
Iterative Deepening URL-Based Search: Enhancing GUI Testing
for Web Applications

Thiago Santos de Moura
Federal University of Campina Grande

Campina Grande, Brazil
thiago.moura@copin.ufcg.edu.br

Regina Letícia Santos Felipe
Federal University of Campina Grande

Campina Grande, Brazil
regina.felipe@ccc.ufcg.edu.br

Everton L. G. Alves
Federal University of Campina Grande

Campina Grande, Brazil
everton@computacao.ufcg.edu.br

Pedro Henrique S. C. Gregório
Federal Institute of Paraíba

Esperança, Brazil
pedrosgregorio@gmail.com

Cláudio de Souza Baptista
Federal University of Campina Grande

Campina Grande, Brazil
baptista@computacao.ufcg.edu.br

Hugo Feitosa de Figueirêdo
Federal Institute of Paraíba

Esperança, Brazil
hugo.figueiredo@ifpb.edu.br

ABSTRACT
Automated GUI testing has become prevalent in web applications
due to its efficiency in detecting visible failures. In this context,
scriptless testing can systematically explore the application GUI.
To achieve this, a GUI tree can be employed to generate test cases.
Algorithms such as IDS can iteratively discover the GUI tree of an
application while generating the test suite. However, the resulting
suite in such scenarios is often redundant, leading to long execution
times. This paper introduces the IDUBS algorithm, an optimized
version of IDS that aims to reduce redundancies in state access by
identifying URL changes during system exploration. It utilizes this
information to streamline path discovery for automatic GUI testing.
By employing IDUBS, repetitive actions can be replaced with direct
URL visits, resulting in faster retrieval of previous GUI states in
subsequent iterations and consequently reducing test costs for test
suite execution while maintaining performance. We evaluated the
performance of IDUBS in two empirical studies involving twenty
industrial and four open-source web applications, comparing it with
the baseline strategy (IDS). Our results showed that IDUBS achieved
a general reduction in execution time and test case redundancy by
43.41% and 49.30%, respectively, while maintaining code coverage.
Additionally, IDUBS suites detected more faults, demonstrating
improved performance.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation.

KEYWORDS
GUI testing, web applications, search algorithms, fault localization

1 INTRODUCTION
Web development is a fast-paced field often shaped by the ever-
changing demands of clients who seek high-quality software re-
leases in short timeframes. Such a context highlights the critical
need to ensure stability and reliability in web applications [18].
While manual testing is essential, it is often considered a costly
and error-prone activity. Therefore, testers have shifted towards
automated strategies for testing web applications, especially in in-
dustrial settings [11]. Automated testing strategies offer an effective
and repeatable way to test software [14].

Most web applications incorporate a Graphical User Interface
(GUI) for user interaction. Therefore, GUI testing has become a
significant testing strategy, as various behaviors are triggered by
sequences of user events (e.g., clicks, text inputs, menu choices)
resulting from interactions with GUI elements (e.g., buttons, text
boxes, dropdown menus) [7]. In GUI testing, events are used to ex-
plore different states of the Application Under Test (AUT), validate
specific functionalities, and/or detect faults based on visible failures
generated by the system [8].

Two approaches can be employed for automated GUI testing in
web systems: scripted and scriptless testing [8]. In scripted testing,
testers manually create scripts for each test sequence, either with or
without the assistance of capture-replay tools [20]. These scripts are
subsequently executed using testing frameworks like Cypress1. On
the other hand, scriptless testing involves the use of automatic tools
that generate and execute test sequences based on identified GUI
elements [1]. While scriptless testing offers automation benefits,
it may not provide as much control and customization as scripted
testing, making it more suitable for identifying states with visible
failures caused by GUI faults.

Scriptless testing can be employed by using Smart Monkey tools,
such as TESTAR [35] andMurphy [2]. In this case, test sequences are
randomly generated by applying heuristics to boost fault discovery.
Nonetheless, the probabilistic nature of this approach may lead to
faults remain undetected, as some actionable GUI elements might
not be triggered.

Other strategies for implementing scriptless testing include the
adoption of Systematic GUI Testing [39] orModel-based GUI testing
[24]. The first involves an exhaustive exploration of all actionable
GUI elements, while the latter generates test cases based on appli-
cation models. Both strategies present important challenges. For
Model-based GUI testing, specification or behavioral models are
often not available [6]. On the other hand, systematic exploration
often presents practical problems related to generation and execu-
tion time, and state explosion, where the number of potential test
cases grows exponentially depending on the system’s complexity
[5].

To address such issues, a combined strategy can be implemented.
By conducting a systematic exploration of the AUT, a model rep-
resenting its GUI can be incrementally constructed and tests gen-
erated. Through automated interactions with GUI elements, new

1https://www.cypress.io/

SBES’24, September 30 – October 04, 2024, Curitiba, PR Moura et al.

GUI states are discovered in an iterative and finite process [40].
This process results in a GUI tree that represents the found AUT
states accessed through the GUI [15]. This GUI tree enables the
use of graph algorithms like Depth-First Search (DFS) and Breadth-
First Search (BFS) to systematically explore the search space for
creating test cases [5, 12]. Previous work has shown the practical
advantages of such algorithms for GUI testing [17]. However, they
impose practical limitations. While DFS may get trapped in deep
branches, BFS may demand excessive memory due to its expansive
exploration [31].

Considering the incremental discovery aspect and the unknown-
depth search space, the Iterative Deepening Search (IDS) algorithm
can be used to systematically explore the GUI tree of states [36].
IDS combines the strengths of DFS and BFS while mitigating their
limitations. IDS conducts multiple iterations of DFS with increasing
depth limits until a goal is reached [32]. In this context, a goal
could be the discovery of a state with visible failure or exhaustive
exploration. Each iteration starts from the root node, ensuring a
comprehensive and systematic traversal of the search space.

IDS is the preferred uninformed search when the search space is
large and the depth of the solution is not known [31], which aligns
with the challenges of systematic GUI testing [5, 17]. However,
by potentially revisiting nodes at each iteration, IDS may end up
generating redundant and costly test suites. In large graphs with
deep paths to the solution, the time taken to revisit nodes can be-
come significant, affecting the overall performance of the algorithm
[22, 23]. Moreover, a single version of an AUT could have multiple
faults that manifest as visible failures in different states (nodes).
This requires multiple executions of IDS or work with multi-goals
in pathfinding [9, 13].

Cytestion is a tool designed for automated GUI testing in web ap-
plications [27]. It applies a version of the IDS algorithm with multi-
goals to enable systematic exploration of the AUT and searches for
visible faults (e.g., GUI failure messages, request status issues, and
browser console errors). Cytestion, while building the GUI tree of
states, generates and executes the tests.

Due to limitations related to the use of IDS, Cytestion test suites
are often redundant and time-consuming. Suppose a system with
an initial state with ten actionable elements. By exploring each
element with IDS, Cytestion discovers ten new states. If each of
these new states also includes ten new actionable elements, a test
suite that systematically explores the application would include at
least 100 test cases. These 100 test cases will visit the first state 100
times to return to the previous state and execute the new actions.
These repetitive actions end up increasing the suite’s execution
time with no testing gains. In this example, we considered three
iterations of IDS in pages with only ten actionable elements. Real-
world web applications often encounter hundreds of actionable
elements per page and very deep branches that can exponentially
increase this redundant access.

