Comparative Analysis of Large Language Model Tools for
Automated Test Data Generation from BDD

Isela Mendoza
Universidade Federal Fluminense
Niteroi, R], Brazil
imendoza@id.uff.br

Aline Paes
Universidade Federal Fluminense
Niter6i, RJ, Brazil
alinepaes@ic.uff.br

ABSTRACT

Automating processes reduces human workload, particularly in
software testing, where automation enhances quality and efficiency.
Behavior-driven development (BDD) focuses on software behav-
ior to define and validate required functionalities, using tools to
translate functional requirements into automated tests. However,
creating BDD scenarios and associated test data inputs is time-
consuming and heavily reliant on a good input data set. Large
Language Models (LLMs) such as Microsoft’s Copilot, OpenAI’s
ChatGPT-3.5, ChatGPT-4, and Google’s Gemini offer potential so-
lutions by automating test data generation. This study evaluates
these LLMs’ ability to understand BDD scenarios and generate cor-
responding test data across five scenarios ranked by complexity. It
assesses the LLMs’ learning, assertiveness, response structuring,
quality, representativeness, and coverage of the generated test data.
The results indicate that ChatGPT-4 and Gemini stand out as the
best tools that met our expectations, showing promise for advancing
the automation of test data generation from BDD scenarios.

KEYWORDS

Test Automation, Large Language Models, Behavior-Driven Devel-
opment, Al in Software Testing, Test Data Generation

1 INTRODUCTION

Software testing is one of the main activities for building quality
software. Although it does not predict all errors that may occur
during its development, it helps to find and avoid possible errors
[12]. This activity verifies that the software under test produces
the desired output based on a set of inputs and an execution envi-
ronment. However, it is an expensive and time-consuming activity
if performed manually; for this, both industry and academia have
offered a wide range of tools that offer automated support for dif-
ferent types of software testing [17] [11] [13]. Among them, the
Behaviour-Driven Development (BDD) [16] tools enable teams to
write test cases in natural language, making them accessible to both
technical and non-technical stakeholders [16].

This way, in test automation, BDD tools help convert functional
requirements into automated tests, guiding analysts in verifying
functionality and documenting system requirements in a more
testable and understandable way for everyone involved. Since BDD
helps translate functional requirements into automated tests, the

Fernando Silva Filho
Universidade Federal Fluminense
Niteroi, R], Brazil
fernandomsf@id.uff.br

Gustavo Medeiros
Universidade Federal Fluminense
Niteroi, R], Brazil
gustavomedeiros@id.uff.br

Vania O. Neves
Universidade Federal Fluminense
Niter6i, RJ, Brazil
vania@ic.uff.br

efficiency of the development process is improved. Nonetheless, it is
known that manually creating test scenarios traditionally requires
considerable time and effort from test analysts [6]. According to
experts in current companies, the corresponding set of input test
data for BDD scenarios is also a significant time-consuming effort.
Furthermore, evaluating these requirements from BDD scenar-
ios relies heavily on a suitable set of input test data that must be
semantically coherent with the base structure and the restrictions
to be used by automated software tests. Several works address the
generation set of input test data - inputs to execute an algorithm or
specific functionality, i.e., unit testing [5] [20][15]. However, to our
knowledge, these works do not address the automatic generation
of input test data, considering the semantics of the requirements to
verify the system’s behavior as a whole, such as system testing.
BDD allows functional specifications to be written in natural
language that can be automatically transformed into executable test
cases. Large Language Models (LLMs) [14] can play an important
role in translating and interpreting requirements and test cases
expressed in natural language, as is the case with BDD. LLMs like
OpenAT’s GPT (Generative Pre-trained Transformer) [1] and oth-
ers of their kind, commonly called Chatbots, are trained on a vast
amount of text to process and generate human language coherently
and contextually relevantly. These tools can perform a wide range
of tasks related to natural language processing, such as text gen-
eration and answering questions, among others. Their ability to
accurately process and generate natural language allows them to
capture complex relationships between words and phrases in a text.
In this context, the main objective of this work is to introduce
an approach for automatically generating test data for BDD sce-
narios leveraging LLMs. Moreover, this work intends to evaluate
the efficiency and effectiveness of LLM tools in understanding the
context of these BDD scenarios and generating the respective set
of input test data. This study aims to answer the following research
questions (RQ):
RQ1: CanLLM tools generate sets of quality test data semantically

coherent with the BDD scenarios’ logic and context?

RQ2: Which tool most efficiently and effectively met our expecta-
tions?

