
How does Technical Debt Evolve within Pull Requests? An
Empirical Study with Apache Projects

Felipe E. de O. Calixto
Federal University of Campina

Grande
Brazil

felipecalixto@copin.ufcg.edu.br

Eliane C. Araújo
Federal University of Campina

Grande
Brazil

eliane@computacao.ufcg.edu.br

Everton L. G. Alves
Federal University of Campina

Grande
Brazil

everton@computacao.ufcg.edu.br

ABSTRACT
Technical Debt (TD) refers to the cost to rectify the quality issues
affecting a software system. A pull request (PR) represents a discrete
unit of work that must adhere to particular quality standards to be
integrated into the main codebase. They can serve as a means to
gauge how developers address TD and how codebase quality may
decay over time. In this work, we present an empirical study on 12
Apache Java repositories, analyzing 2,035 PRs to examine how TD
evolves within them. Using the SonarQube tool, we evaluated (i)
how TD changes within PRs and (ii) which types of TD issue are
most frequently overlooked and resolved. Our results suggest that
TD issues are prevalent in PRs, with a tendency to follow a ratio
of 1:2:1 (reduced: unchanged: increased). Furthermore, across all
issues, we found that the most frequently overlooked are related to
code duplication and cognitive complexity, while the most resolved
ones include code duplication and obsolete code. These insights
can help practitioners become more aware and might inspire the
creation of new tools that make managing TD during PRs easier.

CCS CONCEPTS
• Software and its engineering→ Software evolution;Main-
taining software.

KEYWORDS
technical debt, pull request, software evolution, mining software
repositories, empirical study

1 INTRODUCTION
Technical debt is a term coined by Cunningham [7], used to de-
scribe the implicit cost generated by technical problems resulting
from pressure for fast deliveries, the development of low-quality
solutions, and lack of developer knowledge, among other causes.
These issues can affect both the source code and the development
process itself [21].

Two fundamental concepts associated with the cost of technical
debt are: (i) the principal, which refers to the cost required to resolve
all technical issues and achieve a desirable level of maintainability,
whether in a specific component or throughout the software; and (ii)
the interest, representing the additional cost to implement changes
due to existing technical debt [1, 3]. In this work, we focus on
the evolution of the technical debt principal, hereafter referred to
simply as TD. The amount of TD may affect the evolution and
maintainability of a system, increasing the effort needed to make
changes [36], and may affect other aspects, such as security and
efficiency [12].

The literature categorizes TD issues into various types such as
code (e.g., code complexity and duplication), design (e.g., cohesion
and coupling problems), test (e.g., insufficient testing), and infras-
tructure (e.g., slow build times) [17, 24], where code and design-
related are among the most commonly explored [6, 13, 15, 24, 28,
30, 39, 44].

In this context, code smells are known quality issues that may
degrade code readability and maintainability, making it more sus-
ceptible to bugs [41]. Code smells can be addressed by refactoring
[18] and are an indicator of the occurrence of TD in the codebase
[14].

Automated Static Analysis Tools (ASATs) inspect the source code
of a software for detecting quality [38]. Several studies have used
ASATswith different goals: CheckStyle1 [31, 45], FindBugs2/SpotBugs3
[19, 25], PMD4 [31, 37], and SonarQube5 [9, 26, 29]. However, only
SonarQube presents a summary metric for TD.

TD can be estimated in two main ways: through (i) structural
characteristics, such as structural metrics, and (ii) cost estimation
methods [8, 16]. SonarQube applies a cost estimation strategy in
which heuristics are used to estimate (inminutes, hours, or days) the
effort required to address the detected issues. SonarQube summa-
rizes the TD estimation in a specific metric, technical debt6. Several
studies have used this metric as a valid proxy to measure TD in
projects [12, 27, 29].

In this work, we present an empirical study that explored 12
Apache Java repositories with the goal of understanding how TD
evolves within PRs —whether it increases or decreases — and which
types of issues are most neglected and resolved in this context. We
address the following questions through this research:

• RQ1: How does TD evolve within PRs? We used the
SonarQube tool to analyze if TD issues present before a PR
opening are fixed within the PR commits.

• RQ2: Which TD issues are most commonly resolved
and neglectedwithin PRs?We identified themost resolved
issues with a PR and those that are frequently neglected.

The contributions of this work are twofold:
• An empirical study that analyzed 2,035 merged PRs from
12 Apache Java projects. We established conclusions on the
presence of TD issues, how they evolve, and which issues
are most common to happen in the scope of a PR.

1https://checkstyle.sourceforge.io/
2https://findbugs.sourceforge.net/
3https://spotbugs.github.io/
4https://pmd.github.io/
5https://www.sonarsource.com/products/sonarqube/
6https://docs.sonarsource.com/sonarqube/latest/user-guide/metric-definitions/

https://checkstyle.sourceforge.io/
https://findbugs.sourceforge.net/
https://spotbugs.github.io/
https://pmd.github.io/
https://www.sonarsource.com/products/sonarqube/
https://docs.sonarsource.com/sonarqube/latest/user-guide/metric-definitions/

SBES’24, September 30 – October 04, 2024, Curitiba, PR Calixto, et al.

• A reproduction kit with all artifacts of our study, including
scripts and the analyzed database [10]. This kit can help
other research in a similar field.

The rest of the paper is organized as follows. Section 2 provides
background on some important concepts related to the SonarQube
tool and PR-based development. Section 3 discusses the related
work. Section 4 introduces the designed applied in our study. The
results and discussions are presented in Section 5. Section 6 ad-
dresses potential threats to validity, while Section 7 provides some
concluding remarks and possible future works.

2 BACKGROUND
2.1 SonarQube
SonarQube is an open source ASAT capable of detecting approxi-
mately 5,000 code quality issues in more than 30 languages, includ-
ing Java. It is used by more than 400,000 organizations around the
world [34] and has been utilized in numerous software engineering
empirical studies [3, 22, 26, 32, 42]. In our study, SonarQube serves
as the tool for measuring code and design TD issues [29] within
PRs.

SonarQube employs a set of best-practice rules, known as coding
rules7, which trigger warnings upon violation (issues). An issue
can be categorized as: BUG, indicative of a programming fault
that can potentially lead to errors or unexpected behavior during
execution; CODE SMELL, indicative of sub-optimal code quality,
affecting maintainability; and VULNERABILITY, a security-related
flaw. The metric used by SonarQube to compute TD remediation
time, called technical debt, primarily focuses on CODE SMELL issues.
Furthermore, issues are classified by severity level: INFO, MINOR,
MAJOR, CRITICAL, or BLOCKER, in ascending order of severity.

Regarding issue lifecycle, upon initial detection, an issue ismarked
as OPEN (unfixed issue). In subsequent runs, if an issue previously
marked as OPEN has been properly fixed, or no longer exists, then
SonarQube infers it as fixed and labels it as CLOSED8.

SonarQube employs a heuristic [35] to estimate the effort re-
quired to resolve each type of issue, using a scale ranging from
TRIVIAL, which denotes actions such as removing unused imports
that do not affect logic, to COMPLEX, which indicates actions that
potentially require application redesign, such as eliminating cyclic
dependencies between packages. For Java, SonarQube estimated
efforts range from 5 minutes (TRIVIAL issues) to 1 day (COMPLEX
ones).

2.2 The SQALE Method
SonarQube uses a quality model called SQALE, which considers that
measuring quality is measuring TD [23]. In this model, quality repre-
sents compliance with requirements, and remediation costs are used
to calculate quality indicators. Additionally, the SQALE method
classifies requirements into characteristics and sub-characteristics
related to code quality, allowing identification of which charac-
teristics are most impacted by issues. Each requirement has an
associated remediation function that calculates the necessary effort,

7https://rules.sonarsource.com/
8https://docs.sonarsource.com/sonarqube/10.0/user-guide/issues/

measured in time, to meet the requirement in a given component
of the system (module, file, or class).

Figure 1: Example of an violation to SonarQube’s rule S1104.

Figure 1 presents an example of a SonarQube violation that refers
to rule S1104, which requires the class attributes to not be public. To
fix this issue, one can convert the attribute to a constant and make
it static final, or turn the attribute’s visibility to private (re-
mediation details). In this case, the associated remediation function
calculates 10 minutes per occurrence to fix this issue.

2.3 PR-Based Development
PR-based development has garnered widespread adoption across
commercial organizations and open-source projects, enabling de-
velopers in distributed teams to autonomously implement changes.
Figure 2 gives an overview of this model. Developers can fork a
development branch and implement code changes via a series of
commits (𝑐1 to 𝑐2). Subsequently, they submit a PR to be evalu-
ated through code review by other developers. If additional work
is necessary, the developer performs changes and introduces new
commits (𝑐3 to 𝑐6), resulting in a potential code merge upon accep-
tance.

