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ABSTRACT
[Context] In Brazil, 41% of companies use machine learning (ML)
to some extent. However, several challenges have been reported
when engineering ML-enabled systems, including unrealistic cus-
tomer expectations and vagueness in ML problem specifications.
Literature suggests that Requirements Engineering (RE) practices
and tools may help to alleviate these issues, yet there is insuffi-
cient understanding of RE’s practical application and its perception
among practitioners. [Goal] This study aims to investigate the
application of RE in developing ML-enabled systems in Brazil, cre-
ating an overview of current practices, perceptions, and problems
in the Brazilian industry. [Method] To this end, we extracted and
analyzed data from an international survey focused on ML-enabled
systems, concentrating specifically on responses from practition-
ers based in Brazil. We analyzed the cluster of RE-related answers
gathered from 72 practitioners involved in data-driven projects. We
conducted quantitative statistical analyses on contemporary prac-
tices using bootstrapping with confidence intervals and qualitative
studies on the reported problems involving open and axial coding
procedures. [Results] Our findings highlight distinct aspects of
RE implementation in ML projects in Brazil. For instance, (i) RE-
related tasks are predominantly conducted by data scientists; (ii) the
most common techniques for eliciting requirements are interviews
and workshop meetings; (iii) there is a prevalence of interactive
notebooks in requirements documentation; (iv) practitioners re-
port problems that include a poor understanding of the problem to
solve and the business domain, low customer engagement, and dif-
ficulties managing stakeholders expectations. [Conclusion] These
results provide an understanding of RE-related practices in the
Brazilian ML industry, helping to guide research and initiatives
toward improving the maturity of RE for ML-enabled systems.
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1 INTRODUCTION
Machine Learning (ML) has increasingly gained prominence in the
global industry. In 2023, 41% of Brazilian companies have already
implemented ML to some extent, while the remaining are willing
to adopt it as well [16]. These systems, where ML components are
integral parts of larger systems, are known as ML-enabled systems.
Their behavior is based on explicitly defined rules and data used by
the ML component to make predictions [40].

Transitioning from traditional software to ML-enabled systems
poses various challenges from the viewpoint of Software Engineer-
ing (SE) [33]. Some examples include covering additional quality
properties such as fairness and explainability, dealing with a high
degree of iterative experimentation, and mismatched assumptions
in customers and multidisciplinary teams [29, 36]. Such challenges
typically demand extra effort to successfully develop ML-enabled
systems and may contribute to the statistic that 87% of ML projects
never reach production [13].

Due to the communication and collaboration-intensive nature,
as well as inherent interaction with most other development pro-
cesses, the literature suggests that Requirements Engineering (RE)
can help address several challenges when engineering ML-enabled
systems [1, 42, 44]. However, establishing effective RE practices in
ML projects may be difficult primarily due to (i) the lack of prac-
titioners engaged in formal RE activities [3], and (ii) the absence
of tailored techniques and tools for data-driven projects since re-
search on this intersection mainly focuses on using ML techniques
to support RE activities rather than exploring how RE can improve
the development of ML-enabled systems [8]. Therefore, it is not
surprising that recent studies emphasize that practitioners find RE
as the most difficult activity of ML projects [18, 27, 35].
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In order to strengthen the empirical evidence into current Brazil-
ian industrial RE practices, perceptions, and challenges when devel-
oping ML-enabled systems, we extracted and analyzed data from
an international survey focused on current practices and challenges
for ML-enabled systems, concentrating specifically on responses
from practitioners based in Brazil. We looked deeper into the RE-
related answers gathered from 72 practitioners involved in ML
projects in Brazil afterward. Based on practitioners’ responses, we
conducted quantitative and qualitative analyses, providing insights
into (i) what role is typically in charge of requirements; (ii) how
requirements are typically elicited and documented; (iii) which non-
functional requirements typically play a major role; (iv) which RE
activities are perceived as most difficult, and (v) what RE-related
challenges do ML practitioners face. We share our findings on the
practices, perceptions, and challenges of RE for ML in Brazil to
contribute to a broader understanding of the field. By analyzing the
data from this specific region, we aim to provide valuable context
that could guide future research and compare trends in RE for ML
on a global scale.

The remainder of this paper is organized as follows. Section II
provides the background and related work. Section III describes the
research method. Section IV presents the results. Sections V and
VI discuss the results and threats to validity. Finally, Section VII
presents our concluding remarks.