To meet our objectives, we first propose an approach that estab-
lishes the general context of the research: the automated generation
of test data for BDD scenarios using LLM tools. Next, we detail the

SBES’24, September 30 — October 04, 2024, Curitiba, PR

methodology, which describes how this approach will be imple-
mented through an experimental study and comparative analysis
between Microsoft’s Copilot, OpenAI’s ChatGPT-3.5, ChatGPT -4,
and Google’s Gemini, evaluating their effectiveness and efficiency
in generating test data for BDD.

This approach would allow for faster adaptation to changes, as
the flexibility of LLMs makes it easier to update test data as require-
ments and specifications change, keeping tests always up to date
with minimal effort. Our proposal can help companies simplify,
optimize, and improve their automatic testing processes. Automat-
ing test data generation significantly reduces test preparation time,
allowing test analysts to focus on more critical tasks.

As a result of the experimental evaluation, ChatGPT-4 and Gem-
ini were the tools that served us best, tying in performance and sur-
passing even testing experts in many aspects, followed by ChatGPT-
3.5. These tools allowed us to generate data faster and with less
effort than if it were created manually. Copilot did not meet our
expectations, and we will not consider it in the approach due to its
lower efficiency.

One of the main contributions of our study is the approach to
automatically generate input test data from BDD scenarios using
LLMs for optimizing time and effort without affecting data quality.
The proposed methodology, which has a transparent and replicable
structure, and the designed prompts are also considered significant
contributions.

The paper is structured as follows: Section 2 introduces the con-
cepts and terminology related to BDD and how the test automation
process with BDD. Section 3 reviews related works in the field.
Section 4 describes our approach proposed. Section 5 details the ex-
periment methodology to validate our approach. Section 6 presents
the results and discussion. Section 7 analyzes the threats to va-
lidity and limitations. Finally, Section 8 provides the conclusions,
summarizing the main contributions and outlining potential future
work.

2 BDD TERMS AND CONCEPTS

BDD (Behavior-Driven Development) is a technique that aims to
integrate business rules with the programming language, focusing
on software behavior [16]. It is used to describe the features needed
to build software as well as test cases for automatic testing. This
section will explain some concepts and terms related to BDD files
and their structure and syntax.

Gherkin [16] is a domain-specific language designed to describe
behaviors in a human-accessible way, grounded in a framework
and essential keywords to ensure a clear and accurate description
of system interactions.

The Gherkin language is widely adopted to describe software
system behaviors due to its readability, structuring, standardization,
ease of automation, and ability to serve as documentation. The
main terms to specify how each step of interaction with the system
is: Feature: Used to name the functionality to be tested in this
feature. Background: When several scenarios exist in a feature
film with the same precondition. Scenario: Describes the expected
behavior (Then) given the preconditions (Given) and action (When)
specified. Given: Used to specify a precondition before proceeding
to the next steps. As a precondition, it is usually written in the past

Mendoza et al.

tense. When: Used when an action will be executed and a reaction
is expected from the system, which will be validated in the "Then"
step. This step is written in the present tense. Then: Validates
whether the expected event happened. There is always a "When"
step, as the reaction to the action received is validated here. Because
it is the expected result, it is usually written in the form of the near
future. And: If further interaction with the system is necessary to
complement a flow, but it is not necessarily an action or reaction,
"And" is used. But: Generally serves the same functionality as "And"
but is usually used after a negative validation after "Then".

Other important keywords explicitly used for scenarios involving
testing tasks are Scenario Outline: These are business scenarios
with more than one "Example” used for automated testing. They
will be executed on the same number of lines in the example ta-
ble, each time using the information from the following line. In
other words, the same scenario has the same flow but needs to
use/validate different information. Examples: Always follow the
"Scenario Outline", as the table with the data to be used to execute
it is specified here. A "Scenario Outline" will run the same number
of rows in the example table, each time using the data from the
next row.

Scenarios written in Gherkin can be easily converted into auto-
mated tests using test automation tools, allowing tests to be run
repeatedly and integrated into the ongoing development process.
The next code shows an example of a scenario prepared for testing
with the syntax and structure of the Gerking language:

Feature: Student grade
Background: Teacher is logged into the system
Scenario Outline: Verify the student average
Given the student wasn't failed due to absence
When the student has an average '<value>'
And the average is less than 6
Then the student is failed '<result>'

Examples:

| value | result |

[| Failure: Must be a natural number |
| -7.5 | Failure: Must be a natural number |
| 8.3 | Success: The student was passed |

| 6.0 | Success: The student was passed |

| 3.9 | Failure: The student was failed |

Figure 1 shows how BDD’s automated testing process can occur.
The test analyst receives functional documentation and system
specifications through user stories in its initial stages. Based on this
information, the analyst creates BDD files with the corresponding
test scenarios to test the system’s functionalities. BDD scenarios
can require a set of input test data called "Examples”; for this, the
next step consists of designing these data. Finally, once all BDD files
have been designed and completed, the test suite is automatically
created and executed with the test cases corresponding to these
BDDs.