Figure 2: Example of a PR.

Our study focuses on investigating how TD evolves during PRs.
Hence, our analysis starts with the commit that initiates the PR,
referred as PR commit, typically the most recent commit before
PR initiation. In Figure 2, the PR commit is 𝑐2. In this paper, our
analysis extends to all commits starting from the PR commit until
the last commit of the PR branch (𝑐2 to 𝑐6 in this example). We
assume that in these commits, the developer may improve code
quality either by their own decision or under the influence of code
reviews, as these commits are subject to the code review process.

3 RELATEDWORK
Li et al. [24] conducted a systematic literature review on TD man-
agement. They identified 10 TD types, 8 TD management activities,
and 29 TD management tools. Among the selected papers, the au-
thors found that code debt was the most studied TD type, which is
aligned to the focus of our study. Avgeriou et al. [3] investigated
and compared technical debt measurement tools. Among their find-
ings, SonarQube was identified as the most widely used tool for
measuring TD.

https://rules.sonarsource.com/
https://docs.sonarsource.com/sonarqube/10.0/user-guide/issues/

How does Technical Debt Evolve within Pull Requests? An Empirical Study with Apache Projects SBES’24, September 30 – October 04, 2024, Curitiba, PR

Previous studies have addressed how TD evolves in software
projects, often using ASATs. Digkas et al. [12] analyzed the evolu-
tion of TD in 66 Apache Java projects, covering weekly revisions
over a five-year period. In this study, SonarQube was the tool for
TD measurement. They found that TD, along with other source
code metrics, increased in most analyzed projects, while TD nor-
malized by size (lines of code) decreased over time. In addition,
they identified that the most common types of issue were related
to improper exception handling and code duplication.

Molnar and Motogna [27] investigated how the quantity and
composition of TD change throughout software evolution. They
evaluated all revisions of three Java projects using SonarQube.
Their findings revealed a high correlation between the number of
code lines in the files and the TD, with 20% of the types of issues
representing 80% of the total TD.

Tan et al. [36] studied the evolution of TD in Apache Pyhton
projects. They evaluated weekly revisions of each project using
SonarQube to identify types of issues and the amount of TD that
is resolved. Among their findings, the authors identified that the
majority of resolved TD is related to issues concerning testing,
documentation, complexity, and code duplication. In addition, most
of the TD is short-term, being resolved within two months.

Nikolaidis et al. [29] examined how different maintenance ac-
tivities (e.g., bug fixing) impact TD growth over software evolu-
tion. They mined and analyzed 13.5K PRs from 10 open-source Java
projects and used SonarQube for TD measurement. As a result, they
identified that adding new features tends to increase TD, whereas
refactoring tends to reduce it.

Those referenced studies [12, 27, 29, 36] employed SonarQube
for TD measurement, the same tool we also employ in ours. In
particular, only Nikolaidis et al. [29] centered their investigation on
PRs as the primary subject, while the remaining studies opted for
analyzing project revisions. Their study investigated how different
types of maintenance activities impact TD. Our study, however,
distinguishes itself by examining TD evolution within PRs and
which types of issues are more frequently addressed and which are
addressed less frequently.

Examining project revisions can provide valuable insights into
TD’s evolution resulting from longer development cycles, which
likely involve multiple developers. Conversely, PR analysis, as con-
ducted in our study, enables the identification of individual trends
and concerns, as a PR typically represents a small piece of work
carried out by an individual developer. Our objective is to ascertain
whether developers prioritize TD resolution and to offer insights
aimed at enhancing code quality, starting from the perspective of
an individual developer.

4 STUDY DESIGN
The objective of this study is to investigate the evolution of TD
within the context of a single PR. To accomplish this, we conducted
an empirical investigation that involved 2,035 merged PRs from 12
Java projects within the Apache ecosystem. We opted to focus on
Apache projects due to their prior examination in existing literature
[5, 11, 20, 22, 36, 43] and because Apache offers a robust software
development environment characterized by active and high-quality
projects.

Figure 3: Data collection and processing.

We evaluated PR TD using the SonarQube ASAT, a tool com-
monly utilized for this purpose [9, 12, 27, 29, 43]. The selection of
projects was carried out through convenience sampling, as Sonar-
Qube requires compiled code for analysis. Furthermore, we specif-
ically targeted projects primarily written in Java that were not
archived as of the execution date of the experiment (March/2024).

To guide our study, we formulated the following research ques-
tions:
RQ1: How does TD evolve within PRs? We are interested in
assessing how TD varies within PRs and determining whether it
decreases, increases, or remains constant. To achieve this, we intro-
duce a TD Variation metric to measure and analyze the changes.
RQ2: Which TD issues are most commonly resolved and ne-
glected within PRs? Considering SonarQube’s extensive catalog
of coding rules, we hypothesize that developers tend to address
issues associated with certain rules more often while neglecting oth-
ers. Our objective is to pinpoint these variations and gain insights
into developers’ decisions on issue remediation.

Figure 3 presents an overview of the methodology applied to
collect and process data in our study. Initially, we gathered all
merged PRs from each project (Step 1), then filtered and processed
through various stages (Step 2). After that, for each PR, we ran
SonarQube on the commits starting from the PR commit up to
the last commit of the PR branch (Step 3) and then conducted
post-processing (Step 4) in order to provide data preparation for
analysis (Step 5). In the following sections, we detail steps 1-4. Table
1 presents a summary of our dataset of selected projects and PRs.

4.1 Dataset
As Apache projects are hosted on GitHub, we utilized the GitHub
REST9 and GraphQL10 APIs to extract the PRs from each repository.
This extraction was conducted between March 13, 2024, and March
14, 2024, adhering to the following filters:

• Only merged PRs. We selected only merged PRs as they meet
a minimum level of code quality and usefulness, ensuring
that we are examining code that has been accepted by project
reviewers;

9https://docs.github.com/en/rest
10https://docs.github.com/en/graphql

https://docs.github.com/en/rest
https://docs.github.com/en/graphql

SBES’24, September 30 – October 04, 2024, Curitiba, PR Calixto, et al.

• Merged date up to February 29, 2024, at 23:59:59. This choice
was made to homogenize the data by a cut-off date.

We collected a total of 7,494 merged PRs as shown in Table 1.

4.2 Data Preparation
After collecting the projects and PRs, we conducted a five-step pre-
processing on the PRs dataset by (i) filtering of PRs by merged date
(Step 2.1), (ii) identifying the PR commits (Step 2.2), (iii) filtering
out PRs with pulls (Step 2.3), (iv) identifying modified files and
filtering out PRs that do not modify Java files (Step 2.4), and (v)
identifying the commits preceding the PR commits (Step 2.5). The
PR commit identification was based on the commits creation dates
and PR opening date. A PR commit is characterized as the commit
with the most recent date before the PR creation. Then, we filtered
out the PRs that pulled code from other branches. In our study, we
considered only PRs that did not pulled code or that only pulled code
in the last commit. We adopted this strategy to prevent including
code with issues that were not created within the PR, which could
influence our results.

We identified the modified files of each PR branch, to narrow
down the scope of the analysis. We considered the TD of each PR as
the TD detected in the modified files. During this stage, we excluded
the PRs that did not change Java files.

In the last stage, we identified the commit preceding the PR
commit. As discussed in Section 4.4, we need to run SonarQube
on a commit that occurred before the PR so we can refer to the
issues identified in this commit as pre-existing issues. We identify
the “preceding commit” using two strategies: (i) in cases where
there is a commit before the PR commit within the branch, the
preceding commit is the last commit before the PR commit; (ii) in
cases where there is no commit before the PR commit within the
branch, we use the concept of parent commit11 and consider the
parent of the PR commit as the preceding commit. In the example
presented in Figure 2, 𝑐1 is the preceding.

4.3 Data Processing
In our study, we used SonarQube (version 10.0.0.68432) combined
with the SonarScanner12 tool (version 4.8.0.2856). All SonarQube
analyses were conducted using SonarScanner, which executes them
and sends its results to SonarQube. SonarScanner can be natively
integrated with build tools (such as SonarScanner for Maven) or
used as a standalone command-line interface (CLI), allowing for
independent execution regardless of building tool. Since most of
the projects were not integrated to SonarQube, they lacked proper
configurations to use the native SonarScanner plugin. Therefore,
we used the SonarScanner CLI. To run the SonarScanner analysis
(Step 3), it is necessary to have the compiled code of the project.
Therefore, we downloaded the code project referred to each commit
(the commits described in Section 2.3) of each PR and compile it in
order to run the SonarQube. In this stage, 1,819 PRs were discarded
due to compilation errors (e.g., missing dependencies, dependency
version conflicts).

