. In fact, after checking the value of bonus in the if block
(which is False), both in the PEP8 non-compliant pattern, as repre-
sented in Figure 10(a), and in Figure 9(c), subjects direct their gaze
to the else block in the code. This behavior is expected consider-
ing the value of bonus. However, this observation does not apply
to the PEP8 compliant pattern in Figure 10(b), as subjects explore
code snippets that do not require verification. Furthermore, when
comparing eye tracking data for the code snippets in Figure 9(b)
and (d), the PEP8 non-compliant version reveals that the subject’s
reading was more sequential and did not involve returns to check
the value of status, as observed in the PEP8 compliant pattern.

The PEP8 non-compliant showed better performance, contra-
dicting PEP8 guidelines. Participant feedback suggests that direct
comparison of boolean values with True would be more appro-
priate, indicating performance improvement. This method simpli-
fies boolean conditions, promoting readability and quick decision-
making, especially useful for novices. PEP8 could revisit coding
style guidelines.

6 THREATS TO VALIDITY
We conducted the experiment at three locations to gather more
subjects and to have a variety of subjects from different higher
education institutions. However, different locations may influence
subjects’ visual attention. To mitigate this, we carefully organized
the rooms to have similar conditions. For instance, the rooms were
quiet, with minimal distractions, similar temperatures, and artifi-
cial light sources. We documented which subject performed the
experiment at each location to account for potential differences.

We allocated a total time of 40 minutes for each subject and
assigned them eight programs, which could have influenced visual
effort. To minimize this threat, we designed simple and short pro-
grams, each with only one instantiated pattern. Given the simplicity
of the programs, most subjects solved them before the time limit.



Assessing Python Style Guides: An Eye-Tracking Study with Novice Developers SBES’24, September 30 – October 04, 2024, Curitiba, PR

Figure 8: Heatmaps and Fixation for theMultiple Clauses on the Same Line pattern.

Figure 9: Eye tracking transition for the Comparison to True
guideline. Versions (a) and (b) are PEP8 compliant, while
versions (c) and (d) are PEP8 non-compliant, according to
PEP8, representing four distinct subjects.

We chose to use small-sized programs, with up to 11 lines of
code, to fit the code on the screen. This choice may limit the ap-
plicability to more extensive programs. However, previous works
have employed code snippets with a similar number of lines, such
as in Costa et al. [11]. If we identify disparities in short snippets, we
expect that longer segments may reveal more pronounced differ-
ences. Nevertheless, to support such expectations, it is imperative
to conduct further studies with more extensive code snippets.

Within the scope of our study, we directed our attention to
Python novices, limiting the generalization to more experienced
developers in the language. However, using students as participants

remains a valid simplification of reality needed in laboratory con-
texts [19, 29]. We plan to explore the same topic of this study with
more experienced developers in the future.

7 RELATEDWORK
Previous approaches [3, 17] identified that certain coding styles
negatively affect Java code readability, with whitespace being a
particular concern. Our eye-tracking study revealed that in Python,
following PEP8’s White Space guidelines may not align with better
readability, as less spacing could potentially reduce visual regres-
sion and improve comprehension.

Sharafi et al. [35] examined the influence of Camel Case and
underscore coding styles on code comprehension, measuring time,
response correctness, and visual effort through eye tracking. They
found a significant improvement in the time and visual effort with
the underscore style. In a subsequent investigation [34] on the same
styles, considering the gender of the subjects, no significant differ-
ences were identified in metrics such as time, accuracy, and visual
effort. In our study, we sought similar metrics, namely time, number
of attempts, and visual effort, however, in a different context.

Stefik and Siebert [36] investigated how programming language
syntax affects the comprehension of novice programmers. They
asked novices to assess the intuitiveness of different programming
language constructs and found that syntactic choices in commer-
cial programming languages tend to be more intuitive for novices,
influencing their initial programming accuracy rates. In contrast,
our approach also considered the context of novices but specifically
focused on a programming language. Additionally, we employed
objective metrics to evaluate the performance of novices during
code-solving tasks, providing a structured and quantitative anal-
ysis of code readability and how it could impact the accuracy of
responses to proposed tasks containing the patterns.

Costa et al. [10, 11] used eye tracking to study how code patterns
such as atoms of confusion affect the understanding of Python code
among novices. Their experiment with 32 participants showed
that these atoms can complicate code comprehension, leading to
increased effort and more attempts to solve coding problems. This
research underscores the use of eye tracking in identifying which
code patterns most hinder the novices’ code comprehension.