2 BACKGROUND AND PREVIOUS WORK
Machine Learning (ML) is a sub-field of artificial intelligence that
involves the study of algorithms and statistical models that allow
software systems to learn and make predictions based on data [19].
By recognizing patterns in the data on which they are trained, ML
algorithms are developed to improve automatically over time on
unseen data [34]. Consequently, the development of ML-enabled
systems differs significantly from conventional software systems
due to several key factors.

There is a high level of experimentation and uncertain outcomes
when developing ML-enabled systems [2] and a multidisciplinary
team is essential, comprising domain experts, software developers,
data science, and engineering professionals [36]. Data scientists,
who typically take the rein when developing ML projects [26],
experiment with various data, algorithms, and models to determine
the most effective approach for achieving their objectives, which
means that setting up goals and requirements at the beginning of
the process would demand an estimate of different metrics (e.g.,
accuracy) in advance [18].

Uncertainty and experimentation are expected for this scenario
onceML projects often begin as small Proof-of-Concept (PoC) initia-
tives, and 87% of them never reach production [13]. The complexity
of transitioning from laboratory-level models to production archi-
tectures brings several challenges [30, 48]. Although ML-enabled
systems are hugely popular and in demand, multiple ML projects
that have overcome the first barrier of reaching production have
failed in recent years, leading to severe repercussions for the orga-
nizations involved and the society at large [5, 12]. The reason for
this is often the same: systems that incorporate ML components
tend to put stakeholder needs in the background and oversimplify

important scenarios and trade-offs. This leads to a problem that the
Requirements Engineering (RE) discipline can tackle.

Requirements Engineering constitutes approaches to understand-
ing the problem space and specifies requirements that all stakehold-
ers agree upon [9]. As such, it concentrates on understanding the
actual problem, what is needed towards a system result, and how
to resolve potential conflicts, and it is thus characterized by the
involvement of interdisciplinary stakeholders and often resulting
in uncertainty [45]. The large degree of uncertainty in developing
ML-enabled systems introduces new challenges and heavily affects
RE [6, 33].

In order to overcome such difficulties, some studies have pro-
posed newmethods or adapted existing ones to handle requirements
on such systems [17, 43]. However, gathering empirical evidence
from the industry is essential to accurately identify real-world chal-
lenges, perceptions, and current practices. For instance, several
studies have surveyed practitioners and found that unpredictability
makes it difficult to define any criteria or requirements regarding
the output of ML components [3, 7, 44]. This introduces a challenge
in collaboration with stakeholders, who may perceive what ML is
capable of wrongly [14].

We advocate that insights from practitioners can guide the de-
velopment of new RE techniques for ML, thereby increasing the
likelihood of designing and developing ML-enabled systems that
meet customer needs and potentially avoid costly problems later
on. To complement the already discussed research, we present ad-
ditional empirical evidence from Brazil on the current practices,
perceptions, and challenges regarding RE for ML-enabled systems
obtained from our previous study, an international survey [3]. We
understand that bridging the gap between theory and practice is
essential for RE maturity in such systems.

3 RESEARCH METHOD
3.1 Goal and Research Questions
This paper aims to characterize the current practices, perceptions,
and challenges regarding RE for ML-enabled system projects in
the Brazilian industry. From this goal, we established the following
research questions:

• RQ1. What are the contemporary practices adopted
in Brazil regarding RE for ML-enabled systems? This
question aims to reveal how practitioners are currently ap-
proaching RE for ML in Brazilian companies by identifying
trends, main methods, and the extent to which the degree of
alignment with established industry practices. We refined
RQ1 into the following questions:
– RQ1.1 Who is addressing the requirements of Brazilian
ML-enabled system projects?

– RQ1.2 How are requirements typically elicited in Brazilian
ML-enabled system projects?

– RQ1.3 How are requirements typically documented in
Brazilian ML-enabled system projects?

– RQ1.4 Which NFRs do typically play a major role in Brazil-
ian ML-enabled system projects?

– RQ1.5 Which activities are considered to be most diffi-
cult when defining requirements for Brazilian ML-enabled
system projects?
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• RQ2.What are themain RE-related challenges faced by
Brazilian practitioners working onML-enabled system
projects? Identifying these challenges in Brazil reflects the
current maturity of these systems in the country. At the
same time, it also informs the development of strategies to
mitigate difficulties, helping to steer future research on the
topic in a problem-driven manner. For this research question,
we applied open and axial coding procedures to allow the
problems to emerge from the open-text responses provided
by the practitioners.