3 RELATED WORKS

In Software Engineering (SE), we see a growing interest in and
increasingly widespread use of LLMs across multiple domains. Re-
search conducted by [4] offers a comprehensive view of this trend,
highlighting the diverse applications of LLMs in activities such

Comparative Analysis of Large Language Model Tools for Automated Test Data Generation from BDD

1
= @9

[l
o
I}
\

Data

Figure 1: Manual data generation

as coding, design, requirements, repair, refactoring, performance
improvement, documentation, and analysis within the SE. That
survey also points to significant technical challenges associated
with these advances, including reliable techniques to detect and
correct incorrect solutions.

The rising use of LLMs in SE reflects the recognition of their
broad potential in several areas, particularly software testing. Some
studies have emerged exploring their application in this context,
considering them a promising alternative worth exploring. For ex-
ample, Wang et al. [18] provide a comprehensive review of the
use of LLMs in the context of software testing. The study analyzes
approaches that employ LLMs from both the software testing per-
spective and the models themselves, highlighting everyday tasks
such as test case preparation, which includes unit test cases, test
oracles, test inputs generated for the system test, and debugging
and repairing programs.

Although several approaches already employ the use of LLMs
in unit testing, few studies still perform functionality testing at
the system level in relation to the generation of test inputs. Ye et
al. [19] employed LLM to generate JavaScript programs, using the
ECMAScript specifications to generate test data and test scripts au-
tomatically. Differential tests are then applied to expose bugs. Deng
et al. [3] use LLM to extract crucial information related to the test
scenario of a traffic rule. The extracted information is represented in
a test scenario schematic. Subsequently, the corresponding scenario
scripts are synthesized to construct the test scenario.

The authors in [18] point out that the generation of system-level
test inputs for software testing varies depending on the type of soft-
ware. For example, for mobile applications, test input generation
requires providing a wide range of text inputs or combinations of
operations, which is necessary to test the application’s functionality
and user interface. For mobile application testing, a crucial difficulty
is generating suitable text inputs to advance to the next page, which
remains a significant obstacle for test coverage. Traditional meth-
ods, like heuristic-based or constraint-based techniques, cannot
understand the semantic information of the GUI page. In response,
Liu et al. [7] employ LLMs to intelligently generate semantic input
text, adapting it to the graphical user interface (GUI) context. LLM
automatically extracts information from EditText-related compo-
nents, generates prompts, and then uses them to generate text input.
Alternatively, Liu et al. [8] approach test input generation for mo-
bile GUI testing as a question-and-answer task involving the LLM

SBES’24, September 30 — October 04, 2024, Curitiba, PR

in a conversation with the mobile applications. This process passes
information from the GUI page to the LLM, which generates test
scripts and runs them, continuing to provide feedback to the LLM
and iterating the entire process. This approach extracts the static
context of the GUI page and the dynamic context of the iterative
testing process, allowing LLM to better understand the GUI page
and the entire testing process.

Although using LLMs has become a significant topic in soft-
ware testing research, previous studies have already explored the
generation of test scripts within the scope of BDDs. Marques and
Fernandes [9] adopted an approach to generating functional tests
from scenarios built according to the BDD concept. They used
Aspect-Oriented Programming (AOP) to map the internal system
functions triggered during test execution, identifying parameters
and feedback to generate relevant automated tests. This methodol-
ogy resulted in high test coverage, improving system quality and
facilitating developers’ work by allowing the automatic execution
of a wide range of tests. The results demonstrated that the approach
not only reproduced the original tests but also generated additional
tests considered relevant to the software requirements defined in
the BDD.

All approaches discussed share common aspects, such as the
need to generate input data semantically coherent with system
specifications and constraints and their application in system test-
ing. However, while some use LLM-based technologies to generate
input test data, many are applied in specific projects and contexts
with their specification file formats. Furthermore, studies that em-
ploy other methodologies to generate data generally do not consider
the semantic relationship between data and system requirements
and do not use BDD. On the other hand, works that use BDD are
more focused on test cases in general, neglecting their specific test
data. Moreover, they do not consider the textual description of
the scenario when designing test data. In this sense, the approach
presented in this article aims to fill this gap.