SBES’24, September 30 – October 04, 2024, Curitiba, PR Pablo Roberto Fernandes de Oliveira, Rohit Gheyi, José Aldo Silva da Costa, and Márcio Ribeiro

Figure 10: Regression Graphs for the Comparison to True guideline. Data for the PEP8 non-compliant version (a) and PEP8
compliant version (b) from two distinct subjects.

Sharif et al. [28] present a guideline to conduct eye tracking
studies. We followed rigorous guidelines for eye-tracking studies
to examine how minor coding styles, as recommended by PEP8,
affect Python code readability. Our findings reveal differences in
readability and stylistic preferences, showcasing eye tracking’s
capability to measure the influence of coding patterns on both the
performance and perception of programmers, thus highlighting its
critical role in enhancing the understanding of coding practices
and guiding future research.

8 CONCLUSIONS
In this work, we explore eye tracking as a method to gain insights
into the guidelines of a code style guide. We conducted a controlled
experiment with an eye tracker to assess the impact of four PEP8
guidelines on code readability, analyzing how the PEP8 compliant
and PEP8 non-compliant versions, as defined by PEP8, affected the
time, number of attempts, and visual effort of 32 Python novices.

We observed that non-adherence to PEP8’s proper spacing in-
creases time, number of fixations and horizontal regressions. More-
over, omitting line breaks before operators, against PEP8 recommen-
dations, increased regressions, validating the importance of these
practices for code readability. The analysis of the Multiple Clauses
on the Same Line pattern showed that following the PEP8 guideline
to separate clauses onto different lines reduced both the number
and duration of fixations, enhancing code comprehension due to
the clarity provided by this separation. Surprisingly, for the Com-
parison to True pattern, results suggested that direct comparisons
with Boolean values (True/False) were more effective, indicating
that, in certain cases, deviating from PEP8 recommendations might
actually aid in novice programmers’ understanding of the code.

For educators, we recommend paying close attention to the guide-
lines used in classes that impact undergraduate students’ program
comprehension. Based on our findings, explicitly using == True
in conditions may help novices better understand the code. For
practitioners, it is crucial to thoroughly understand coding style

guidelines before adopting them. We recommend selecting guide-
lines supported by experimental evaluations rather than persuasive
statements. For researchers, we recommend evaluating more cod-
ing styles using robust methodologies to understand the impact of
each style on code comprehension. It is also important to propose
coding styles like PEP8 using proper methodologies. The use of
eye-tracking cameras can help researchers identify gaze transition
patterns that could be integrated into more advanced IDEs. Ad-
vanced IDEs could use eye-tracking cameras to monitor developers’
gaze transitions. These cameras, equipped with machine learning
models and patterns of gaze transitions, could help automatically
adjust code based on developers’ preferences.

For future research, we will explore the effects of lesser-studied
PEP8 guidelines and their differing impacts on novice versus ex-
perienced developers. Longitudinal studies to track the evolution
of guideline comprehension over time, assessing how guideline
adherence influences code maintainability, and extending the anal-
ysis to style guides across various programming languages are also
recommended to enhance both educational strategies and software
development practices. We intend to investigate more extensive
code and the impact of guidelines on gender and neurodiversity.
We aim at analyzing the Comparison to True guideline further by
interviewing more undergraduate students to better understand
the results.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their insight-
ful suggestions. This work was partially supported by CNPq and
FAPEAL grants.

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2014. Learn-

ing Natural Coding Conventions. In Proceedings of the International Symposium
on Foundations of Software Engineering (FSE’14). 281–293.

[2] Victor Basili, G. Caldiera, and H. Rombach. 1994. The Goal Question Metric
Approach. Encyclopedia of Software Engineering (1994), 528–532.



Assessing Python Style Guides: An Eye-Tracking Study with Novice Developers SBES’24, September 30 – October 04, 2024, Curitiba, PR

[3] Jennifer Bauer, Janet Siegmund, Norman Peitek, Johannes C. Hofmeister, and
Sven Apel. 2019. Indentation: Aimply a Matter of Style or Support for Pro-
gram Comprehension?. In Proceedings of the International Conference on Program
Comprehension (ICPC’19). IEEE, 154–164.