In this work, we present the Iterative Deepening URL-Based
Search (IDUBS), an optimized and tailored for web version of the
IDS algorithm that considers URL changes to shorten paths. By in-
corporating URL information at GUI tree nodes, IDUBS can identify
new starting points and initiate test cases by directly accessing the
new associated URL with a specific node. This allows for initiating

test cases from various points within the GUI tree instead of start-
ing from the initial URL and navigating through the GUI to reach
a specific state. We also introduce a new version of the Cytestion
tool that employs the IDUBS algorithm.

We conducted two empirical studies comparing IDUBS with
IDS in twenty industrial applications and four open source web
applications. In these studies, we compared both strategies (IDS and
IDUBS) based on a set of metrics: test case execution time, number
of revisited states during execution, test suite coverage, and number
of faults detected. Our findings demonstrate that IDUBS performs
better than IDS in GUI testing, reducing test execution time and
minimizing state redundancy. It also maintains test coverage and
improves fault detection.

This work has the following contributions:
• A novel algorithm, IDUBS, designed for reducing test case
redundancy and improving time execution in systematic GUI
testing;
• An implementation of IDUBS within a dedicated tool for
automated systematic GUI testing;
• Two empirical studies with a diverse set of industrial and
open-source web applications to compare the performance
and effectiveness of IDS and IDUBS.

The remainder of this paper is organized as follows. In Section 2,
we present important concepts to base our work. Section 3 presents
the IDUBS algorithm. In sections 4 and 5, we discuss the empir-
ical studies and possible threats to validity, respectively. Section
6 discusses the related work. Finally, in Section 7, we present our
conclusions and discuss future work.

2 BACKGROUND
2.1 GUI Testing and Framework
The goal of GUI testing is to test a system through its GUI elements
and properties [25]. It involves executing user interactions such
as clicks, scrolls, and keystrokes on actionable GUI elements, such
as buttons and input fields, in various states of the AUT [7]. GUI
testing can be performed manually or with automated tools, which
can automate tasks such as creating and executing test sequences,
defining and evaluating oracles, and analyzing test results [29].

Cypress is a modern testing framework for creating and execut-
ing GUI web tests [26]. It interacts with browsers through actions
such as clicking buttons and navigate pages, offering simplicity,
speed, reliability, and a streamlined API for direct DOM interac-
tion [19]. Cypress also simplifies setup by bundling all necessary
components into a single download and benefits from an active
community contributing to its evolution.

2.2 Cytestion
The Cytestion tool [27] is an open-source Cypress-based tool that
creates GUI test suites using a scriptless and progressive approach.
It employs a multi-goal version of the IDS algorithm (Section 2.3)
to generate initial test cases, discovering actionable elements in the
system’s initial state. New tests are created iteratively by exploring
each actionable element, with each test case executing all prior
actions from the initial state. The goal is to detect visible faults,
such as GUI failures, request status issues, and browser console
errors. Cytestion generates and runs tests during state exploration,

Iterative Deepening URL-Based Search: Enhancing GUI Testing for Web Applications SBES’24, September 30 – October 04, 2024, Curitiba, PR

producing artifacts such as regression testing suites, summaries of
detected faults, and replay videos of faulty executions.

2.3 Iterative Deepening Search
The Iterative Deepening Search (IDS), also known as Iterative Deep-
ening Depth-First Search (IDDFS), efficiently traverses graph-based
search spaces by gradually increasing the depth limit with each
iteration. This iterative approach combines the memory efficiency
of DFS with the completeness of BFS. It starts with a depth limit of
zero and increases it with each iteration until it finds a node of the
goal or exhausts the search space [31]. At every depth limit, IDS
performs a DFS with a limit, exploring nodes up to the specified
depth. If a goal node is not found within the current depth limit,
IDS increases the limit and performs another DFS iteration.

In its traditional form, IDS focuses on locating a single goal node
within the search space. However, in many real-world applications,
there may be multiple goal nodes that need to be reached [10].
Integrating a multi-goal strategy into IDS extends its applicability,
enabling it to efficiently navigate towardsmultiple objectives within
the search space. This adaptation preserves the core principles
of completeness while enhancing the algorithm’s flexibility and
scalability in addressing complex search scenarios.

Listing 1 presents the IDS algorithmwith themulti-goals strategy.
It begins by initializing an empty list called goalNodes to store the
goal nodes found during the search (line 1). The main function IDS
takes the root node of the graph and the goal as inputs (line 2). It
iterates over increasing depths from zero to infinity (line 3). At each
depth, it calls the DFS function to explore nodes up to that depth
and receives a boolean value indicating whether at least one new
node was found, which potentially allows further exploration (line
4).

The DFS function recursively explores nodes in the graph up
to a specified depth. If the depth is zero, it checks if the current
node is a goal node. If so, the node is added to the goalNodes list
and returns true to evaluate possible children in the next iteration
(lines 13-16). If the depth is greater than zero, the function explores
all child nodes of the current node recursively, each time decreasing
the depth by one (lines 20). The variable anyRemaining serves as
a flag indicating whether any new nodes were found during the
loop of child nodes at this level of depth (lines 18). When it remains
false, it indicates that no new nodes were found in any branch,
signaling an end to the search (lines 5-6).
2.3.1 Running Example. To illustrate the IDS algorithm with multi-
goals, consider a GUI exploration of the open-source petclinic appli-
cation. Represented as a tree that will be progressively constructed
(Figure 1), each node corresponds to a unique GUI state, and edges
show transitions between states. The goal is to identify all failure
states (nodes 𝐶 and 𝐻), but initially, we do not know which states
will lead to failures.

We begin with a depth limit of zero, enabling the finding of the
root node𝐴. As𝐴 is not a goal node, i.e., it does not include a visible
failure, we progress to the next depth level by indicating the true
boolean value (line 16). At depth one, we start again with the root
node 𝐴 and recursively explore its children 𝐵 and 𝐶 (line 20). We
come across node 𝐶 , which is identified as a goal node due to a
visible failure. We add node C to the list of goal nodes and continue
exploring the graph.

Algorithm 1 The IDS with Multi-Goals Algorithm

1: 𝑔𝑜𝑎𝑙𝑁𝑜𝑑𝑒𝑠 ← []
2: function IDS(𝑟𝑜𝑜𝑡, 𝑔𝑜𝑎𝑙)
3: for 𝑑𝑒𝑝𝑡ℎ from 0 to∞ do
4: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔← DFS(𝑟𝑜𝑜𝑡, 𝑔𝑜𝑎𝑙, 𝑑𝑒𝑝𝑡ℎ)
5: if not 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 then
6: return 𝑔𝑜𝑎𝑙𝑁𝑜𝑑𝑒𝑠

7: end if
8: end for
9: end function
10:
11: function DFS(𝑛𝑜𝑑𝑒, 𝑔𝑜𝑎𝑙, 𝑑𝑒𝑝𝑡ℎ)
12: if 𝑑𝑒𝑝𝑡ℎ = 0 then
13: if 𝑛𝑜𝑑𝑒 is a goal then
14: 𝑔𝑜𝑎𝑙𝑁𝑜𝑑𝑒𝑠.𝑎𝑑𝑑 (𝑛𝑜𝑑𝑒)
15: end if
16: return true
17: else if 𝑑𝑒𝑝𝑡ℎ > 0 then
18: 𝑎𝑛𝑦𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔← false
19: for all 𝑐ℎ𝑖𝑙𝑑 of 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
20: 𝑎𝑛𝑦𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔← DFS(𝑐ℎ𝑖𝑙𝑑, 𝑔𝑜𝑎𝑙, 𝑑𝑒𝑝𝑡ℎ − 1)
21: end for
22: return 𝑎𝑛𝑦𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

23: end if
24: end function

At depth two, we pass through nodes𝐴,𝐵,𝐶 again and thenmake
a recursive DFS call for the children of 𝐵. Since no failure is found
but a child was found, another remaining value is returned. Moving
to a depth three, we encounter nodes 𝐴, 𝐵, 𝐶 , 𝐷 , 𝐸 once more and
proceed to call the DFS on their respective children 𝐸 and 𝐷 . As 𝐹
and 𝐺 are not goal nodes, we continue to depth four where node
𝐻 is discovered as a goal node and included in goalNodes. Finally,
one more deep iteration is done, and all DFS calls return false as
the deeper nodes do not have children therefore concluding IDS’s
execution and returning the goal nodes 𝐶 and 𝐻 .