11https://git-scm.com/docs/git-commit-tree
12https://docs.sonarsource.com/sonarqube/10.0/analyzing-source-code/scanners/
sonarscanner/

The time required for compiling the code and executing Sonar-
Qube analysis was significant due to the projects’ size. The average
time for SonarQube to execute on a given PR commit was 6 minutes
and 18 seconds. Considering that each PR includes multiple com-
mits, the execution time posed a significant challenge in our study.
To address this issue, we divided the set of PRs into subsets and ran
each subset on a separate virtual machine (VM). For this purpose,
we utilized the Oracle VM VirtualBox13 tool and configured four
VMs as follows: 8 GB of RAM; 4 processor cores; 150 GB of storage;
and Ubuntu 22.04.1 LTS operating system.

We also developed Python scripts to streamline the process.
These scripts facilitate the downloading of commit source code,
compilation, execution of SonarQube, and extraction of identified
issues via the SonarQube API14.

4.4 Data Analysis
After running SonarQube, we processed data related to issues (Step
4.1), execution monitoring (Step 4.2), and PRs (Step 4.3). During
the issues processing, we classified the issues into two categories:
origin and status. Origin indicates whether an issue existed before
the PR (pre-existing issue) or it was added during the PR (new
issue). Status, on the other hand, indicates whether the issue was
resolved (fixed issue) or not (unfixed issue). Pre-existing issues are
identified in the commit preceding the PR commit, while new or
fixed issues are detected in the commits following the PR commit.
Thus, by analyzing the set of commits described in Section 2.3, we
can precisely detect in which commit an issue was added or fixed.
This allows us, for example, to identify changes in TDmeasurement,
as new issues may be addressed within the PR itself. This approach
differs from studies that only compare the code before the PR and
after it, as they do not track the code evolution commit by commit
[29, 31, 45].

For each issue, we collected the following fields:
• rule. Identifier of the violated SonarQube rule;
• severity. The severity level, categorized on a scale: INFO,
MINOR, MAJOR, CRITICAL, and BLOCKER, ordered from
least to most severe;

• type. Classification of the issue: CODE SMELL, BUG, and
VULNERABILITY ;

• debt. Estimated effort in minutes to resolve the issue;
• origin. The origin of the issue (PRE-EXISTING or NEW);
• status. The status of the issue: OPEN if the issue is open,
and CLOSED if the issue has been resolved;

• file. Affected file;
• ncloc: NCLOC (Non-Commented Lines of Code) of the af-
fected file.

Related to monitoring (Step 4.2), we stored information about
how long each commit of each PR took to execute. We monitored
the SonarQube execution duration to estimate the time required
for running the analyses. Other studies employing the same tool
may consider this data for more effective experiment planning.

Additionally, we collected PR features to perform a characteri-
zation (Step 4.3) of them. The collected features were: added lines,
removed lines, code churn (added lines + removed lines), time until

13https://www.virtualbox.org/
14https://docs.sonarsource.com/sonarqube/10.0/extension-guide/web-api/

https://git-scm.com/docs/git-commit-tree
https://docs.sonarsource.com/sonarqube/10.0/analyzing-source-code/scanners/sonarscanner/
https://docs.sonarsource.com/sonarqube/10.0/analyzing-source-code/scanners/sonarscanner/
https://www.virtualbox.org/
https://docs.sonarsource.com/sonarqube/10.0/extension-guide/web-api/

How does Technical Debt Evolve within Pull Requests? An Empirical Study with Apache Projects SBES’24, September 30 – October 04, 2024, Curitiba, PR

Table 1: Dataset of projects and PRs.

Project # Classes NCLOC # Issues # PRs
Mining After processing Post-execution With issues

accumulo 5,164 440,441 158,730 2,295 1,512 994 952
cayenne 4,716 318,428 1,712 429 336 55 55
commons-collections 839 67,690 2,280 241 68 31 28
commons-io 288 30,501 8,285 374 95 76 73
commons-lang 918 95,929 9,673 496 192 128 122
helix 2,106 189,487 35,978 1,374 669 278 276
httpcomponents-client 879 76,964 5,179 310 159 126 120
maven-surefire 3,036 110,481 1,833 331 71 25 25
opennlp 2,478 155,900 10,731 375 153 96 94
struts 3,419 234,331 9,877 716 407 145 140
wicket 5,254 251,505 1,000 441 157 47 40
zookeeper 1,542 131,712 2,289 112 35 34 34
Total 247,365 7,494 3,854 2,035 1,959

merge, number of modified files, and number of commits. This
characterization encompassed all 2,035 PRs analyzed.

Thus, we obtained three datasets: (i) issues, (ii) monitoring and
(iii) PRs. We conducted a characterization of the issues and PRs to
understand the distributions of their features. The dataset of issues
was used to address our research questions, the analysis of which
is detailed in the following section.

4.5 Metrics
To help answer RQ1, we defined a normalized metric for TD. Nor-
malization is needed due to the different sizes of the considered
projects. For a 𝑃𝑅𝑖 that modifies 𝑘 files, and each file contains 𝑛 𝑗
issues (where 𝑗 is the file index), the TD density 𝑇𝐷𝐷𝑖 is given by:

𝑇𝐷𝐷𝑖 =

𝑘∑
𝑗=1

𝑛 𝑗∑
𝑎=1

𝑇𝐷𝑎𝑗

𝑘∑
𝑗=1

𝑁𝐶𝐿𝑂𝐶 𝑗

(1)

where 𝑇𝐷𝑎𝑗 represents the TD of issue 𝑎 in file 𝑗 , and 𝑁𝐶𝐿𝑂𝐶 𝑗

is the number of non-comment lines of code [33] in file 𝑗 .
In this sense, we proposed a metric to express the TD variation

in PRs according to its evolution. TD variation can be categorized
as: reduced, unchanged, or increased. For a 𝑃𝑅𝑖 that modifies 𝑘 files,
the TD variation 𝑇𝐷𝑉𝑖 is given by:

𝑇𝐷𝑉𝑖 =

𝑘∑︁
𝑗=1

(𝑛𝑗∑︁
𝑎=1

𝑇𝐷
𝑁𝑒𝑤 𝐴𝑁𝐷 𝑈𝑛𝑓 𝑖𝑥𝑒𝑑

𝑎𝑗
−

𝑛𝑗∑︁
𝑎=1

𝑇𝐷
𝑃𝑟𝑒-𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝐴𝑁𝐷 𝐹𝑖𝑥𝑒𝑑

𝑎𝑗

)
(2)

where 𝑇𝐷𝑁𝑒𝑤 𝐴𝑁𝐷 𝑈𝑛𝑓 𝑖𝑥𝑒𝑑

𝑎𝑗
is the TD regarding new unfixed

issue 𝑎 in file 𝑗 , and 𝑇𝐷𝑃𝑟𝑒-𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝐴𝑁𝐷 𝐹𝑖𝑥𝑒𝑑

𝑎𝑗
is the TD regarding

pre-existing fixed issue 𝑎 of file 𝑗 . The TD variation is calculated as
the difference between the final version (new TD) and the initial
version (pre-existing TD). We can simplify this to equation 2, as the
difference occurs only in terms of the new TD that has not been

addressed and the pre-existing TD that has been addressed. The
TD variation can be classified as follows:

• Reduced, if 𝑇𝐷𝑉𝑖 < 0, the TD decreased after the PR;
• Unchanged, if 𝑇𝐷𝑉𝑖 = 0, the TD remained the same;
• Increased, if 𝑇𝐷𝑉𝑖 > 0, the TD increased after the PR.