3.2 Survey Design
We extracted and analyzed data from our previous study, which
presented an international survey [3, 24] that was conducted based
on best practices of survey research [46], carefully conducting the
steps below:

• Step 1. Initial Survey Design. We conducted a literature
review on RE for ML [42] and combined our findings with
previous results on RE problems [11] and the RE status quo
[45] to provide the theoretical foundations for questions and
answer options. Therefrom, the initial survey was drafted by
software engineering and machine learning researchers of
PUC-Rio (Brazil) with experience in R&D projects involving
ML-enabled systems.

• Step 2. Survey Design Review. The survey was reviewed
and adjusted based on online discussions and annotated
feedback from software engineering and machine learning
researchers of BTH (Sweden). Thereafter, the survey was
also reviewed by the other co-authors.

• Step 3. Pilot Face Validity Evaluation. This evaluation in-
volves a lightweight review by randomly chosen respondents.
It was conducted with 18 Ph.D. students taking a Survey Re-
search Methods course. They were asked to provide feedback
on the clearness of the questions and to record their response
time. This phase resulted in minor adjustments related to
usability aspects and unclear wording. The answers were
discarded before launching the survey.

• Step 4. Pilot Content Validity Evaluation. This evalu-
ation involves subject experts from the target population.
Therefore, we selected five experienced data scientists de-
veloping ML-enabled systems, asked them to answer the
survey, and gathered their feedback. The participants had no
difficulties answering the survey, which took an average of
20 minutes. After this step, the survey was considered ready
to be launched.

The final survey started with a consent form describing the pur-
pose of the study and stating that it was conducted anonymously.
The remainder was divided into 15 demographic questions (D1 to
D15) and three specific parts with 17 substantive questions (Q1
to Q17): seven on the ML life cycle and problems, five on require-
ments, and five on deployment and monitoring. This paper focuses
on the demographics, the Problem Understanding and Require-
ments stage of the ML life cycle, and specific questions regarding
requirements. Excerpts of the substantive questions related to this

Table 1: Research questions and survey questions

RQ Survey
No.

Description Type

- ... ... ...

RQ2 Q4 According to your personal experience, please outline
the main problems or difficulties (up to three) faced
during the Problem Understanding and Requirements
ML life cycle stage.

Open

- ... ... ...

RQ1.1 Q8 Who is actively addressing the requirements of ML-
enabled system projects in your organization?

Closed
(MC)

RQ1.2 Q9 How were requirements typically elicited in the ML-
enabled system projects you participated in?

Closed
(MC)

RQ1.3 Q10 How were requirements typically documented in the
ML-enabled system projects you participated in?

Closed
(MC)

RQ1.4 Q11 Which Non-Functional Requirements (NFRs) typically
play a major role in terms of criticality in the ML-
enabled system projects you participated in?

Closed
(MC)

RQ1.5 Q12 Based on your experience, what activities do you
consider most difficult when defining requirements
for ML-enabled systems?

Closed
(MC)

- ... ... ...

- - MC = Multiple Choice -

paper are shown in Table 1. The survey was implemented using
the Unipark Enterprise Feedback Suite 1.

3.3 Data Collection
Our target population concerns professionals involved in building
ML-enabled systems, including different activities, such as manage-
ment, design, and development. Therefore, it includes practitioners
in positions such as project leaders, requirements engineers, data
scientists, and developers. We used convenience sampling, sending
the survey link to professionals active in our partner companies,
and also distributed it openly on social media.

In this paper, we excluded participants who informed on the sur-
vey that they had no experience with ML-enabled system projects
and those working in other countries except Brazil. Data collection
was open from January 2022 to April 2022. We received responses
from 276 professionals; 188 completed all four sections of the sur-
vey, and of these, 72 were working in Brazil, which constituted
our total sample. The average time to complete the survey was 20
minutes. We conservatively considered only the 72 fully completed
survey responses from professionals working in Brazil.

3.4 Data Analysis Procedures
For data analysis purposes, given that all questions were optional,
the number of responses varies across the survey questions. There-
fore, we explicitly indicate the number of responses when analyzing
each question.