Based on the presented execution, the test suite generated by
IDS has the following test sequences: (1) 𝐴; (2) 𝐴→𝐵; (3) 𝐴→𝐶 ; (4)
𝐴→ 𝐵→𝐷 ; (5) 𝐴→ 𝐵→ 𝐸; (6) 𝐴→ 𝐵→𝐷→ 𝐹 ; (7) 𝐴→ 𝐵→ 𝐸→𝐺 ;
(8) 𝐴→ 𝐵→ 𝐸 →𝐺 → 𝐻 ; (9) 𝐴→ 𝐵→ 𝐸 →𝐺 → 𝐼 . There is a clear
redundancy in the number of accessed states, especially the initial
state 𝐴, which is visited in nine test cases. The complete test suite
generated using IDS for the petclinic application can be found in
our repository2.

3 ITERATIVE DEEPENING URL-BASED
SEARCH

We present the Iterative Deepening URL-Based Search (IDUBS) al-
gorithm, which differs from IDS by retaining minimal information
from prior nodes, creating a fresh starting point for depth searches.
This approach removes redundancies when revisiting initial nodes
in subsequent iterations. IDUBS is adaptable to various web con-
texts, such as testing, crawling, and data mining. Its effectiveness,
simplicity, and scalability make it a versatile solution.
2https://gitlab.com/lsi-ufcg/cytestion/opt-study/execute-study-idubs

SBES’24, September 30 – October 04, 2024, Curitiba, PR Moura et al.

Figure 1: Example of the GUI tree of an AUT.

Our goal is to optimize GUI test execution with IDUBS, reducing
redundancy in accessed GUI states and cutting execution time. The
algorithm integrates each graph node representing a GUI state
with an associated URL. When a new URL is discovered, its node
becomes a new root. During exploration, the algorithm can access
previously obtained states by directly accessing this new root and
continuing the search. This approach is effective for web systems,
as direct URL visits provide efficient access to specific states of the
AUT and align with contemporary web practices [34, 38].

Listing 2 presents the IDUBS algorithm with support for multiple
goal states*. The algorithm initializes two empty lists: roots, which
tracks root nodes, and goalNodes, which stores discovered goal
nodes (lines 1-2). In the main function, IDUBS, the root node and the
goal state are received as arguments (line 3). It begins by setting the
initial depth to zero and assigning the level value to the root node,
marking its position. After that, the root is added to the roots list
(lines 4-6). During each iteration of depth, it utilizes all nodes in this

*Like IDS, IDUBS can be adapted to single-goal search, returning the first found goal.

Algorithm 2 The IDUBS with Multi-Goals Algorithm

1: 𝑔𝑜𝑎𝑙𝑁𝑜𝑑𝑒𝑠 ← []
2: 𝑟𝑜𝑜𝑡𝑠 ← []
3: function IDUBS(root, goal)
4: 𝑑𝑒𝑝𝑡ℎ ← 0
5: 𝑟𝑜𝑜𝑡 .𝑙𝑒𝑣𝑒𝑙 ← 0
6: 𝑟𝑜𝑜𝑡𝑠 .add(root)
7: while 𝑟𝑜𝑜𝑡𝑠 is not empty do
8: for all 𝑛𝑜𝑑𝑒 in 𝑟𝑜𝑜𝑡𝑠 do
9: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔← DFS(𝑟𝑜𝑜𝑡, 𝑔𝑜𝑎𝑙, 𝑑𝑒𝑝𝑡ℎ − 𝑛𝑜𝑑𝑒.𝑙𝑒𝑣𝑒𝑙)
10: if not 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 then
11: 𝑟𝑜𝑜𝑡𝑠 .remove(node)
12: end if
13: end for
14: 𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ + 1
15: end while
16: return 𝑔𝑜𝑎𝑙𝑁𝑜𝑑𝑒𝑠

17: end function
18:
19: function DFS(node, goal, depth)
20: if 𝑑𝑒𝑝𝑡ℎ = 0 then
21: if 𝑛𝑜𝑑𝑒 is a goal then
22: 𝑔𝑜𝑎𝑙𝑁𝑜𝑑𝑒𝑠 .add(𝑛𝑜𝑑𝑒)
23: end if
24: return true
25: else if 𝑑𝑒𝑝𝑡ℎ > 0 then
26: 𝑎𝑛𝑦𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔← false
27: for all 𝑐ℎ𝑖𝑙𝑑 of 𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
28: if 𝑐ℎ𝑖𝑙𝑑 not in 𝑟𝑜𝑜𝑡𝑠 then
29: 𝑐ℎ𝑖𝑙𝑑.𝑙𝑒𝑣𝑒𝑙 ← 𝑛𝑜𝑑𝑒.𝑙𝑒𝑣𝑒𝑙 + 1
30: if 𝑐ℎ𝑖𝑙𝑑.𝑢𝑟𝑙 ≠ 𝑛𝑜𝑑𝑒.𝑢𝑟𝑙 then
31: 𝑟𝑜𝑜𝑡𝑠 .add(𝑐ℎ𝑖𝑙𝑑)
32: end if
33: 𝑎𝑛𝑦𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔← DFS(𝑐ℎ𝑖𝑙𝑑, 𝑔𝑜𝑎𝑙, 𝑑𝑒𝑝𝑡ℎ − 1)
34: end if
35: end for
36: return 𝑎𝑛𝑦𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

37: end if
38: end function

list and calls the DFS function while passing the parameters node,
goal, and |𝑑𝑒𝑝𝑡ℎ − 𝑛𝑜𝑑𝑒.𝑙𝑒𝑣𝑒𝑙 | (line 9). This subtraction ensures
that the search will adhere to the depth limit even when a deeper
root node is used.

The DFS function recursively explores nodes in the tree up to a
specified depth. If the depth is zero, indicating the end of exploration
for this branch, it checks if the current node is a goal node (line 21).
If so, the node is added to the goalNodes list (line 22). Subsequently,
it returns true to evaluate possible children in the next iteration
(line 24). If the depth is greater than zero, the function explores all
child nodes of the current node to check if it is present in the roots
list (lines 27-28). This presence indicates that this child has been
found and considered a starting point in previous iterations, being
used as a new root and having its own separated flow. It occurs
due to a difference in the node URL and the child URL being found

Iterative Deepening URL-Based Search: Enhancing GUI Testing for Web Applications SBES’24, September 30 – October 04, 2024, Curitiba, PR

(lines 30-32). This change indicates that the node can be directly
accessed in the next iteration.