Additionally, we defined the Pre-existing TDV and the New TDV,
which allow us to identify how TD variation occurs given its origin.
For a 𝑃𝑅𝑖 that modifies 𝑘 files, its Pre-existing TDV and the New
TDV are calculated as follows:

𝑇𝐷𝑉
𝑃𝑟𝑒-𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
𝑖

=

𝑘∑︁
𝑗=1

𝑛 𝑗∑︁
𝑎=1

𝑇𝐷
𝑃𝑟𝑒-𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝐴𝑁𝐷 𝐹𝑖𝑥𝑒𝑑

𝑎𝑗
(3)

𝑇𝐷𝑉𝑁𝑒𝑤
𝑖 =

𝑘∑︁
𝑗=1

𝑛 𝑗∑︁
𝑎=1

𝑇𝐷𝑁𝑒𝑤 𝐴𝑁𝐷 𝐹𝑖𝑥𝑒𝑑
𝑎𝑗 (4)

where𝑇𝐷𝑃𝑟𝑒-𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝐴𝑁𝐷 𝐹𝑖𝑥𝑒𝑑

𝑎𝑗
represents the TD for pre-existing

fixed issue 𝑎 of file 𝑗 , and 𝑇𝐷𝑁𝑒𝑤 𝐴𝑁𝐷 𝐹𝑖𝑥𝑒𝑑
𝑎𝑗

represents the TD for

new fixed issue 𝑎 of file 𝑗 . Both 𝑇𝐷𝑉 𝑃𝑟𝑒-𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔
𝑖

and 𝑇𝐷𝑉𝑁𝑒𝑤
𝑖

can
be classified as:

• Reduced, if the value is greater than zero, the TD decreased
after the PR;

• Unchanged, if the value is equal to zero, the TD remained
the same.

To address RQ2, we ranked the types of issues (rules) considering
their position in each project’s top 10 frequency. This strategy was
necessary due to the difference of issue distribution in our dataset.
For instance, the accumulo project refers to 64.12% of the found
issues, which is expected given its size and number of PRs (48.60%
of total), while other projects account for less than 36% of the issues.
For this purpose, we propose a metric that aggregates the positions
where the rules appear in each project’s top 10. For a rule 𝑖 , its
𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒𝑖 is calculated as follows:

SBES’24, September 30 – October 04, 2024, Curitiba, PR Calixto, et al.

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒𝑖 =

𝑘∑︁
𝑗=1

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑗 (5)

where 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑗 is the position of the rule in project 𝑗 ’s top 10.
If the rule appears out of the ranking bounds, its position value is
11 (for penalty purposes). The 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 is then calculated for
all 𝑘 projects (12 in this study). In this case, its score ranges from 12
(position 1 in all 12 projects) to 131 (position 10 in a single project
and outside the top 10 in the rest), where lower scores indicate
better ranking. We use this method to aggregate the top 10 fixed
rules and the top 10 unfixed rules from all projects, and finally rank
the 5 rules with the lowest 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 , i.e., the most frequent
across all projects.

5 RESULTS AND DISCUSSIONS
5.1 Data Characterization
Before addressing the research questions, we conducted an ex-
ploratory data analysis to better understand the distribution of PR
and its issues. Our aim was to examine the typical characteristics
of a typical PR and issues considered in our study.

In this analysis, we identified that common PRs modify few files
(with a median of 2 to 4) in a few commits (with a median of 1
to 2), although we found some outliers that modify hundreds of
files. These results highlight how a typical PR encompasses a small
development cycle (few commits) of a single developer focused on
very specific parts of the system (few files).

Regarding issue characterization, we found that our dataset con-
sists of 264 distinct rules (out of 622 detectable by SonarQube), of
which 202 had at least one fixed instance (76.51%). Additionally, we
identified that 94.38% of them are of the CODE SMELL type, and
48.43% of the issues have low severity (INFO andMINOR), although
73.04% of all detected TD are from issues with medium to high
severity (MAJOR, CRITICAL, and BLOCKER). As expected, more
than 96% of the issues are pre-existing, and just over 4% are new.
Only 5.88% of the issues were fixed.

In summary, most of the issues are classified as CODE SMELL,
meaning they are code quality problems that do not directly affect
the system’s functionality. Although the number of instances is
well distributed among severity levels, the amount of TD is more
concentrated in issues with high severity, which can be explained
by the fact that more severe problems are more complex to address.
The prevalence of pre-existing issues can be attributed to several
factors. Even though PRs often modify few files, these files can be
extensive and contain a reasonable number of issues, which may
go unnoticed or be disregarded by developers, which also explains
the large number of unfixed issues. Additionally, atypical PRs that
modify up to hundreds of files contribute to these statistics, as it
becomes impractical for a developer to address issues across several
files.

5.2 RQ1: How does TD evolve within PRs?
To study how TD evolves in PRs, we use the metrics 𝑇𝐷𝐷 (TD
Density) and𝑇𝐷𝑉 (TD Variation; Section 4.5). Figures 4 and 5 show
the distributions of both metrics per PR.

Figure 4: Distribution of TDD per PR.

Figure 5: Distribution of TDV per PR.

𝑇𝐷𝐷 measures the amount of TD present per NCLOC in a PR.
In our dataset, we found a mean of 0.5013 and median of 0.3991,
respectively. These values indicate that the majority of PRs have a
moderate to high TD density, considering themedian of 651 NCLOC
and the median density. This would represent a rework of over 4
hours to resolve all TD issues, a time that is somewhat considerable.
Thus, most of the time, it would be unfeasible for the developer to
address all the TD involved in a PR. It may be better to prioritize
fixing the issues with higher severity.

PR number 67615 from the wicket project presented the highest
TDD (10.34 – 600 minutes of TD for 58 NCLOC). This PR has a code
churn of 27 (12 lines added and 15 lines removed) and modifies 2
files, each containing one issue, both violating rule S11016 (rule
details: inheritance tree of classes should not be too deep) and with
300 minutes of TD each. Both issues are pre-existing and unfixed,
meaning they were already in the code before the PR and were
not resolved within the PR. Rule S110 imposes a threshold on the
inheritance tree, which is by default set to 5, as deep inheritance
can lead to high complexity. For each class with a depth greater

15https://github.com/apache/wicket/pull/676
16https://rules.sonarsource.com/java/RSPEC-110/

https://github.com/apache/wicket/pull/676
https://rules.sonarsource.com/java/RSPEC-110/

How does Technical Debt Evolve within Pull Requests? An Empirical Study with Apache Projects SBES’24, September 30 – October 04, 2024, Curitiba, PR

than 5, the rule is violated, resulting in a TD of 4 hours plus 30
minutes for each depth level above the threshold. In both classes,
the depth is 7. As both are small classes, they concentrate a lot of
TD in few NCLOC.

The TDV metric represents the variation of TD between the
beginning and the end of the PR. It indicates how many minutes
the TD increased or decreased during the PR, or if it remained
unchanged (zero minutes). Figure 5 shows the distribution, which
is concentrated around zero (median), indicating that the majority
of values have no variation (zero) or low variation. However, there
are very large outliers, primarily due to PRs that modify dozens
to hundreds of files. Considering the outliers, PR 79917 of struts
presented the lowest TDV, at -27,133, which represents a reduction
of 27,133 minutes of TD, equal to the entire TD involved in this
PR. This PR modified 484 files and 90,610 lines (90,609 deletions
and one addition). As its description indicates, this PR removed
missed files and obsolete plugins. In other words, it only involves
deletions, resulting in the removal of TD. In the top 10 cases with the
lowest TD reduction, we identified 6 PRs where files were removed,
indicating that at least part of the TD is not resolved as the primary
intention.

On the other hand, the PR with the largest increase in TD was
PR 202218 of accumulo, with an increase of 14,300 minutes. This
PR modified 151 files and 1,919 lines (985 additions + 934 deletions).
It has a total of 14,300 minutes of new TD, and 0 minutes of new TD
fixed. For pre-existing TD, it has a total of 67,767 minutes, with zero
minutes of pre-existing TD fixed. Among the new TD instances ob-
served in this PR, the most common rules are S11719 (385 instances;
rule details: local variable and method parameter names should
comply with a naming convention), S2589 (383 instances, boolean
expressions should not be gratuitous)20, S10121 (276 instances; rule
details: class names should comply with a naming convention),
and S112522 (272 instances; rule details: boolean literals should not
be redundant), representing a total of 1,316 instances out of 2,114
with a TD of 7,340 out of 14,300 minutes (51.33%). Rules S117 and
S101 are related to naming conventions, while S1125 and S2589 are
related to redundancy in boolean expressions.

The analysis of outliers reveals that cases where TD decreases
sharply may not be directly linked to developers’ primary intention
to fix issues, whereas a significant increase in TD is more related
to situations where the developer works on new functionalities.

To classify PRs in terms of TD variation (reduced, increased, or
unchanged), we calculated the percentage of PRs with TDV less
than zero (reduction), the percentage of PRs with TDV equal to
zero (unchanged), and the percentage of PRs with TDV greater than
zero (increased). Due to the variety of number of PRs and issues per
project, we chose to calculate these percentages for each project
and then calculate the overall average percentages.