Research questions RQ1.1 - RQ1.5 concern closed questions, so
we decided to use inferential statistics to analyze them. Our popula-
tion has an unknown theoretical distribution (i.e., the distribution
of ML-enabled system professionals is unknown). In such cases,
resampling methods - like bootstrapping - have been reported to be
more reliable and accurate than inference statistics from samples

1https://www.unipark.com/en/survey-software/
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[32, 46]. Hence, we use bootstrapping to calculate confidence inter-
vals for our results, similar as done in [45]. In short, bootstrapping
involves repeatedly taking samples with replacements and then
calculating the statistics based on these samples. For each question,
we take the sample of 𝑛 responses for that question and bootstrap
𝑆 resample (with replacements) of the same size 𝑛. We assume 𝑛 as
the total valid answers of each question [10], and we set 1000 for 𝑆 ,
which is a value that is reported to allow meaningful statistics [28].
Figure 1 summarizes the adopted bootstrapping method.

Worldwide 
ML Professionals

ML Professionals
Survey Participants

Sample Distribution
Size n

Resample  1
Size n

Resample  2
Size n

Resample  1000
Size n

x 997

Statistics
Resample 1

95%
Confidence

Interval

Statistics
Resample 2

Statistics
Resample 1000

Bootstrapped 
ML Professionals 

Distribution

x 997

Figure 1: Bootstrapping technique

For research question RQ2, which seeks to identify the main chal-
lenges faced by practitioners involved in engineering ML-enabled
systems related to problem understanding and requirements, the
corresponding survey question is designed to be open text. We
conducted a qualitative analysis using open and axial coding proce-
dures from grounded theory [41] to allow the challenges to emerge
from the open-text responses reflecting the experience of the prac-
titioners. The primary author performed the qualitative coding
procedures and subsequently reviewed them with the secondary
author. Additionally, three researchers from academic and industry
partners reviewed the resulting codes independently.

The questionnaire, the collected data, and the quantitative and
qualitative data analysis artifacts, including Python scripts for the
bootstrapping statistics, charts, and peer-reviewed qualitative cod-
ing spreadsheets, are available in our open science repository [38].

4 RESULTS
4.1 Study Population.
We focus specifically on the data obtained from Brazil as part of
our previous study, which provided a larger international survey
on ML-enabled systems engineering [24]. The study population
consisted of 72 practitioners involved in data-driven projects across
various industries in Brazil. These respondents held various roles,
backgrounds, and professional experience. This diverse group pro-
vides a comprehensive view of the current practices, perceptions,
and challenges related to RE for ML within the Brazilian context.

Figure 2 provides insights into the characteristics of the Brazil-
ian participants involved in the survey. Regarding company size,
the majority of participants (58.3%) are employed by companies
with over 2000 employees and only 11.2% of them are employed
by small companies as presented Figure 2 (a). In Figure 2 (b), we
present participants’ main roles. Data Scientists, Business Analysts,
and Project Leads/Project Managers are the most common roles
represented. Notably, the less assessed positions were Tester and
Requirements Engineer, with one professional each.

Regarding ML-enabled system experience, in Figure 2 (c), most
participants reported having 1 to 2 years of working experience.

Closely, another significant portion of respondents indicated a
higher experience range of 3 to 6 years. This proportion emphasizes
a balanced population of beginner and experienced professionals. It
is noteworthy that regarding participants’ educational background,
87.5% mentioned having a bachelor’s degree in computer science,
information systems, statistics, or electrical engineering. Moreover,
45.83% held master’s degrees in computer science, data science, or
electrical engineering. Lastly, 19.44% completed Ph.D. programs in
computer science, physics, or computer engineering.

4.2 Problem Understanding and Requirements
ML Life Cycle Stage

In the survey, based on the nine ML life cycle stages presented by
Amershi et al. [4] and the CRISP-DM industry-independent process
model phases [39], we abstracted seven generic life cycle stages
[21] and asked about their perceived relevance and difficulty. The
answers presented in Figure 3 and 4 revealed that ML practitioners
are extremely worried about requirements given that the Problem
Understanding and Requirements stage is clearly perceived as the
most relevant and most complex life cycle stage.

0.00 20.00 40.00 60.00 80.00 100.00

Problem Understanding

Data Collection

Data Pre-Processing

Model Evaluation

Model Creation

Model Deployment

Model Monitoring

Extremely
Relevant

High
Relevance

Neutral Low
Relevance

Not Relevant
at all

I don’t know

Figure 3: Perceived Relevance of each ML life cycle stage

4.3 Contemporary RE practices for ML-enabled
Systems

4.3.1 [RQ1.1] Who is addressing the requirements of ML-enabled
system projects? The proportion of positions reported to address
the requirements of ML-enabled system projects within the boot-
strapped samples is shown in Figure 5 together with the 95% con-
fidence interval. The N in each figure caption is the number of
participants that answered this question. We report the proportion
P of the participants that checked the corresponding answer and
its 95% confidence interval in square brackets.