It is important to note that new roots are found in deeper levels
of the tree. To handle this and ensure that all flows respect the depth
limit, it is crucial to save the level of each child node by adding its
parent node’s level plus one (line 29). Subsequently, a DFS call is
made for the child, which returns a boolean value to anyRemaining
(line 33). When it remains false, this indicates that no new nodes
were found in this branch, signaling that the node can be removed
from the root list (lines 10-12). Eventually, when no new nodes are
found in any branch, this list will become empty. This culminates
with the end of the search and results in returning goalNodes.

To properly explore the GUI and reveal faults, it is important to
adhere to the test case execution order proposed by IDUBS. Faults
canmanifest in two scenarios: when initially accessing a faulty state
or when directly accessing a previously visited state. The latter can
be achieved through direct URL access, which may cover different
parts of the code. This is particularly evident in systems developed
with modern web frameworks which enable server-side rendering
and efficient data binding [16]. Code parts may only be accessed
through direct URL accesses, due to the way such frameworks
handle routing, state management, and data binding. Direct URL
access may involve more server-side processing and additional code
execution to render the desired GUI state.

3.1 Running Example
To demonstrate the execution of the IDUBS algorithm with multiple
goals, we reuse the example from Section 2.3.1 and Figure 1. Our
objective is to identify all GUI states where failures occur. We start
with a depth limit of zero, including only the root in the roots list.
Since 𝐴 is not a goal node, we proceed to the next depth level by
returning true (line 24). At depth one, we perform a DFS through
root node 𝐴, visiting its children 𝐵 and 𝐶 . Both are added to roots
as they have different URLs from 𝐴. Node 𝐶 is identified as a goal
node due to a visible failure and is added to the list of goal nodes.

At depth two, there are nodes 𝐴, 𝐵, and 𝐶 as roots (line 8), so
three different DFS calls are made. Since both 𝐵 and 𝐶 are found at
level one, their passed depth is decremented to one. The DFS for
node 𝐴 finds all children inside the roots, while the 𝐶’s DFS finds
no child. Both have false in 𝑎𝑛𝑦𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 and are removed from
the roots list. The DFS of 𝐵 finds the nodes 𝐷 and 𝐸. None of them
are included in the roots list. However, 𝐷 presents a different URL
(Figure 1-Depth 2) which leads to its inclusion in the roots list. Both
of these nodes are not goal nodes, prompting us to move on to the
next iteration.

At depth three, nodes 𝐵 and 𝐷 serve as roots, leading to two
different DFS calls. Node 𝐷 was found at level two, so we use a
depth of one (line 9). The DFS for node 𝐵 identifies its child node 𝐸,
which was not included in the list of roots. Another DFS call for
node 𝐸 results in finding its child node 𝐺 . Since 𝐺 is not included
in the roots list and has a different URL, it is added to roots list.
Simultaneously, during the DFS of 𝐷 , a child node 𝐹 is found that
is not included in the root nodes. None of these discovered nodes
are goal nodes, then we just move to the next iteration.

At depth four, we have the nodes 𝐵, 𝐷 , and 𝐺 as roots, so three
different DFS calls are made. The DFS of 𝐵 goes to 𝐸 and does not
find any child nodes not included in the roots, therefore being

removed. The DFS of 𝐷 goes to 𝐹 and does not find any child nodes
at all, also being removed. The DFS of𝐺 finds child nodes 𝐻 and 𝐼
with different URLs. They are pointed as roots and 𝐻 is found as a
goal node. One more iteration is performed with roots 𝐺 , 𝐻 , and
𝐼 which are then all removed from the root, finalizing the search
result by returning the goal nodes 𝐶 and 𝐻 .

Based on the given execution, the test suite generated by IDUBS
has the following test sequences: (1)𝐴; (2)𝐴→𝐵; (3)𝐴→𝐶 ; (4) 𝐵→𝐷 ;
(5) 𝐵→𝐸; (6) 𝐵→𝐸→𝐺 ; (7) 𝐷→ 𝐹 ; (8) 𝐺→𝐻 ; (9) 𝐺→ 𝐼 . Comparing
to the one presented in Section 2.3, we can see that the new suite
is composed of smaller test cases with fewer state repetitions and
uses direct access to nodes. The complete test suite generated using
IDUBS for the petclinic application is available in our repository4.

4 EVALUATION STUDIES
In this section, we present empirical studies evaluating IDUBS for
GUI testing. We compared IDUBS with a baseline strategy (IDS)
on four aspects: test case execution time, revisited states, test suite
coverage, and detected faults. Our investigation was guided by two
research questions:
• 𝑅𝑄1: Can IDUBS effectively reduce GUI testing costs?
• 𝑅𝑄2: Does IDUBS maintain test suite performance?

𝑅𝑄1 examines the redundancy of GUI state visits in IDUBS tests
and its impact on test case execution time, which affects costs. 𝑅𝑄2
compares the performance of generated suites in terms of code
coverage and fault detection against IDS.

We conducted two empirical studies to address these questions.
The first examined a diverse set of industrial projects, while the
second focused on open-source projects. Both studies used the
Cytestion tool for generating GUI test suites, using the same con-
figuration. The original Cytestion version employs IDS for test case
generation. We extended the Cytestion infrastructure by imple-
menting IDUBS, creating a new version (Cytestion IDUBS). This
new version is available in our repository 5. With Cytestion IDUBS,
we compared the performance of the IDS and IDUBS algorithms
across different projects. Each algorithm was executed separately,
as they do not incorporate aleatory aspects. The generated suites
systematically and exhaustively explored the AUTs.

4.1 Metrics and Configuration
We established four metrics to address our research questions. For
𝑅𝑄1, we use execution time for each test case and frequency of visited
states in a test suite. As our goal is to minimize testing costs, we
assess this aspect considering test execution time and test suite
redundancy. Faster execution and fewer visited states signify a more
efficient and less repetitive test suite.

A cost-effective test suite should maintain its testing efficacy.
For 𝑅𝑄2, we evaluate performance using code coverage and the
number of visible failures detected. Code coverage is measured
with an official Cypress dependency6 that quantifies frontend code
elements. This dependency uses Istanbul7 to instrument the source
code, enabling Cypress to analyze it during execution.

4https://gitlab.com/lsi-ufcg/cytestion/opt-study/execute-study-idubs
5https://gitlab.com/lsi-ufcg/cytestion/cytestion/-/tags/2.0
6https://github.com/cypress-io/code-coverage
7https://istanbul.js.org/

SBES’24, September 30 – October 04, 2024, Curitiba, PR Moura et al.

We perform different statistical tests to support our conclusions
based on the collected data [4]. We used the Wilcoxon rank sum
test to compare the top 5 most visited states. For execution times,
we used the Mann-Whitney U test, which assesses differences in
continuous measurements. To compare coverage rates, we applied
the Wilcoxon signed-rank test, suitable for paired data and non-
normal distributions.

In our Cytestion setup, we need to configure a generic oracle
to assess the identified states. The default configuration includes
checking for: (i) failure messages in the browser console; (ii) HTTP
status codes in the 400 or 500 families following server requests;
or (iii) default error messages in the GUI such as “Error” and “Ex-
ception”. However, due to its generic nature, this approach may
result in false positives and required additional manual analysis to
confirm the presence of actual faults.