Table 2 shows the TDV percentages for each repository, as well
as the overall average. On average, 24.44% of the PRs decreased the
TD, 52.24% remained unchanged, and 23.32% increased the TD. The

17https://github.com/apache/struts/pull/799
18https://github.com/apache/accumulo/pull/2022
19https://rules.sonarsource.com/java/RSPEC-117/
20https://rules.sonarsource.com/java/RSPEC-2589/
21https://rules.sonarsource.com/java/RSPEC-101/
22https://rules.sonarsource.com/java/RSPEC-1125/

Table 2: Percentages of TDV by projects.

Project TDV Percentages
Reduced Unchanged Increased

accumulo 26.16% 46.95% 26.89%
cayenne 12.73% 56.36% 30.91%
commons-collections 35.71% 53.57% 10.71%
commons-io 32.88% 50.68% 16.44%
commons-lang 13.93% 78.69% 7.38%
helix 19.20% 36.96% 43.84%
httpcomponents-client 19.17% 55.83% 25.00%
maven-surefire 24.00% 68.00% 8.00%
opennlp 44.68% 32.98% 22.34%
struts 37.14% 36.43% 26.43%
wicket 10.00% 57.50% 32.50%
zookeeper 17.65% 52.94% 29.41%
Mean 24.44% 52.24% 23.32%

values are close to the 1:2:1 ratio, meaning that for every four PRs,
one decreases the TD, two remain unchanged, and one increases
the TD. If we consider that 98.57% of the PRs have at least one
pre-existing issue, then the PRs with unchanged TD neglect some
amount of TD. Thus, considering both the PRs that keep the TD
unchanged and the PRs that increase the TD, we found that 75.56%
of the PRs neglect some amount of TD.

Table 3: Percentages of pre-existing TDV by projects.

Project Pre-existing TDV Percentages
Unchanged Reduced

accumulo 57.64% 42.36%
cayenne 75.93% 24.07%
commons-collections 53.85% 46.15%
commons-io 62.50% 37.50%
commons-lang 81.15% 18.85%
helix 56.51% 43.49%
httpcomponents-client 69.49% 30.51%
maven-surefire 68.00% 32.00%
opennlp 43.96% 56.04%
struts 51.80% 48.20%
wicket 64.10% 35.90%
zookeeper 67.65% 32.35%
Mean 62.71% 37.29%

We can calculate 𝑇𝐷𝑉 according to the origin of the issues.
Tables 3 and 4 show the percentages for the pre-existing 𝑇𝐷𝑉 and
the new𝑇𝐷𝑉 , where a value less than zero indicates a reduction in
the specific TD and equal to zero indicates unchanged TD. In the
case of new 𝑇𝐷𝑉 , for PRs containing new issues, reduction means
solving at least one of the issues. On average, 37.29% of the PRs
reduce some amount of pre-existing TD, while 62.71% ignore the
pre-existing TD. On the other hand, for PRs with new issues, only
13.96% reduce some amount of new TD, meaning that 86.04% of the
PRs in which the author adds new issues do not fix any of the issues

https://github.com/apache/struts/pull/799
https://github.com/apache/accumulo/pull/2022
https://rules.sonarsource.com/java/RSPEC-117/
https://rules.sonarsource.com/java/RSPEC-2589/
https://rules.sonarsource.com/java/RSPEC-101/
https://rules.sonarsource.com/java/RSPEC-1125/

SBES’24, September 30 – October 04, 2024, Curitiba, PR Calixto, et al.

Table 4: Percentages of new TDV by projects.

Project New TDV Percentages
Unchanged Reduced

accumulo 75.34% 24.66%
cayenne 90.91% 9.09%
commons-collections 66.67% 33.33%
commons-io 84.00% 16.00%
commons-lang 85.00% 15.00%
helix 75.86% 24.14%
httpcomponents-client 94.74% 5.26%
maven-surefire 100% 0.00%
opennlp 95.83% 4.17%
struts 91.43% 8.57%
wicket 94.12% 5.88%
zookeeper 78.57% 21.43%
Mean 86.04% 13.96%

before the PR is merged. In the specific case of the maven-surefire
project, which showed 0% of PRs with reduction in new TD and
100% of PRs with unchanged TD, only 7 PRs in this project have
new TD.

RQ1: Nearly all PRs involve some amount of TD (96.26%). We found
that TD varies in a ratio close to 1:2:1, meaning that one in every
four PRs reduces TD, two keep it unchanged, and one increases TD.
Regarding the origins of TD, 37.29% of PRs with pre-existing TD reduce
some amount of it, while only 13.96% of PRs with new TD reduce it,
within the PR, to some extent.

5.3 RQ2: Which TD issues are most commonly
resolved and neglected within PRs?

To address RQ2, we aggregate the top 10 most frequently fixed
rules per project and all top 10 most frequently unfixed rules per
project using the PositionScore metric (Section 4.4). Table 5 high-
lights the five fixed rules and the five unfixed rules with the lowest
PositionScore, that is, the most frequent across the projects. As
we can see, all frequent rules are of the CODE SMELL type, and
most have medium to high severity, thus developers more often
encounter or add code quality issues whose remediation may be
more laborious. Rule S1192 have the lowest PositionScore for both
fixed and unfixed rules, appearing in the first position in 8 projects
and up to the third position in the remaining 4 projects for unfixed
rules. For fixed rules, it appeared in the first position in 2 projects
and up to the third position in other 6 projects. This rule concerns
the duplication of String literals. When the code is affected by this
type of violation, maintenance often requires changing the same
value in multiple parts of the code. The solution to this problem is
to extract the literal value and turn it into a constant, which is then
used in all instances of that value. The results for this rule show
that depending on the situation, the developer may not see it as
an issue or not as a high severity one. One possible situation that
may lead the developer to neglect this problem is when it occurs in
test classes. Antequil et al. [2] showed that approximately 42.9% of

Figure 6: Example of a violation of the rule S100 in PR 4326
of accumulo.

regular methods use literals, while more than 82.2% of test methods
presented literals. Considering all instances of this type, 68.92%
occurred in test classes and 31.08% not.

Other rules related to TD issues that developers often overlook
are S100 and S106. Rule S106 deals with the use of standard output
for logging purposes. Out of its 6,413 occurrences, approximately
97.38% remained unfixed. By analyzing the PRs with the most in-
stances, PR 143323 of accumulo, some of the issues occurred in
a file named Main.java, which seems to be a CLI. PR 218024 of
accumulo modifies code snippets associated with the mentioned
issue and also appears to be a CLI. Popular and robust CLIs, such
as Maven25 and Gradle26, use dedicated loggers to display informa-
tion, which is seen as a good practice. However, in the mentioned
project, such practice was not adhered to.

Rule S100 deals with naming convention in methods. This rule
expects method names to satisfy the regular expression described
in Figure 6, meaning the first character should be a lowercase let-
ter, while the rest can be uppercase or lowercase letters and/or
numbers. Figure 6 shows an example of a found issue associated
to this rule, PR 432627 of accumulo, where a method name begins
with an underscore symbol "_" instead of a lowercase letter. In sev-
eral Apache projects, we noticed method names containing the
underscore character "_", so we assume that some developers do
not consider it as a problem. Since rule S100 also appears among
the most fixed, we identified some PRs with most fixed issues of
this type. For example, PR 202 of httpcomponents-client fixes
16 instances of this issue, all due to method names starting with
uppercase letters. The message of one of the commits states "Use
camelCase for Java method names – always", indicating that
method names should follow camelcase convention.

The cognitive complexity (S3776) appeared among both unfixed
and fixed rules, although upon analyzing some PRs, it seems that in
several situations, the complexity is mostly resolved when methods
or classes are removed. The PR 65728 of struts is an example where
a developer explicitly addressed this issue, as evidenced by the com-
ment "[...] good to see the cognitive complexity reduced
afterwards" and the PR description "Improve readability of
XmlConfigurationProvider class". Among the analyzed projects,
only struts officially uses SonarQube, and this was probably a case
where the developer paid attention to the tool’s reports to identify
and fix the problem. Still, this is an uncommon situation and we

23https://github.com/apache/accumulo/pull/1433
24https://github.com/apache/accumulo/pull/2180
25https://github.com/apache/maven
26https://github.com/gradle/gradle
27https://github.com/apache/accumulo/pull/4326
28https://github.com/apache/struts/pull/657/

https://github.com/apache/accumulo/pull/1433
https://github.com/apache/accumulo/pull/2180
https://github.com/apache/maven
https://github.com/gradle/gradle
https://github.com/apache/accumulo/pull/4326
https://github.com/apache/struts/pull/657/

How does Technical Debt Evolve within Pull Requests? An Empirical Study with Apache Projects SBES’24, September 30 – October 04, 2024, Curitiba, PR

Table 5: Top 5 fixed rules and top 5 unfixed rules by PositionScore metric.