It is possible to observe that Data Scientists were most associated
with requirements in ML-enabled systems with P = 61.389 [60.955,
61.822], followed by Project Leaders (P = 49.6 [49.219, 49.981]),
Business Analysts (P = 28.339 [28.024, 28.653]), and Developers (P
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Data Scientist

Business Analyst

Project Lead / Project Manager

Developer

Test Manager / Tester

Requirements Engineer

33

8

8

8

1

1
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5 - 6 years
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< 1 year

7 - 8 years

+2000 employees
(58.3 %)

1001 - 2000
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(11.1 %)
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(9.7 %)

51 - 250
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(6.9 %)

11 - 50
employees

(5.6 %)

1 - 10
employees

 (5.6 %)

501 - 1000
employees

(2.8 %)

1 - 2
years

3 - 4
years

5 - 6
years7 - 8

years

9+
years

< 1
year

(a) Participants' Company Size (N = 72) (b) Participants' Main Role (N = 72) (c) Participants' ML Experience (N = 72)

Figure 2: Practitioners’ demographics: company size, roles, and ML experience

Very Complex Complex Neutral Easy Very Easy I don’t know

0.00 20.00 40.00 60.00 80.00 100.00

Problem Understanding

Data Collection

Data Pre-Processing

Model Deployment

Model Creation

Model Evaluation

Model Monitoring

Figure 4: Perceived Difficulty of each ML life cycle stage

= 21.386 [21.061, 21.71]). The less associated roles within require-
ments addressing were Solution Architects (P = 11.563 [11.353,
11.773]), Requirements Engineers (P = 8.46 [8.281, 8.639]), and
Testers (P = 1.481 [1.397, 1.566]). Several isolated options were
mentioned in the “Others" field (e.g., Machine Learning Engineer,
Data Lead, and Tech Lead), altogether summing up 14% and not sig-
nificantly influencing the overall distribution (P = 14.303 [14.032,
14.573]).

4.3.2 [RQ1.2] How are requirements typically elicited in ML-enabled
system projects? As presented in Figure 6, practitioners reported in-
terviews as themost commonly used technique (P = 69.399 [69.062,
69.735]), followed (or complemented) by workshops (P = 47.296
[46.958, 47.634]), prototyping (P = 41.638 [41.292, 41.983]), and
scenarios (P = 40.221 [39.841, 40.6]). The least used elicitation
technique was observation, with P = 35.896 [35.535, 36.257]. In
the “Others" field, the Objective and Key Results (OKRs) system

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00
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Figure 5: Roles addressing requirements of ML-enabled sys-
tems (N = 70)

and informal meetings were mentioned, but with a much lower
proportion (P = 8.357 [8.156, 8.558]).

4.3.3 [RQ1.3] How are requirements typically documented in the
ML-enabled system projects? Figure 7 shows Notebooks as the most
frequently used documentation format with P = 46.504 [46.129,
46.879], followed by User Stories (P = 30.715 [30.374, 31.057]),
Vision Documents (P = 21.304 [21.008, 21.6]), Prototypes (P =
21.182 [20.895, 21.468]), Requirements Lists (P = 19.713 [19.431,
19.994]), and Data Models (P = 19.669 [19.352, 19.986]). Surpris-
ingly, almost 17% mentioned that requirements are not documented
at all with P = 16.917 [16.632, 17.201]. Some isolated options
were mentioned in the “Others" field (e.g., Notion, Github, and
Confluence) with P = 12.668 [12.429, 12.906].

4.3.4 [RQ1.4] Which Non-Functional Requirements (NFRs) do typi-
cally play a major role in terms of criticality in the ML-enabled system
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Figure 6: Requirements Elicitation techniques of ML-enabled
systems (N = 72)
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Figure 7: Requirements Documentation of ML-enabled sys-
tems (N = 71)

projects? Regarding NFRs (Figure 8), practitioners show a signifi-
cant concern with some ML-related NFRs, such as data quality (P =
69.103 [68.75, 69.456]), model explainability (P = 37.825 [37.464,
38.187]), and model reliability (P = 36.721 [36.341, 37.101]). Some
NFRs regarding the whole system were also considered important,
such as system performance (P = 35.2 [34.874, 35.526]), system
maintainability (P = 25.441 [25.122, 25.76]), and system usability
(P = 25.175 [24.828, 25.521]). A significant number of participants
informed that NFRs were not considered within their ML-enabled
system projects (P = 12.623 [12.376, 12.869]).