Despite their deterministic nature, the algorithms may produce
varying numbers of test cases due to different exploration strategies.
To compare directly, we map the corresponding tests of the gener-
ated suites. Moreover, to mitigate execution time outliers caused
by external factors like network latency changes, we applied the
Winsorization transformation [4], which limits extreme values to
reduce the impact of spurious outliers.

Our empirical studies executed on a desktop with an Intel Core
i7 10700KF processor, 32GB of RAM DDR4 3200MHz, an Nvidia
GTX 1060 6GB GDDR5 video card and a SATA SSD 1TB 500Mpbs/s.

4.2 A Study with Industrial Applications
In our first study, we examined twenty industrial React-based appli-
cations from a partner company, each developed by different teams.
The applications handle specific fiscal and cost management tasks
for companies. Table 1 shows the size (KLOC), and the number of
test cases generated and executed by Cytestion with IDS and IDUBS.
For confidentiality reasons, the applications are labeled A1 - A20. It
is important to highlight that all projects are in production, having
been tested by both their development teams and the company
QA team. Any discovered faults were reviewed and, if confirmed,
registered as bugs.

4.2.1 Results and Discussion. Figure 2 presents the frequency of
visits of the top-5 most visited states of each generated test suite
using IDS and IDUBS. The initial state is the most accessed GUI
state across all projects. With IDS, every test case starts at the root,
therefore, each test case visits the initial state. Except for the A12
project, IDUBS effectively reduced revisits to the initial state. This
reduction was anticipated as home pages typically serve as starting
points with access to various features of the system and often lead
to new URLs being accessed in subsequent iterations of IDUBS.

When investigating the A12 executions, we found that the gener-
ated test cases did not reach new URLs due to the project’s unique
characteristic: the URLs simply do not exist. This project has few
features, all accessed under the same URL, unlike other applications.
In the other 19 projects, IDUBS showed a noticeable decrease in
repetitions in the 2nd through 5th states. This was anticipated, as
industrial applications often have many intermediate states that
must be reached to access deeper functionality. Consequently, these
states are repeatedly accessed by IDS, while IDUBS partially avoids
them.

Application KLOC # of IDS Tests # of IDUBS Tests
A1 68.5 346 340
A2 82 463 447
A3 52.8 229 231
A4 77.6 443 450
A5 306.8 1756 1780
A6 178.5 794 847
A7 65.9 101 97
A8 75 363 366
A9 37 251 248
A10 228.9 1283 1179
A11 78.1 800 802
A12 32.4 90 90
A13 109.1 420 407
A14 43.7 262 270
A15 62 174 171
A16 73 410 362
A17 58.5 112 116
A18 41.4 357 361
A19 42.1 191 165
A20 397.9 444 444

Table 1: Industrial apps: KLOC, IDS, and IDUBS test counts.

In total, IDS accessed 41,710 states, while IDUBS accessed 20,853
states, achieving a 50% reduction in access for industrial projects.
This indicates that IDUBS significantly reduced redundancy com-
pared to IDS. TheWilcoxon rank sum tests on the top 5 most visited
states revealed significant differences for all systems (𝑝 < 0.05),
except A12, with large Cohen’s 𝑑 values (1.022 to 1.690), indicating
a statistical difference between IDS and IDUBS.

Figure 3 shows the execution time of each test case (x axis) for
the IDS and IDUBS suites in each project. The blue lines refer to
IDS tests, while the green lines refer to IDUBS tests. It is important
to highlight that we used in this analysis only the tests found in
both suites, in the same order. Each blue point has a corresponding
green point, and the execution time is measured in seconds (y-axis).

Our analysis shows that execution times vary across projects,
with IDUBS consistently performing faster. IDS fluctuates between
21.8 seconds and 6.2 seconds, while IDUBS ranges from 18.2 to
4.7 seconds. IDUBS reduced the total execution time by 43.60%
in the industry setting. Although both suites initially had similar
execution times, IDUBS improved over time by discovering and
utilizing new URLs. The exception is A12, where IDUBS did not
reduce the execution times. This conclusion was supported by the
Mann-Whitney U test where we found significant p-values < 10−15
and large Vargha-Delaney effect sizes (𝑑 > 1.5) for all systems,
excepting A12, indicating that IDUBS generally outperforms IDS.

It is possible to observe a gap effect in the executions. As test
cases start accessing more complex functionalities that involve
intricate database queries, it leads to slow server responses and
results in execution peaks. This situation was observed in both
executions, but IDUBS consistently showed lower values compared

Iterative Deepening URL-Based Search: Enhancing GUI Testing for Web Applications SBES’24, September 30 – October 04, 2024, Curitiba, PR

Figure 2: Number of access occurrences in most accessed states.

Figure 3: Test case execution times for IDS and IDUBS.

to IDS due to its ability to avoid revisits and shorten paths. These
findings help us answer𝑅𝑄1 by providing evidence of cost reduction
in both state access redundancy and execution time, thus affirming
that IDUBS can effectively reduce costs.

Figure 4 shows that both IDS and IDUBS achieve similar cov-
erage levels for frontend code lines across all systems (Wilcoxon

signed-rank test p-value of 0.1004). Despite using shorter test cases,
IDUBS produces test suites with coverage nearly equivalent to IDS.
This suggests both algorithms offer comparable coverage efficacy.
Although the coverage levels range from 33.03% to 55.88%, it is

SBES’24, September 30 – October 04, 2024, Curitiba, PR Moura et al.

Figure 4: Frontend code coverage results.

noteworthy that these suites were automatically generated. Addi-
tionally, IDS has proven effective in detecting visible GUI faults in
real-world scenarios [27], making it a valuable option.

We analyzed the visible failures detected by both suites. The
IDS suites identified 48 faulty states, which we manually inspected.
These faults correspond to six actual issues related to various types
of bugs, including button-triggered processes displaying the error
message “An unexpected error occurred” and page crashes when
the edit button is clicked.

The IDUBS suites identified 317 states with visible failures. More-
over, all found IDS failed states were also detected by the IDUBS.
We carefully analyzed each failure and discovered that a fault in
one of the horizontal components of the applications was exposed
only when the page was reloaded or accessed directly via the URL.
Consequently, this fault appeared on all pages using this component
exclusively when running the IDUBS suite. In total, seven faults
were registered, six found by both suites (IDS and IDUBS), and one
detected only by the IDUBS suite. The faults were presented to
the QA team and managers, who provided positive feedback. They
noted that these issues had been overlooked by the company’s
quality process and could impact the user experience.

The findings discussed here demonstrate the benefits of using
IDUBS in industrial settings. The generated suites provide simi-
lar coverage while detecting new faults and significantly reduce
the costs associated with test execution, including time and redun-
dancy.

4.3 A Study with Open Source Applications
In our second study, four open-source web applications were se-
lected as objects: i) school educational, an HTML5 website that
implements common functionalities found in school applications;
ii) petclinic, a SpringBoot application to manage pet owners’ regis-
tration and scheduling veterinarian visits; iii) learn educational, a
responsive website that showcases online educational course port-
folios; and iv) bistro restaurant, a website developed with HTML,
JavaScript, and CSS to display restaurant portfolios. They are avail-
able in our repository8. Since our first study (Section 4.2) dealt with
React-based projects, here we selected projects that do not use any
modern web framework. This decision is motivated by our objective
to ascertain the continued relevance of our findings across a wider
spectrum of applications.