[4] Dave Binkley, Marcia Davis, Dawn Lawrie, JonathanMaletic, ChristopherMorrell,
and Bonita Sharif. 2013. The impact of Identifier Style on Effort and Comprehen-
sion. Empirical Software Engineering 18, 2 (2013), 219–276.

[5] George Box, J. Stuart Hunter, and William G. Hunter. 2005. Statistics for Experi-
menters. Wiley-Interscience.

[6] Raymond Buse andWestleyWeimer. 2009. Learning aMetric for Code Readability.
In Proceedings of the International Symposium on Software Testing and Analysis.
465–475.

[7] Raymond P. L. Buse and Westley R. Weimer. 2008. A Metric for Software Read-
ability. In Proceedings of the 2008 International Symposium on Software Testing
and Analysis (ISSTA’08). ACM Press, 121–130.

[8] Teresa Busjahn, Carsten Schulte, Sascha Tamm, and Roman Bednarik. 2015.
Eye Movements in Programming Education II: Analyzing the Novice’s Gaze. In
Proceedings of the Conference on Computing Education (ICER’15).

[9] Martha Crosby, Jean Scholtz, and Susan Wiedenbeck. 2002. The Roles Beacons
Play in Comprehension for Novice and Expert Programmers.. In Workshop of the
Psychology of Programming Interest Group (PPIG’02). 5.

[10] José Aldo Silva da Costa and Rohit Gheyi. 2023. Evaluating the Code Compre-
hension of Novices with Eye Tracking. In Concurso de Teses e Dissertações em
Engenharia de Software (CTD-ES).

[11] José Aldo Silva da Costa, Rohit Gheyi, Fernando Castor, Pablo Roberto Fernandes
de Oliveira, Márcio Ribeiro, and Baldoino Fonseca. 2023. Seeing Confusion
through a New Lens: on the Impact of Atoms of Confusion on Novices’ Code
Comprehension. Empirical Software Engineering 28, 4 (2023), 81.

[12] José Aldo Silva da Costa, Rohit Gheyi, Márcio Ribeiro, Sven Apel, Vander Alves,
Baldoino Fonseca, Flávio Medeiros, and Alessandro Garcia. 2021. Evaluating
Refactorings for Disciplining #ifdef Annotations: An Eye Tracking Study with
Novices. Empirical Software Engineering 26, 5 (2021), 1–35.

[13] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer.
2015. Modeling readability to improve unit tests. In Proceedings of the Foundations
of Software Engineering. 107–118.

[14] Subhasish Dasgupta and Sara Hooshangi. 2017. Code Quality: Examining the
Efficacy of Automated Tools. In Americas Conference on Information Systems
(AMCIS’17).

[15] Jorgy Rady de Almeida, João Batista Camargo, Bruno Abrantes Basseto, and
Sérgio Miranda Paz. 2003. Best Practices in Code Inspection for Safety-critical
Software. IEEE Software 20, 3 (2003), 56–63.

[16] Benedito de Oliveira, Márcio Ribeiro, José Aldo Silva da Costa, Rohit Gheyi, Guil-
herme Amaral, Rafael de Mello, Anderson Oliveira, Alessandro Garcia, Rodrigo
Bonifácio, and Baldoino Fonseca. 2020. Atoms of Confusion: The Eyes Do Not
Lie. In Proceedings of the Brazilian Symposium on Software Engineering (SBES’20).
243–252.

[17] Rodrigo Magalhães dos Santos and Marco Aurélio Gerosa. 2018. Impacts of
Coding Practices on Readability. In Proceedings of the International Conference on
Program Comprehension (ICPC’18). 277–285.

[18] Sarah Fakhoury, Devjeet Roy, Yuzhan Ma, Venera Arnaoudova, and Olusola
Adesope. 2020. Measuring the impact of lexical and structural inconsistencies on
developers’ cognitive load during bug localization. Empirical Software Engineering
25 (2020), 2140–2178.

[19] Davide Falessi, Natalia Juristo, Claes Wohlin, Burak Turhan, Jürgen Münch,
Andreas Jedlitschka, and Markku Oivo. 2018. Empirical software engineering
experts on the use of students and professionals in experiments. Empirical
Software Engineering 23, 1 (2018), 452–489.

[20] Google. 2024. Google Python Style Guide. https://google.github.io/styleguide/
pyguide.html

[21] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. 2006. What’s in a name? A study
of identifiers. In 14th IEEE International Conference on Program Comprehension
(ICPC’06). IEEE, 3–12.