4.3.5 [RQ1.5] Which activities are considered most difficult when
defining requirements for ML-enabled systems? The answer options
to this question were based on the literature regarding require-
ments [45] and requirements for ML [42]. Furthermore, we left the
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Figure 8: Critical Non-Functional Requirements of ML-
enabled systems (N = 71)

“Others" option to allow new activities to be added, but nothing
new was informed. In this context, we show in Figure 9 that the re-
spondents considered managing customer expectations is the most
difficult task (P = 71.554 [71.191, 71.916]), followed by aligning
requirements with data (P = 53.556 [53.197, 53.915]), resolving
conflicts (P = 42.346 [41.987, 42.706]), managing changing re-
quirements (P = 40.915 [40.574, 41.257]), selecting metrics (P =
32.079 [31.738, 32.42]), and elicitation and analysis task (P = 26.72
[26.418, 27.021]).
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Figure 9: Most Difficult RE activities in ML-enabled systems
(N = 71)

4.4 Main RE-related challenges in ML-enabled
System Projects

Regarding the main concerns during each ML life cycle stage, we
asked participants to inform up to three challenges related to each
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ML life cycle stage in an open-text answer. The main challenges
related to the Problem Understanding and Requirements stage
emerged from open coding applied to all of the 109 open-text an-
swers provided for this stage.

We incorporated axial coding procedures to provide an easily
understandable overview, relating the emerging codes to categories.
We started with the sub-categories Input, Method, Organization,
People, and Tools, as suggested for problems in previous work on
defect causal analysis [20]. Based on the collected data, we merged
the Input and People categories, as it was difficult to separate be-
tween the two, given the concise and short answers provided by the
participants. We also renamed the Tools category into Infrastructure
and identified the need to add a new category related to Data. It is
noteworthy that these categories were identified considering the
overall coding for the seven ML life cycle stages. At the same time,
this paper focuses on the Problem Understanding and Requirements
stage.

In Figure 10, we present an overview of the resulting codes’
frequencies using a probabilistic cause-effect diagram (e.g., fishbone
diagram), which provides a comprehensive overview and it was
introduced for causal analysis purposes in previous work [22, 23].
The percentages are just frequencies of occurrence of the codes,
then the sum of all code frequencies is 100%. It is important to notice
that the highest frequencies within each category are organized
closer to the middle.

It is possible to observe that most of the reported challenges
are related to the Input category, followed by Method and Orga-
nization. Within the Input category, the main challenges report
difficulties in understanding the problem, the business domain,
and unclear goals and requirements. In the Method category, the
prevailing reported challenges concern difficulties in managing
expectations, experienced data science knowledge, and establishing
effective communication. Finally, in the Organization category, the
lack of customer or domain expert availability and engagement
and the lack of time dedicated to requirements-related activities
were mentioned. Our summary focuses on the most frequently
mentioned challenges, although less frequent ones may still be rel-
evant in practice. For instance, computational constraints or lack
of data quality and pre-processing can directly affect ML-related
possibilities and requirements.

5 DISCUSSION
Our previous results reflected an international perspective regard-
ing RE for ML-enabled systems [3]. Given the importance of Brazil
in this previous study and the growing interest of Brazilian com-
panies in terms of ML, we bring a deeper and focused analysis
of Brazil’s practices, problems, and perceptions in this paper. For
instance, we have an intriguing distribution of roles that address
requirements. Contrary to conventional expectations, where either
requirements engineers or business analysts [47] could be in charge
of requirements, we have data scientists taking the rein. Unlike our
previous findings [3], we have data scientists as the majority in
RE addressing activity in Brazil, which reassures their importance
beyond coding in companies [7, 26]. The nature of ML-enabled
systems is based on data-driven insights, which may explain the
importance of addressing activity in this role. However, lacking

well-established methods and practices in this domain may lead to
project failure [11].

Regarding elicitation techniques, our survey revealed again that
practitioners don’t escape from traditional requirements elicitation
techniques (interviews, prototyping, scenarios, workshops, and
observation), even with a free-text option available. Unlike our
previous results where Workshops were less used [3], in Brazil, our
results for the elicitation techniques are comparable for traditional
RE [45]. This could be related to the fact that most practitioners
work in large companies, which typically have professionals ex-
perienced in conducting such workshops for traditional software
systems and have now extended these practices to ML-enabled
systems.