Project KLOC # of IDS Tests # of IDUBS Tests
school educational 30.2 231 231

petclinic 25.7 50 50
learn educational 19 225 225
bistro restaurant 33.4 212 212
Table 2: Open projects: KLOC, IDS, and IDUBS counts.

Table 2 provides information on the projects, including their size
(KLOC), and the number of test cases generated and executed by
Cytestion with IDS and with IDUBS. Despite their simplicity, these
systems offer navigation features with a wide range of potential GUI
states, display important information, and facilitate registration
operations that can result in visible failures. This is evidenced by
the number of test cases generated.

4.3.1 Results and Discussion. Figure 5 shows the frequency of visits
of the top-5 most visited states of each generated test suite using
IDS and IDUBS. Again, the initial state is the most accessed GUI
state across all four projects. IDUBS effectively reduced revisits to
the initial state, decreasing redundancy by at least 85% across all
projects.

When we consider the 3rd, 4th, and 5th most accessed states,
we noticed less variation in repetition. With the exception of the
petclinic project (Wilcoxon rank sum tests, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.01193,
and Cohen’s 𝑑 = 2.298), all other projects had a similar number of
accesses in these three states using both algorithms. This happened
because these states offer numerous actions that do not change the
URL, leading all test cases to revisit them in subsequent iterations.
Finally, considering only open sources, IDS accessed a total of 2191
states while IDUBS accessed 1402 states. Therefore, IDUBS resulted
in an access reduction of 36.01%.

Figure 6 presents the execution time of each test case for IDS
and IDUBS per project. Our analysis reveals a consistent decrease
in execution times for all four projects. In the school-educational,
IDUBS tests took between 4.1 and 4.6 seconds, compared to IDS tests
which ranged from 4.2 to 8.1 seconds, resulting in up to a 3.4-second
reduction in execution time. Additionally, the petclinic project ex-
perienced the most significant drop, with a reduction of 6 seconds,
while the learn-educational and bistro-restaurant projects saw de-
creases of 4.6 and 4.7 seconds, respectively. The Mann-Whitney
8https://gitlab.com/lsi-ufcg/cytestion/opt-study/applications

Iterative Deepening URL-Based Search: Enhancing GUI Testing for Web Applications SBES’24, September 30 – October 04, 2024, Curitiba, PR

Figure 5: Frequency of accesses in highly accessed states.

Figure 6: Test case execution times by algorithm.

U test confirms this conclusion by presenting significant differ-
ences between the two strategies, with p-values < 10−14 and large
Vargha-Delaney effect sizes (𝑑 > 2).

IDUBS has demonstrated stable runtimes in all test cases across
various projects. The approach of accessing the URL every time it
changes has helped maintain consistent execution times. If the URL
changes after each action, every new iteration will always contain
a visit to the new URL and one action. IDS, on the other hand, had
to continuously access the home page, perform a series of actions
in the AUT, and wait for API requests to finish. As the interaction
with actionable elements of the AUT naturally demands a variable
response time influenced by API request efficiency responses, this
variability directly impacts execution times. In contrast, IDUBS
direct URL access requires fewer actions to perform tests. These
findings help us answer𝑅𝑄1 by providing evidence of cost reduction
in both state access and execution time, thus affirming that IDUBS
can reduce costs effectively.

Regarding performance, we were unable to measure frontend
code coverage due to compatibility issues with the Istanbul depen-
dency, which supports only projects using frameworks like React
that use JavaScript ES5. Therefore, we focus our analysis on the
found faulty states. Each suite identified nine states with visible
failures. We manually investigated the states and found that all fail-
ures were false positives. They involved actionable elements linked
to external websites with failing requests. Cytestion deals with the

exploration limit to avoid exploring states that do not belong to
the AUT. However, test cases that try to access such states are still
evaluated by the generic oracle. Despite generation not continuing
in that branch, faults can still be found on this external site. This
situation can be viewed as a limitation of the generic oracle im-
plemented by the Cytestion tool. However, for the purpose of our
investigation the executions show an equivalence in fault detection
of the two algorithms.

Based on the results discussed in Sections 4.2 and 4.3, we can
answer 𝑅𝑄1 and 𝑅𝑄2 by stating that IDUBS can effectively reduce
GUI testing costs (execution time and test redundancy) while main-
taining or improving the performance (coverage and new faults),
when compared to IDS.

5 THREATS TO VALIDITY
Our results are based on the specific projects examined in our
studies. However, we analyzed a set that combined open-source
and industrial projects, which we consider to be a reliable sample
of web applications. It is important to emphasize the substantial
representation of industrial projects in our analysis, enhancing the
relevance of our findings to similar industrial contexts.

Computational overhead can be a key aspect when evaluating
an algorithm. In our studies, we indirectly analyze this aspect by
comparing the execution time of IDS and IDUBS. However, other
metrics are yet to be analyzed in the future (e.g., memory usage).

The performance analysis (RQ2) in the study on open-source ap-
plications was limited because we were unable to collect coverage
information, and no real faults were detected. Nevertheless, we con-
tend that greater significance lies in the evaluation carried out in the
industrial study. Considering the diverse sizes and complexities of
the industrial objects, we believe they offer robust evidence regard-
ing the stability of IDUBS concerning testing efficacy. Industrial
settings adhere to rigorous quality standards and involve various
stakeholders, thereby ensuring the reliability and applicability of
the results. Additionally, the open-source study further validated
IDUBS’s ability to reduce GUI costs (RQ1).

Our findings rely on the utilization of IDS and IDUBS within
the Cytestion tool. The authors meticulously validated both im-
plementations through a series of testing scenarios. Furthermore,
the fundamental principles of these algorithms can be applied au-
tonomously, irrespective of any particular tool. This implies that the
found IDUBS advantages go beyond a singular implementation, as
other implementations or tools can likewise harness their benefits.

The IDS algorithm highlights its combination of BFS and DFS.
While IDS inherently performs a BFS through multiple DFS execu-
tions, alternative methods like Bidirectional Search and Heuristic-
Enhanced IDS can be used to enhance efficiency [33].

External factors, such as network conditions, or changes in the
web application environment, could introduce variability in the
results and impact both algorithm performance. To mitigate this
risk, we executed the test suites in a controlled environment on
a dedicated machine, running each suite only once with minimal
delay between them. Moreover, we used theWinsorization transfor-
mation to mitigate possible outliers. The consistent results found
across different projects indicate IDUBS’s resilience to external
factors.

SBES’24, September 30 – October 04, 2024, Curitiba, PR Moura et al.

6 RELATEDWORK
The IDS algorithm has been studied in the context of web appli-
cations. Weise et al. [37] conducted a study on the importance of
ontology in defining parameter semantics and efficient web service
discovery. In their analysis, the uninformed search performed by
IDS was found to be inefficient due to excessive costs and algorithm
limitations compared to other methods for locating composite se-
mantics in web services.

Our previous work [27] discusses the drawbacks of manual test-
ing and the demand for better solutions. It introduces Cytestion,
an approach and tool that utilizes a version of the IDS algorithm to
automatically generate a GUI tree while creating and executing the
test suite. The results demonstrate Cytestion’s efficacy in industrial
projects, identifying real faults through visible failures. Despite
the good results, the authors discuss problems with the generated
suites such as high memory usage and significant execution time.