[22] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2007. Effec-
tive Identifier Names for Comprehension and Memory. Innovations in Systems
and Software Engineering 3 (2007), 303–318.

[23] Microsoft. 2024. Formatting Python Code. https://learn.microsoft.com/en-us/
visualstudio/python/formatting-python-code?view=vs-2022

[24] Marcus Nyström and Kenneth Holmqvist. 2010. An adaptive algorithm for
fixation, saccade, and glissade detection in eyetracking data. Behavior research
methods 42, 1 (2010), 188–204.

[25] Delano Oliveira, Reydne Bruno, Fernanda Madeiral, and Fernando Castor. 2020.
Evaluating Code Readability and Legibility: An Examination of Human-centric
Studies. In Proceedings of the International Conference on Software Maintenance
and Evolution (ICSME’20). 348–359.

[26] D. Posnett, A. Hindle, and P. Devanbu. 2011. A Simpler Model of Software
Readability. In Proceedings of the 8th Working Conference on Mining Software
Repositories (MSR’11). ACM Press, 73–82.

[27] Keith Rayner. 1998. Eye Movements in Reading and Information Processing: 20
Years of Research. Psychological Bulletin 124, 3 (1998), 372.

[28] Sharafi Zohreh; Bonita Sharif; Yann-Gaël Guéhéneuc; Andrew Begel; Bednarik
Roman. 2020. A practical guide on conducting eye tracking studies in software
engineering. Empirical Software Engineering 25 (2020), 3128–3174.

[29] Iflaah Salman, Ayse TosunMisirli, and Natalia Juristo Juzgado. 2015. Are Students
Representatives of Professionals in Software Engineering Experiments?. In 37th
IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence,
Italy, May 16-24, 2015, Volume 1. IEEE Computer Society, 666–676.

[30] Dario Salvucci and Joseph Goldberg. 2000. Identifying Fixations and Saccades in
Eye-tracking Protocols. In Proceedings of the Symposium on Eye Tracking Research
& Applications (ETRA’00). 71–78.

[31] Reydne Bruno dos Santos. 2021. Um Estudo sobre Definição e Avaliação da
Readability e Legibility do Código Fonte. Master’s thesis. Universidade Federal de
Pernambuco.

[32] Andrea Schankin, Annika Berger, Daniel V. Holt, Johannes C. Hofmeister, Till
Riedel, and Michael Beigl. 2018. Descriptive Compound Identifier Names Improve
Source Code Comprehension. In Proceedings of the International Conference on
Program Comprehension (ICPC’18). 31–40.

[33] Zohreh Sharafi, Yu Huang, Kevin Leach, and Westley Weimer. 2021. Toward an
Objective Measure of Developers’ Cognitive Activities. ACM Transactions on
Software Engineering and Methodology 30, 3 (2021), 1–40.

[34] Zohreh Sharafi, Zéphyrin Soh, Yann-Gaël Guéhéneuc, and Giuliano Antoniol.
2012. Women and Men—Different but Equal: On the Impact of Identifier Style on
Source Code Reading. In Proceedings of the International Conference on Program
Comprehension (ICPC’12). IEEE, 27–36.

[35] Bonita Sharif and Jonathan Maletic. 2010. An Eye Tracking Study on Camelcase
and Under_score Identifier Styles. In Proceedings of the International Conference
on Program Comprehension (ICPC’10). IEEE, 196–205.

[36] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. ACM Transactions on Computing Education
(TOCE’13) 13, 4 (2013), 1–40.

[37] Guido Van Rossum, Barry Warsaw, and Nick Coghlan. 2001. PEP8–StyleGuide
for Python Code. Python.org 1565 (2001), 28.

https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://learn.microsoft.com/en-us/visualstudio/python/formatting-python-code?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/python/formatting-python-code?view=vs-2022

	Abstract
	1 Introduction
	2 Code Style and Readability
	3 Study Definition
	4 Methodology
	4.1 Subjects
	4.2 Design
	4.3 Evaluated PEP8 Style Guide Guidelines
	4.4 Programs
	4.5 Eye Tracking System
	4.6 Study Pilot

	5 Results and Discussion
	5.1 Preferences of the Subjects 
	5.2 PEP8 Guidelines

	6 Threats to Validity
	7 Related Work
	8 Conclusions
	References