In terms of requirements documentation, computational note-
books, which are interactive programming environments that can
be used to process data and create ML models, appear, as reported
previously [3], as the most used tool for documenting requirements.
Its rapid way of producing and generating code turned notebooks
into an important tool for data scientists; however, like a hammer,
it could be misused [37] as a symptom of the lack of awareness
of RE specification practices and tools. Moreover, a proportion of
almost 16% mentioned that requirements were not documented at
all, which may cause overall software project failure [11]. In Brazil,
we have reported that Vision Documents are more prominent than
in other parts of the world, and despite being closely related to
Prototypes, our previous finding had Requirements Lists as the
third most used method, and now it appears as the sixth option.
ML Canvas, which was designed to tackle this activity, is one of
the least used methods, along with BDD Scenarios.

With respect to NFRs, there are slight differences between how
worldwide practitioners face NFR [3] and how Brazilians do. In gen-
eral, the most considered concerns are ML-related NFR, such as data
quality, model reliability, and model explainability, as previously
reported in [15, 44]. However, we also observed system-related
concerns like system performance, usability, and maintainability. In
conventional software systems, there are several negative impacts
of missing NFRs on software-related projects [11]. However, again,
the same proportion of practitioners (more than 10%) do not even
consider NFRs in their ML-enabled system projects, which can be
seen as another indicator of the lack of overall attention to the
importance of RE in the industrial ML-enabled systems engineering
context.

The survey also revealed the most difficult activities perceived by
practitioners in Brazil when defining requirements for ML-enabled
systems. The difficulties reported by Brazilian practitioners are
comparable to the ones reported previously [3] and with previous
literature, but now it appears in a wider industrial scope. Manag-
ing customer expectations [18], aligning requirements with data
[35, 42], changing requirements [25], and selecting proper metrics
[44] were previously reported as difficulties, which emphasizes the
importance of effective communication and technical expertise to
bridge the gap between aspirations and technological feasibility.

Finally, we contributed to the RE-related problems faced by prac-
titioners in ML-enabled system projects in Brazil, which are slightly
different from our previous study [3]. Still, the main issues relate to
difficulties in problem and business understanding, managing expec-
tations, and low customer/domain expert availability/engagement.
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Data (2.75 %)

Balancing Risks and Benefits (0.92  %)

Strategic Alignments (0.92 %)

Defining/Documenting
 Requirements (2.75 %)

Unclear Goals (5.50 %)
Business/Domain 

Understanding (12.84 %)
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Unclear Requirements 
(3.67 %)

Scope Definition (1.83 %)

Incomplete/Incorrect
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Lack of Analytical 
Thinking (0.92 %)

Lack of Resources and 
References (1.83 %)

Low Client/Domain Expert
 Availability/Engagement (11.93 %)

No Data Driven
 Priority (0.92 %)

Lack of 
Time (3.67 %)

Computational
Constraints (0.92 %)

Data Quality (0.92 %)

Data Preprocessing (0.92 %)

Data Collection (0.92 %)
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Lack of Data Science
 Knowledge (4.59 %)

Data Science Complexity (1.83 %)

Solution Uniqueness (0.92 %)

Project (0.92 %)

Accuracy Checking (0.92 %)

Figure 10: Main Problems faced during Problem Understanding and Requirements

These issues have comparable counterparts in the conventional
RE problems [11]. Table 2 shows the strong relationship between
problems in ML-enabled systems and traditional contexts. As com-
parable problems may have comparable solutions, adopting estab-
lished RE practices (or adaptations of such practices) may help
improve ML-enabled system engineering, but this will demand
further empirical evaluations and is not the scope of the paper.

6 THREATS TO VALIDITY
We identified some threats while planning, conducting, and analyz-
ing the survey results. Henceforward, we list these potential threats
organized by the survey validity types presented in [31].

Face and Content Validity. Face and content validity threats
include bad instrumentation and inadequate explanation of con-
structs. To mitigate these threats, we involved several researchers
in reviewing and evaluating the questionnaire regarding the format
and formulation of the questions, piloting it with 18 Ph.D. students
for face validity and five experienced data scientists for content
validity.