Jiang et al. [17] emphasize the significance of GUI testing in
Android apps and examines the impact of GUI state equivalence
choices on error detection. It compares random search and system-
atic search with BFS and DFS algorithms using 33 real applications
to study their effects on fault detection rate and code coverage.
Their findings indicate that both random search and systematic
search are equally effective, while state equivalence has a significant
impact on fault detection rate and coverage.

Wen [38] presents a new methodology for testing web-based
applications and technologies, the URL-Driven Automated Testing
(URL-DAT). This method involves using previously known URLs
and data-driven testing to guide data through the automation of test
execution, thereby combining them. However, no search algorithm
is used since navigation through the AUT is not the goal.

Hu et al. [15] suggest that automated testing can improve soft-
ware testing efficiency by using test automation tools such as Se-
lenium and QTP to enhance test case accuracy. It involves rep-
resenting the software project workflow as a directed graph and
traversing it with the DFS algorithm to generate test paths, aim-
ing to increase maintainability and reuse of tests. The conclusion
presents promising results in industrial tests, such as in a scientific
research clinical management project.

Lim et al. [21] introduce Boundary Iterative-Deepening Depth-
First Search (BIDDFS), an algorithm that combines the IDS and
Dijkstra algorithms to optimize pathfinding by setting node storage
limits and following a specific expansion pattern. Through simu-
lation experiments, BIDDFS showed superior performance when
performing blind searches in unknown environments, evidencing
its potential for real-world pathfinding efficiency improvements.
However, it does not share chain information from previous nodes
or directly access any node in the graph.

Bons et al. explore scriptless testing using the TESTAR tool [8],
which aims to identify visible failures in GUI applications. This tool
is widely used in the industry, demonstrating significant results
and providing a basis for further research [3, 28, 30]. Additionally,
Aho et al. present Murphy [2], a tool that automates GUI testing
using intelligent agents triggered by specific GUI states to detect
failures in behavior and functionality. While both tools leverage
advanced techniques for uncovering potential faults, they have
limitations as they employ a random search approach. Therefore, a

more systematic approach would provide a comprehensive solution
for identifying these faults.

The mentioned studies cover a wide range of topics, such as
the use of IDS in GUI testing, DFS and BFS in GUI testing, direct
URL access in tests, algorithms that enhance IDS, and alternatives
testing tools. Our previous work was the only one that investigated
the use of IDS in GUI testing. Our work is distinct in proposing an
effective way to reduce the costs related to GUI testing with IDUBS
but preserving its testing power.

7 CONCLUDING REMARKS
In this paper, we presented the Iterative Deepening URL-Based
Search (IDUBS) algorithm as a solution to address redundancy in
IDS algorithm for GUI testing. IDUBS uses information about state
URLs to locate new starting points during test execution, thereby
reducing redundancy and optimizing execution time. This algo-
rithm is particularly useful in applications where the URL changes
reflect the state changes, enabling consistent save points and faster
access. However, when dynamic web content changes frequently
without changing the URL, the IDUBS basically perform like an
IDS.

We evaluated the use of IDUBS through empirical studies on
industrial and open-source web applications. We compared IDUBS
with the IDS using the Cytestion tool. The results demonstrate
that IDUBS was able to reduce costs and outperformed IDS. IDUBS
reduced execution time by 43.41% (43.60% for industrial and 39.03%
for open source projects) and decreased test case redundancy by
49.30% (50% for industrial and 36.01% for open source projects),
making it a beneficial solution while maintaining the same code
coverage. Additionally, the IDUBS suite detected all faults detected
by IDS and an extra critical one that was disseminated across several
states of the industrial systems.

As for future work, we plan to: i) expand our empirical studies by
encompassing a wider range of open source projects; ii) investigate
the use of parallelism to improve the search process applied by
IDUBS, by starting with simultaneous roots to reduce execution
time and enhance efficiency; iii) evaluate how developers evaluate
the quality of the tests generated with IDUBS on readability and
maintainability aspects.

REFERENCES
[1] Pekka Aho, Teemu Kanstren, Tomi Räty, and Juha Röning. 2014. Automated

extraction of GUI models for testing. In Advances in Computers. Vol. 95. Elsevier,
49–112.

[2] Pekka Aho, Matias Suarez, Teemu Kanstrén, and Atif M Memon. 2014. Murphy
tools: Utilizing extracted gui models for industrial software testing. In 2014 IEEE
Seventh International Conference on Software Testing, Verification and Validation
Workshops. IEEE, 343–348.

[3] Pekka Aho, Tanja EJ Vos, Sami Ahonen, Tomi Piirainen, Perttu Moilanen, and
Fernando Pastor Ricos. 2019. Continuous piloting of an open source test automa-
tion tool in an industrial environment. Jornadas de Ingeniería del Software y Bases
de Datos (JISBD) (2019), 1–4.

[4] Andrea Arcuri and Lionel Briand. 2014. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing,
Verification and Reliability 24, 3 (2014), 219–250.

[5] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN
international conference on Object oriented programming systems languages &
applications. Association for Computing Machinery, New York, NY, USA, 641–
660. https://doi.org/10.1145/2509136.2509549

[6] Alexander Bainczyk, Alexander Schieweck, Bernhard Steffen, and Falk Howar.
2017. Model-based testing without models: the TodoMVC case study. ModelEd,

https://doi.org/10.1145/2509136.2509549

Iterative Deepening URL-Based Search: Enhancing GUI Testing for Web Applications SBES’24, September 30 – October 04, 2024, Curitiba, PR

TestEd, TrustEd: Essays Dedicated to Ed Brinksma on the Occasion of His 60th
Birthday (2017), 125–144.

[7] Ishan Banerjee, Bao Nguyen, Vahid Garousi, and Atif Memon. 2013. Graphical
user interface (GUI) testing: Systematic mapping and repository. Information
and Software Technology 55, 10 (2013), 1679–1694.

[8] Axel Bons, Beatriz Marín, Pekka Aho, and Tanja EJ Vos. 2023. Scripted and
scriptless GUI testing for web applications: An industrial case. Information and
Software Technology 158 (2023), 107172.

[9] Dmitry Davidov and Shaul Markovitch. 2002. Multiple-goal search algorithms
and their application to Web crawling. In AAAI/IAAI. 713–718.

[10] Dmitry Davidov and Shaul Markovitch. 2006. Multiple-goal heuristic search.
Journal of Artificial Intelligence Research 26 (2006), 417–451.

[11] Mark Grechanik, Qing Xie, and Chen Fu. 2009. Creating GUI testing tools using
accessibility technologies. In 2009 International Conference on Software Testing,
Verification, and Validation Workshops. IEEE, 243–250.

[12] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
2014. Puma: Programmable ui-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th annual international conference on Mobile
systems, applications, and services. 204–217.

[13] Liu Hongyun, Jiang Xiao, and Ju Hehua. 2013. Multi-goal path planning algo-
rithm for mobile robots in grid space. In 2013 25th Chinese Control and Decision
Conference (CCDC). IEEE, 2872–2876.

[14] Md Hossain, Hyunsook Do, and Ravi Eda. 2014. Regression testing for web
applications using reusable constraint values. In 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation Workshops. IEEE, 312–
321.