Unfixed rules

PositionScore Rule Description Severity Type

22 S1192 String literals should not be duplicated CRITICAL CODE SMELL
85 S3776 Cognitive Complexity of methods should not be too high CRITICAL CODE SMELL
100 S100 Method names should comply with a naming convention MINOR CODE SMELL
100 S106 Standard outputs should not be used directly to log anything MAJOR CODE SMELL
101 S117 Local variable and method parameter names should comply

with a naming convention
MINOR CODE SMELL

Fixed rules

PositionScore Rule Description

41 S1192 String literals should not be duplicated CRITICAL CODE SMELL
84 S1874 "@Deprecated" code should not be used MINOR CODE SMELL
90 S112 Generic exceptions should never be thrown MAJOR CODE SMELL
94 S2293 The diamond operator ("<>") should be used MINOR CODE SMELL
102 S3776 Cognitive Complexity of methods should not be too high CRITICAL CODE SMELL

Figure 7: Example of a compliant and non-compliant code
for rule S2293.

believe this rule to be a point where developers should take more
attention, as methods with high cognitive complexity are more
difficult to test and to maintain.

Among the rules that only appeared as fixed, they were related
to obsolete code (S1874), improper exception handling (S112), and
redundancy (S2293). Rule S1874 tracks the use of deprecated code
annotated with the @Deprecated Java annotation; in this case, it
is expected that the removal of the deprecated code is planned for
sometime.

Rule S2293 states that instead of declaring the object type both
in the declaration and in the constructor, one should simplify the
constructor by using only the diamond operator without a type <>,
and the compiler will infer the type. Figure 7 shows an example
of code snippets conforming to the rule and others that do not.
The two PRs with the highest number of fixed issues for this rule
are PR 264329 (107 instances) and 360430 (55 instances), both from
accumulo. In both cases, these rules are fixed by code removals and
not by directly addressed. The S112 rule states that generic Java
exceptions should never be thrown. This rule recommends catching
only the exceptions one intends to handle, and when working
with generic exception types, the only way to distinguish between
multiple exceptions is by checking their message, which is error-
prone and hard to maintain. The PR that stood out with the most
29https://github.com/apache/accumulo/pull/2643
30https://github.com/apache/accumulo/pull/3604

issues fixed for this rule was PR 340231 of accumulo, in which 260
instances were addressed. According to the PR description, its focus
was on improving exception handling, as the author clarifies "[...]
try to catch more specific checked exceptions, when
appropriate, instead of catching (Exception) [...]".
This case, where the developer identifies and handles a specific
problem, does not seem to be common.

RQ2: The most common TD issues are related to naming convention,
duplication of literals, cognitive complexity, obsolete code, improper
exception handling, and redundancy. Naming convention and dupli-
cation of literals issues appear to be tolerable to developers. However,
they demonstrate concern in removing obsolete code, duplication of
literals, and improper exception handling. We found indications that
cognitive complexity is not well addressed by developers.

5.4 Implications
Our findings have implications for practitioners, researchers and
tools. For practitioners, our results indicate that the most common
TD issues are related to code quality (CODE SMELL), often requiring
longer remediation times (medium to high severity). Additionally,
we observed that TD is neglected in a large portion of PRs (ap-
proximately 75%). Projects can consider implementing mechanisms
to block PR merges that exceed a certain threshold of new TD.
Furthermore, projects opting to use tools with customizable con-
figurations, such as SonarQube, may consider configuring which
rules are appropriate for their context and disable those that are not
relevant. Lastly, developers are encouraged to be more attentive
to frequently overlooked issues, such as cognitive complexity, as
complex code tends to be more challenging to test and maintain.

For researchers, further studies could delve into the tolerance of
issues, seeking developers’ perspectives on this matter. This could
contribute the proper configuration of analysis tools and/or the
development of tools that could consider the context where the
issues occurred and/or adjust severity levels. Moreover, we found
that some TD issues are often addressed in code removal situations,

31https://github.com/apache/accumulo/pull/3402

https://github.com/apache/accumulo/pull/2643
https://github.com/apache/accumulo/pull/3604
https://github.com/apache/accumulo/pull/3402

SBES’24, September 30 – October 04, 2024, Curitiba, PR Calixto, et al.

indicating developers did not have proper intention to fix them.
Therefore, it is important to better explore such aspect. Surveys
and/or code review and commit messages could be used as in this
sense.

6 THREATS TO VALIDITY
We used SonarQube to quantify TD, however it can only detect code
TD and design TD, it can not detect other types such as requirements
debt, social debt, build debt, etc [29]. SonarQube can also present
false positives. The first author manually reviewed several samples
of the collected data and observed that the occurrence of false
positives was minimal, thereby not significantly affecting the drawn
conclusions. Additionally, the need to compile the code posed a
challenge to include projects in this study, as a significant number
of PRs were excluded from the analysis due to compilation errors.
Running the analyses is time-consuming, with an average execution
time of 6m18s per commit. Therefore, we parallelized the executions
on four VMs, allowing us to analyze a reasonable sample of 2,035
PRs in about two weeks. Despite these challenges, SonarQube is
the most widely used tool in empirical studies related to TD [3, 9,
12, 27, 29, 43], and, as far as we know, the only tool that estimates
the remediation time for TD.

Other quality methods could be used to measure TD. While
the SQALE method estimates TD as remediation time, models like
QMOOD [4] and Quamoco [40] aggregate structural metrics into
quality aspects. Moreover, Curtis et al. [8] proposed a method for
measuring TD based on three variables: the number of issues to be
addressed, the amount of time to resolve each issue, and the cost of
labor ($ per hour). From the mentioned methods, only Quamoco
has an available plugin32, although it has not been updated in the
last 7 years, while QMOOD does not have any dedicated tools. A
recent study [46] used other tools such as SonarQube to estimate
the metrics described by QMOOD.

Our filtering strategy reduced almost half of the PRs in our initial
dataset. However, such filtering was necessary to prevent situations
such as dealing with code pulled from other branches that could
affect the results. Additionally, we chose to study only Java projects
from the Apache Software Foundation. The results may differ for
other languages or industrial projects.

The scripts developed for processing and analyzing the PRs were
manually validated by the authors and through several tests. For
the replication of this study, we detailed all the main steps in the
methodology and made our replication kit available [10]. The kit
includes the mined and processed PRs at each step, as well as the
analysis scripts and the analyzed data.

7 CONCLUSIONS
In this paper, we analyzed how TD evolves within PRs and which
types of issues are most resolved and most neglected by develop-
ers. For that, we analyzed 2,035 merged PRs from 12 Apache Java
projects using the SonarQube tool.

The results indicate that 96.26% of PRs involve some amount of
TD. Across the projects, the evolution of TD tends to follow a 1:2:1
ratio (reduction:unchanged:increment), meaning that for every four
PRs, one reduces TD, two remain unchanged, and one increases TD.
32https://github.com/MSUSEL/msusel-quamoco-plugin

Considering that maintaining TD unchanged can be seen as a form
of neglect, approximately 76.63% of PRs neglect TD to some extent.
Moreover, 37.29% of PRs with pre-existing TD address some of it,
and only 13.96% of PRs introducing new TD address any portion of
it.

We identified that the most common types of issues across the
studied projects are related to naming conventions, literal dupli-
cation, cognitive complexity, obsolete code, improper exception
handling, logging bad practices and redundancy. Among these, lit-
eral duplication was the most prevalent across all projects. We
found indications that some types of issues may be tolerable, such
as literal duplication and naming conventions. However, cognitive
complexity appears to be a problem that deserves more attention
from developers due to its impact on code understanding and testa-
bility.

For future work, we plan to study if TD is part of the PR code
review. More specifically, whether reviewers are concerned about
TD when reviewing a PR to be merged. For that, we plan to relate
review comments to code edits that fixed TD issues. Moreover,
we plan to conduct a survey with developers and reviewers to
understand their tolerance to certain types of TD issues.

AVAILABILITY OF ARTIFACTS
All data and scripts used in this study are available for future inves-
tigations [10].

ACKNOWLEDGMENTS
The first author was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Fi-
nance Code 001.