Criterion Validity. Threats to criterion validity include not
surveying the target population. We clarified the target population
in the consent form (before starting the survey). We also considered
only complete answers (i.e., answers of participants that answered

all four survey sections) and excluded participants that informed
having no experience with ML-enabled system projects. Moreover,
an important aspect is a possible bias in our results, given only
one requirements engineer answered our survey. We explain that
the explicit Requirements Engineer position is uncommon even in
conventional software engineering contexts and that mainly other
positions, like Business Analysts, are responsible for RE-related
tasks [47]. Hence, we believe that not having many requirements
engineers in our sample is expected and positive in terms of repre-
sentativeness, and just reflects that they are typically not part of
ML-enabled system projects.

Construct Validity. We ground our survey’s questions and
answer options on theoretical background from previous studies
on RE [11, 45] and a literature review on RE for ML [42]. A threat
to construct validity is inadequate measurement procedures and
unreliable results. To mitigate this threat we follow recommended
data collection and analysis procedures [46].

Reliability. One aspect of reliability is statistical generalizability.
We could not construct a random sample that systematically covers
all types of professionals involved in developing ML-enabled sys-
tems, as there is still no generalized understanding of what such a
population looks like. Nevertheless, the experience and background
profiles of the subjects are comparable to the profiles of ML teams,



Industrial Practices of Requirements Engineering for ML-Enabled Systems in Brazil SBES’24, September 30 – October 04, 2024, Curitiba, PR

Table 2: Comparison between problems on ML-enabled and
traditional systems

Traditional RE Problem ML RE Problem

Incomplete and/or hidden re-
quirements

[Input] Incomplete/incorrect
requirements

Communication flaws between
project team and customer

[Method] Communication

Moving targets (changing goals,
business processes, and/or re-
quirements)

[Input] Unclear goals

Underspecified requirements
that are too abstract

[Input] Unclear requirements

Timeboxing/Not enough time
in general

[Organization] Lack of time

Stakeholders with difficulties in
separating requirements from
known solution designs

[Organization] Lack of analyt-
ical thinking

Insufficient support by cus-
tomer

[Organization] Low
client/domain expert avail-
ability/engagement

Weak access to customer needs
and/or business information

[Organization] Lack of re-
sources and references

as shown in Microsoft’s study [26]. We used bootstrapping to deal
with the random sampling limitation and only employed confidence
intervals, conservatively avoiding null hypothesis testing. Another
reliability aspect concerns inter-observer reliability, which we im-
proved by including independent peer review in all our qualitative
analysis procedures and making all the data and analyses openly
available online [38].

7 CONCLUSIONS
Literature suggests that RE can help to tackle challenges in ML-
enabled system engineering [42]. Recent literature studies (e.g.,
[1, 35, 42]) and industrial studies (e.g., [7, 44]) on RE for ML-enabled
systems have been important to help to understand the literature
focus and industry needs. However, the study of industrial practices,
perceptions, and challenges is still isolated and not yet representa-
tive.

We build upon prior research to enhance the empirical evidence
on current practices, perceptions, and challenges in the field of RE
forML. This study analyzes a subset of data from our previous study,
which presented an international survey [3], focusing on responses
from 72 practitioners involved in the development of ML-enabled
systems in Brazil. We applied bootstrapping with confidence inter-
vals for quantitative statistical analysis and open and axial coding
for qualitative analysis of RE challenges. The results reinforce the
findings of previous studies [15, 44], emphasizing the importance
of non-functional requirements, such as data quality, model relia-
bility, and explainability. They also highlight challenges, including

managing customer expectations and addressing ambiguities in
requirements specifications [35, 42].

In addition, the analysis of data uncovered several new and
noteworthy aspects. Notably, data scientists are increasingly lead-
ing RE activities in the development of ML-enabled systems, with
interactive notebooks serving as a primary method for document-
ing requirements. The survey also highlighted several challenges
faced by practitioners, such as difficulties in problem and business
understanding, difficulties in managing expectations, unclear re-
quirements, and lack of domain expert availability and engagement.

Overall, when comparing RE practices and challenges within
ML-enabled systems with conventional RE practices [45] and chal-
lenges [11], we identified significant variations in the practices but
comparable underlying problems. Proposing solutions for these
problems is part of future research and is not in the scope of this
paper, as it would demand proper empirical evaluations through
different empirical strategies (e.g., action research, case studies,
controlled experiments). However, we truly believe that compara-
ble challenges may have comparable solutions. In this sense, we
advocate for adapting and disseminating RE-related practices for
engineering ML-enabled systems.
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