[15] Xiaoming Hu and Yibo Huang. 2021. Research and Application of Software
Automated Testing Based on Directed Graph. In 2021 IEEE 3rd International
Conference on Frontiers Technology of Information and Computer (ICFTIC). IEEE,
661–664.

[16] Taufan Fadhilah Iskandar, Muharman Lubis, Tien Fabrianti Kusumasari, and
Arif Ridho Lubis. 2020. Comparison between client-side and server-side ren-
dering in the web development. In IOP Conference Series: Materials Science and
Engineering, Vol. 801. IOP Publishing, 012136.

[17] Bo Jiang, Yaoyue Zhang, Wing Kwong Chan, and Zhenyu Zhang. 2019. A system-
atic study on factors impacting gui traversal-based test case generation techniques
for android applications. IEEE Transactions on Reliability 68, 3 (2019), 913–926.

[18] Imran Akhtar Khan and Roopa Singh. 2012. Quality Assurance And Integration
Testing Aspects In Web Based Applications. ArXiv abs/1207.3213 (2012). https:
//doi.org/10.5121/ijcsea.2012.2310

[19] Inessa V Krasnokutska and Oleksandr S Krasnokutskyi. 2024. Implementing E2E
tests with Cypress and Page Object Model: evolution of approaches. In CEUR
Workshop Proceedings. 101–110.

[20] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. 2013. Capture-
replay vs. programmable web testing: An empirical assessment during test case
evolution. In 2013 20th Working Conference on Reverse Engineering (WCRE). IEEE,
272–281.

[21] Kai Li Lim, Kah Phooi Seng, LS Yeong, SI Ch’ng, and K Ang Li-minn. 2013. The
boundary iterative-deepening depth-first search algorithm. In Second Interna-
tional Conference on Advances in Computer and Information Technology: ACIT
2013. Institute of Research Engineers and Doctors, LLC, 119–124.

[22] Kai Li Lim, Kah Phooi Seng, Lee Seng Yeong, Li-Minn Ang, and Sue Inn Ch’ng.
2016. Pathfinding for the navigation of visually impaired people. International
Journal of Computational Complexity and Intelligent Algorithms 1, 1 (2016), 99–
114.

[23] Kai Li Lim, Kah Phooi Seng, Lee Seng Yeong, Li-Minn Ang, and Sue Inn Ch’ng.
2015. Uninformed pathfinding: A new approach. Expert systems with applications
42, 5 (2015), 2722–2730.

[24] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. 2003. GUI ripping: Reverse
engineering of graphical user interfaces for testing. In 10th Working Conference
on Reverse Engineering, 2003. WCRE 2003. Proceedings. IEEE, 260–269.

[25] Atif M Memon. 2002. GUI testing: Pitfalls and process. Computer 35, 08 (2002),
87–88.

[26] Fatini Mobaraya, Shahid Ali, et al. 2019. Technical Analysis of Selenium and
Cypress as functional automation framework for modern web application testing.
In 9th International Conference on Computer Science.

[27] Thiago Santos de Moura, Everton L. G. Alves, Hugo Feitosa de Figueirêdo, and
Cláudio de Souza Baptista. 2023. Cytestion: Automated GUI Testing for Web
Applications. In Proceedings of the XXXVII Brazilian Symposium on Software
Engineering. 388–397.

[28] Fernando Pastor Ricós, Pekka Aho, Tanja Vos, Ismael Torres Boigues,
Ernesto Calás Blasco, and Héctor Martínez Martínez. 2020. Deploying TES-
TAR to enable remote testing in an industrial CI pipeline: a case-based evaluation.
In Leveraging Applications of Formal Methods, Verification and Validation: Verifica-
tion Principles: 9th International Symposium on Leveraging Applications of Formal
Methods, ISoLA 2020, Rhodes, Greece, October 20–30, 2020, Proceedings, Part I 9.
Springer, 543–557.

[29] Olivia Rodríguez-Valdés, Tanja EJ Vos, Pekka Aho, and Beatriz Marín. 2021. 30
years of automated GUI testing: A bibliometric analysis. In Quality of Information
and Communications Technology: 14th International Conference, QUATIC 2021,
Algarve, Portugal, September 8–11, 2021, Proceedings 14. Springer, 473–488.

[30] Urko Rueda, Tanja EJ Vos, Francisco Almenar, MOMartınez, and Anna I Esparcia-
Alcázar. 2015. TESTAR: from academic prototype towards an industry-ready tool
for automated testing at the user interface level. Actas de las XX Jornadas de
Ingenierıa del Software y Bases de Datos (JISBD 2015) (2015), 236–245.

[31] Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: a modern approach.
Pearson.

[32] Nema Salem, Hala Haneya, Hanin Balbaid, and Manal Asrar. 2024. Exploring
the Maze: A Comparative Study of Path Finding Algorithms for PAC-Man Game.
(2024).

[33] Shahaf S Shperberg, Steven Danishevski, Ariel Felner, and Nathan R Sturtevant.
2021. Iterative-deepening bidirectional heuristic search with restricted mem-
ory. In Proceedings of the International Conference on Automated Planning and
Scheduling, Vol. 31. 331–339.

[34] Arie Van Deursen. 2015. Testing web applications with state objects. Commun.
ACM 58, 8 (2015), 36–43.

[35] Tanja EJ Vos, Pekka Aho, Fernando Pastor Ricos, Olivia Rodriguez-Valdes, and
Ad Mulders. 2021. TESTAR–scriptless testing through graphical user interface.
Software Testing, Verification and Reliability 31, 3 (2021), e1771.

[36] Yan Wang, Jianguo Lu, and Jessica Chen. 2014. Ts-ids algorithm for query
selection in the deep web crawling. InWeb Technologies and Applications: 16th
Asia-Pacific Web Conference, APWeb 2014, Changsha, China, September 5-7, 2014.
Proceedings 16. Springer, 189–200.

[37] Thomas Weise, Steffen Bleul, Diana Comes, and Kurt Geihs. 2008. Different
approaches to semantic web service composition. In 2008 Third International
Conference on Internet and Web Applications and Services. IEEE, 90–96.

[38] Robert B Wen. 2001. URL-driven automated testing. In Proceedings Second Asia-
Pacific Conference on Quality Software. IEEE, 268–272.

[39] Dacong Yan, Shengqian Yang, and Atanas Rountev. 2013. Systematic testing for
resource leaks in Android applications. In 2013 IEEE 24th International Symposium
on Software Reliability Engineering (ISSRE). IEEE, 411–420. https://doi.org/10.
1109/ISSRE.2013.6698894

[40] Xun Yuan and Atif M Memon. 2010. Iterative execution-feedback model-directed
GUI testing. Information and Software Technology 52, 5 (2010), 559–575.

https://doi.org/10.5121/ijcsea.2012.2310
https://doi.org/10.5121/ijcsea.2012.2310
https://doi.org/10.1109/ISSRE.2013.6698894
https://doi.org/10.1109/ISSRE.2013.6698894

	Abstract
	1 Introduction
	2 Background
	2.1 GUI Testing and Framework
	2.2 Cytestion
	2.3 Iterative Deepening Search

	3 Iterative Deepening URL-Based Search
	3.1 Running Example

	4 Evaluation Studies
	4.1 Metrics and Configuration
	4.2 A Study with Industrial Applications
	4.3 A Study with Open Source Applications

	5 Threats to Validity
	6 Related Work
	7 Concluding Remarks
	References