REFERENCES
[1] Areti Ampatzoglou, Nikolaos Mittas, Angeliki-Agathi Tsintzira, Apostolos Am-

patzoglou, Elvira-Maria Arvanitou, Alexander Chatzigeorgiou, Paris Avgeriou,
and Lefteris Angelis. 2020. Exploring the Relation between Technical Debt Prin-
cipal and Interest: An Empirical Approach. Information and Software Technology
128 (2020), 106391. https://doi.org/10.1016/j.infsof.2020.106391

[2] Nicolas Anquetil, Julien Delplanque, Stéphane Ducasse, Oleksandr Zaitsev,
Christopher Fuhrman, and Yann-Gael Guéhéneuc. 2022. What do developers con-
sider magic literals? A smalltalk perspective. Information and Software Technology
149 (Sept. 2022). https://doi.org/10.1016/j.infsof.2022.106942

[3] Paris C. Avgeriou, Davide Taibi, Apostolos Ampatzoglou, Francesca Ar-
celli Fontana, Terese Besker, Alexander Chatzigeorgiou, Valentina Lenarduzzi,
Antonio Martini, Athanasia Moschou, Ilaria Pigazzini, Nyyti Saarimaki, Dar-
ius Daniel Sas, Saulo Soares de Toledo, and Angeliki Agathi Tsintzira. 2021. An
Overview and Comparison of Technical Debt Measurement Tools. IEEE Software
38, 3 (2021), 61–71. https://doi.org/10.1109/MS.2020.3024958

[4] J. Bansiya and C.G. Davis. 2002. A hierarchical model for object-oriented design
quality assessment. IEEE Transactions on Software Engineering 28, 1 (2002), 4–17.
https://doi.org/10.1109/32.979986

[5] Flávia Coelho, Nikolaos Tsantalis, Tiago Massoni, and Everton LG Alves. 2021.
An empirical study on refactoring-inducing pull requests. In Proceedings of the
15th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). 1–12.

[6] Thierry Coq and Jean-Pierre Rosen. 2011. The SQALE Quality and Analysis
Models for Assessing the Quality of Ada Source Code. In Reliable Software Tech-
nologies - Ada-Europe 2011, Alexander Romanovsky and Tullio Vardanega (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 61–74.

[7] Ward Cunningham. 1992. The WyCash Portfolio Management System. In Adden-
dum to the Proceedings on Object-Oriented Programming Systems, Languages,
and Applications (Addendum) (Vancouver, British Columbia, Canada) (OOP-
SLA ’92). Association for Computing Machinery, New York, NY, USA, 29–30.
https://doi.org/10.1145/157709.157715

[8] Bill Curtis, Jay Sappidi, and Alexandra Szynkarski. 2012. Estimating the Principal
of an Application’s Technical Debt. IEEE Software 29, 6 (2012), 34–42. https:

https://github.com/MSUSEL/msusel-quamoco-plugin
https://doi.org/10.1016/j.infsof.2020.106391
https://doi.org/10.1016/j.infsof.2022.106942
https://doi.org/10.1109/MS.2020.3024958
https://doi.org/10.1109/32.979986
https://doi.org/10.1145/157709.157715
https://doi.org/10.1109/MS.2012.156
https://doi.org/10.1109/MS.2012.156

How does Technical Debt Evolve within Pull Requests? An Empirical Study with Apache Projects SBES’24, September 30 – October 04, 2024, Curitiba, PR

//doi.org/10.1109/MS.2012.156
[9] Carlos Eduardo C. Dantas, Adriano M. Rocha, and Marcelo A. Maia. 2023. How

do Developers Improve Code Readability? An Empirical Study of Pull Requests.
In 2023 IEEE International Conference on Software Maintenance and Evolution
(ICSME). 110–122. https://doi.org/10.1109/ICSME58846.2023.00022

[10] Felipe E. de O. Calixto, Eliane C. Araújo, and Everton L. G. Alves. 2024. [Replica-
tion Kit] How does Technical Debt Evolve within Pull Requests? An Empirical
Study with Apache Projects. https://doi.org/10.5281/zenodo.12761591

[11] G. Digkas, A. Chatzigeorgiou, A. Ampatzoglou, and P. Avgeriou. 2022. Can
Clean New Code Reduce Technical Debt Density? IEEE Transactions on Software
Engineering 48, 05 (may 2022), 1705–1721. https://doi.org/10.1109/TSE.2020.
3032557

[12] Georgios Digkas, Mircea Lungu, Alexander Chatzigeorgiou, and Paris Avgeriou.
2017. The Evolution of Technical Debt in the Apache Ecosystem. In Software
Architecture, Antónia Lopes and Rogério de Lemos (Eds.). Springer International
Publishing, Cham, 51–66.

[13] Robert J. Eisenberg. 2012. A threshold based approach to technical debt. 37, 2
(apr 2012), 1–6. https://doi.org/10.1145/2108144.2108151

[14] Giammaria Giordano, Giusy Annunziata, Andrea De Lucia, and Fabio Palomba.
2023. Understanding Developer Practices and Code Smells Diffusion in AI-
Enabled Software: A Preliminary Study. In Joint Proceedings of the 32nd In-
ternational Workshop on Software Measurement (IWSM) and the 17th Interna-
tional Conference on Software Process and Product Measurement (MENSURA),
Rome, Italy, September 14-15, 2023 (CEUR Workshop Proceedings, Vol. 3543),
Gabriele De Vito, Filomena Ferrucci, and Carmine Gravino (Eds.). CEUR-WS.org.
https://ceur-ws.org/Vol-3543/paper18.pdf

[15] Isaac Griffith and Clemente Izurieta. 2014. Design pattern decay: the case for
class grime (ESEM ’14). Association for Computing Machinery, New York, NY,
USA, Article 39, 4 pages. https://doi.org/10.1145/2652524.2652570

[16] Makrina Viola Kosti, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Geor-
gios Pallas, Ioannis Stamelos, and Lefteris Angelis. 2017. Technical Debt Prin-
cipal Assessment Through Structural Metrics. In 2017 43rd Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA). 329–333.
https://doi.org/10.1109/SEAA.2017.59

[17] Philippe Kruchten, Robert Nord, and Ipek Ozkaya. 2019. Managing Technical Debt:
Reducing Friction in Software Development (1st ed.). Addison-Wesley Professional.

[18] Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaël Guéhéneuc.
2020. Code smells and refactoring: A tertiary systematic review of challenges
and observations. Journal of Systems and Software 167 (2020), 110610. https:
//doi.org/10.1016/j.jss.2020.110610

[19] Luigi Lavazza, Davide Tosi, and Sandro Morasca. 2020. An Empirical Study on the
Persistence of SpotBugs Issues in Open-Source Software Evolution. In Quality of
Information and Communications Technology, Martin Shepperd, Fernando Brito e
Abreu, Alberto Rodrigues da Silva, and Ricardo Pérez-Castillo (Eds.). Springer
International Publishing, Cham, 144–151.

[20] Valentina Lenarduzzi, Vili Nikkola, Nyyti Saarimäki, and Davide Taibi. 2021.
Does code quality affect pull request acceptance? An empirical study. Journal of
Systems and Software 171 (2021), 110806. https://doi.org/10.1016/j.jss.2020.110806

[21] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. The Technical
Debt Dataset. CoRR abs/1908.00827 (2019). arXiv:1908.00827 http://arxiv.org/
abs/1908.00827

[22] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2020. Some SonarQube
issues have a significant but small effect on faults and changes. A large-scale
empirical study. Journal of Systems and Software 170 (2020), 110750. https:
//doi.org/10.1016/j.jss.2020.110750

[23] Jean-Louis Letouzey. 2012. The SQALE method for evaluating Technical Debt.
In 2012 Third International Workshop on Managing Technical Debt (MTD). 31–36.
https://doi.org/10.1109/MTD.2012.6225997

[24] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study
on technical debt and its management. Journal of Systems and Software 101 (2015),
193–220. https://doi.org/10.1016/j.jss.2014.12.027

[25] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Shin Yoo, and Yves Le Traon.
2021. Mining Fix Patterns for FindBugs Violations. IEEE Transactions on Software
Engineering 47, 1 (2021), 165–188. https://doi.org/10.1109/TSE.2018.2884955

[26] Diego Marcilio, Rodrigo Bonifácio, Eduardo Monteiro, Edna Canedo, Welder
Luz, and Gustavo Pinto. 2019. Are Static Analysis Violations Really Fixed? A
Closer Look at Realistic Usage of SonarQube. In 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC). 209–219. https://doi.org/10.1109/
ICPC.2019.00040

[27] Arthur-Jozsef Molnar and Simona Motogna. 2020. Long-Term Evaluation of
Technical Debt in Open-Source Software (ESEM ’20). Association for Computing
Machinery, New York, NY, USA, Article 13, 9 pages. https://doi.org/10.1145/
3382494.3410673

[28] J. Yates Monteith and John D. McGregor. 2013. Exploring software supply chains
from a technical debt perspective. In 2013 4th International Workshop on Managing
Technical Debt (MTD). 32–38. https://doi.org/10.1109/MTD.2013.6608676

[29] Nikolaos Nikolaidis, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Niko-
laos Mittas, Evdokimos Konstantinidis, and Panagiotis Bamidis. 2023. Exploring

the Effect of Various Maintenance Activities on the Accumulation of TD Principal.
In 2023 ACM/IEEE International Conference on Technical Debt (TechDebt). 102–111.
https://doi.org/10.1109/TechDebt59074.2023.00018

[30] Ariadi Nugroho, Joost Visser, and Tobias Kuipers. 2011. An empirical model of
technical debt and interest (MTD ’11). Association for Computing Machinery,
New York, NY, USA, 1–8. https://doi.org/10.1145/1985362.1985364

[31] Sebastiano Panichella, Venera Arnaoudova, Massimiliano Di Penta, and Giuliano
Antoniol. 2015. Would static analysis tools help developers with code reviews?.
In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and
Reengineering (SANER). 161–170. https://doi.org/10.1109/SANER.2015.7081826

[32] Nyyti Saarimaki, Maria Teresa Baldassarre, Valentina Lenarduzzi, and Simone
Romano. 2019. On the Accuracy of SonarQube Technical Debt Remediation
Time. In 2019 45th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). 317–324. https://doi.org/10.1109/SEAA.2019.00055

[33] SonarQube. [n. d.]. Metric definitions. https://docs.sonarsource.com/sonarqube/
10.0/user-guide/metric-definitions/. Accessed: 2024-03-30.

[34] SonarSouce. 2022. SonarSource Posts Record Growth with its Clean Code So-
lution. https://www.sonarsource.com/company/press-releases/sonar-record-
growth-2022/. Accessed: 2023-05-04.

[35] SonarSource. [n. d.]. Adding Code Rules. https://docs.sonarsource.com/
sonarqube/10.0/extension-guide/adding-coding-rules/. Accessed: 2024-03-31.

[36] Jie Tan, Daniel Feitosa, Paris Avgeriou, andMircea Lungu. 2021. Evolution of tech-
nical debt remediation in Python: A case study on the Apache Software Ecosystem.
Journal of Software: Evolution and Process 33, 4 (2021), e2319. https://doi.org/
10.1002/smr.2319 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2319
e2319 smr.2319.

[37] Alexander Trautsch, Steffen Herbold, and Jens Grabowski. 2023. Are automated
static analysis tools worth it? An investigation into relative warning density
and external software quality on the example of Apache open source projects.
Empirical Software Engineering 28, 3 (17 Apr 2023), 66. https://doi.org/10.1007/
s10664-023-10301-2

[38] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald C. Gall. 2018. Context is king: The developer perspective
on the usage of static analysis tools. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 38–49. https://doi.
org/10.1109/SANER.2018.8330195

[39] Antonio Vetrò. 2012. Using automatic static analysis to identify technical debt.
In 2012 34th International Conference on Software Engineering (ICSE). 1613–1615.
https://doi.org/10.1109/ICSE.2012.6227226

[40] Stefan Wagner, Klaus Lochmann, Lars Heinemann, Michael Kläs, Adam Tren-
dowicz, Reinhold Plösch, Andreas Seidl, Andreas Goeb, and Jonathan Streit. 2012.
The quamoco product quality modelling and assessment approach. In Proceedings
of the 34th International Conference on Software Engineering (Zurich, Switzerland)
(ICSE ’12). IEEE Press, 1133–1142.

[41] Aiko Yamashita and Steve Counsell. 2013. Code smells as system-level indicators
of maintainability: An empirical study. Journal of Systems and Software 86, 10
(2013), 2639–2653. https://doi.org/10.1016/j.jss.2013.05.007

[42] Ping Yu, Yijian Wu, Jiahan Peng, Jian Zhang, and Peicheng Xie. 2023. Towards
Understanding Fixes of SonarQube Static Analysis Violations: A Large-Scale Em-
pirical Study. In 2023 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). 569–580. https://doi.org/10.1109/SANER56733.2023.
00059

[43] Ehsan Zabardast, Kwabena Ebo Bennin, and Javier Gonzalez-Huerta. 2022. Fur-
ther investigation of the survivability of code technical debt items. J. Softw. Evol.
Process 34, 2 (feb 2022), 16 pages. https://doi.org/10.1002/smr.2425

[44] Nico Zazworka, Antonio Vetro’, Clemente Izurieta, Sunny Wong, Yuanfang Cai,
Carolyn Seaman, and Forrest Shull. 2014. Comparing four approaches for tech-
nical debt identification. Software Quality Journal 22, 3 (01 Sep 2014), 403–426.
https://doi.org/10.1007/s11219-013-9200-8

[45] Weiqin Zou, Jifeng Xuan, Xiaoyuan Xie, Zhenyu Chen, and Baowen Xu. 2019.
How does code style inconsistency affect pull request integration? An exploratory
study on 117 GitHub projects. Empirical Software Engineering 24, 6 (01 Dec 2019),
3871–3903. https://doi.org/10.1007/s10664-019-09720-x

[46] Yusuf Özçevik. 2024. Data-oriented QMOOD model for quality assessment
of multi-client software applications. Engineering Science and Technology, an
International Journal 51 (2024), 101660. https://doi.org/10.1016/j.jestch.2024.
101660

Received XX Month XXXX; revised XX Month XXXX; accepted X Month
XXXX

https://doi.org/10.1109/MS.2012.156
https://doi.org/10.1109/ICSME58846.2023.00022
https://doi.org/10.5281/zenodo.12761591
https://doi.org/10.1109/TSE.2020.3032557
https://doi.org/10.1109/TSE.2020.3032557
https://doi.org/10.1145/2108144.2108151
https://ceur-ws.org/Vol-3543/paper18.pdf
https://doi.org/10.1145/2652524.2652570
https://doi.org/10.1109/SEAA.2017.59
https://doi.org/10.1016/j.jss.2020.110610
https://doi.org/10.1016/j.jss.2020.110610
https://doi.org/10.1016/j.jss.2020.110806
https://arxiv.org/abs/1908.00827
http://arxiv.org/abs/1908.00827
http://arxiv.org/abs/1908.00827
https://doi.org/10.1016/j.jss.2020.110750
https://doi.org/10.1016/j.jss.2020.110750
https://doi.org/10.1109/MTD.2012.6225997
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1109/TSE.2018.2884955
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1109/ICPC.2019.00040
https://doi.org/10.1145/3382494.3410673
https://doi.org/10.1145/3382494.3410673
https://doi.org/10.1109/MTD.2013.6608676
https://doi.org/10.1109/TechDebt59074.2023.00018
https://doi.org/10.1145/1985362.1985364
https://doi.org/10.1109/SANER.2015.7081826
https://doi.org/10.1109/SEAA.2019.00055
https://docs.sonarsource.com/sonarqube/10.0/user-guide/metric-definitions/
https://docs.sonarsource.com/sonarqube/10.0/user-guide/metric-definitions/
https://www.sonarsource.com/company/press-releases/sonar-record-growth-2022/
https://www.sonarsource.com/company/press-releases/sonar-record-growth-2022/
https://docs.sonarsource.com/sonarqube/10.0/extension-guide/adding-coding-rules/
https://docs.sonarsource.com/sonarqube/10.0/extension-guide/adding-coding-rules/
https://doi.org/10.1002/smr.2319
https://doi.org/10.1002/smr.2319
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2319
https://doi.org/10.1007/s10664-023-10301-2
https://doi.org/10.1007/s10664-023-10301-2
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/ICSE.2012.6227226
https://doi.org/10.1016/j.jss.2013.05.007
https://doi.org/10.1109/SANER56733.2023.00059
https://doi.org/10.1109/SANER56733.2023.00059
https://doi.org/10.1002/smr.2425
https://doi.org/10.1007/s11219-013-9200-8
https://doi.org/10.1007/s10664-019-09720-x
https://doi.org/10.1016/j.jestch.2024.101660
https://doi.org/10.1016/j.jestch.2024.101660

	Abstract
	1 Introduction
	2 Background
	2.1 SonarQube
	2.2 The SQALE Method
	2.3 PR-Based Development

	3 Related Work
	4 Study Design
	4.1 Dataset
	4.2 Data Preparation
	4.3 Data Processing
	4.4 Data Analysis
	4.5 Metrics

	5 Results and Discussions
	5.1 Data Characterization
	5.2 RQ1: How does TD evolve within PRs?
	5.3 RQ2: Which TD issues are most commonly resolved and neglected within PRs?
	5.4 Implications

	6 Threats to Validity
	7 Conclusions
	Acknowledgments
	References