4 LLM-BASED APPROACH FOR AUTOMATIC
GENERATION OF BDD EXAMPLES

To conduct the system testing process appropriately and in line
with industry practices, it is essential to understand the semantic
relationship between test input data and the scenarios, restrictions,
and requirements to be tested.

Test input data originates from several sources, including re-
lational databases and external files in diverse formats such as
XML and CSV, tools, and other public knowledge bases, such as
the Internet. When creating the input data set for the test, it is
necessary to interact with several database tables with integrity
checks. Additionally, the semantic connection between this data
and the test requirements is usually available in functional doc-
umentation or BDD specifications. Therefore, the input test data
must be semantically aligned with the base structure, constraints,
and system logic. To solve this problem, we propose this approach
by using LLM models capable of understanding the context of BDD
scenarios and generating the respective set of input test data seman-
tically coherent with the underlying logic of the tested functional
requirement.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Designing the test input examples in test automation, currently
in the industry, is carried out as shown in Figure 1. This process is
usually time-consuming and prone to errors. Also, for this data to
be used to test specific functionalities, it is subjected to a manual
transformation process of selecting and reducing these data sets.

For selection, the data must be relevant: select specific data ac-
cording to all the functionalities that will be tested. The data must
also be of good quality, error-free, and complete. Finally, it must be
valid: data must not be outdated or incoherent. Once the selection
and data reduction are complete, obtaining a smaller, viable, and
representative data set will be necessary. Their quality must be
maintained, and their quantity must be reduced to cover all situa-
tions and combinations sufficient for the test cases. This process
results in the set of test input data that will be used to constitute
the test cases executed in automatic testing.

Our approach proposes to automate this process, replacing the
manual work of the test analyst with an LLM tool. The automated
testing process is illustrated in Figure 2. The test analyst receives
functional documentation and system specifications through user
stories in the early stages. Using this information, the analyst de-
velops BDD files containing test scenarios to assess the system’s
functionalities. Each scenario in the BDD requires input test data,
known as "Examples". The next step involves generating this data
by incorporating LLM tools; for this purpose, it is essential to high-
light that for these tools to return what we expect with the highest
possible quality and accuracy, it is necessary to properly train them
by employing prompt engineering, which we will explain in more
detail in the following sections. Once all BDD files are finalized, the
test suite is automatically generated and executed.

Test Suit

=

Data Tools

Figure 2: Data generation with LLM tools

This approach significantly relies on the ability of LLM tools to
generate an appropriate dataset. With this in mind, we evaluated
the major LLM tools available to determine their effectiveness in
this context. The following sections describe the methodology and
the results of this evaluation.

5 METHODOLOGY

This section outlines the methodology adopted to conduct our
experiment. Through this methodology, we aim to validate our
approach by evaluating the effectiveness and efficiency of various

Mendoza et al.

LLM tools to determine which best aligns with our expectations.
Figure 3 illustrates the steps of our experiment. A brief description
of each step is provided below, and more details are presented in
the subsequent subsections.

Step-1 consists of selecting the LLM tools. We chose to analyze
ChatGPT-3.5 and ChatGPT-4 from OpenAlI, Copilot in Bing from
Microsoft, and Gemini from Google, which have notable popularity
and prestige as their development companies are strong competi-
tors (Subsection 5.1). In Step-2, five BDD scenarios from different
contexts are chosen and classified according to their complexity
(Subsection 5.2). In Step-3, we have the benchmark with the input
test data sets, which will be compared later with those generated
by the tool (Subsection 5.3). Step-4 elaborates on the prompts to be
executed in the LLM tools (Subsection 5.4). The execution of the
prompts in the tools was carried out in April 2024. Finally, Step-5
comprises the evaluation of the responses obtained by the LLM
tools (Subsection 5.5).

1- Selection of LLM Tools

ChatGPT-3.5 ChatGPT-4 Copilot Gemini
2 - Choosing BDD Scenario
Very Low S1 Medium S3 Very High S5
Low S2 High S4
3 - Benchmark
Included Created

4 - Prompt Engineering
Input 1: Context + Example

Input 2: Task Command + BDD Scenarios

5 - Evaluation

Metric

Criteria for Tool Response

Criteria for Data Generated

Figure 3: Workflow of the experiment methodology

5.1 Selection of LLM tools

The LLM tools chosen for this research include Microsoft’s Copilot,
OpenAT’s ChatGPT-3.5, ChatGPT-4, and Google’s Gemini. Although

Comparative Analysis of Large Language Model Tools for Automated Test Data Generation from BDD

there are other known tools with good performance in tasks and
purposes similar to these, such as Llama, Vicuna, Claude, Mistral,
and Alpaca, among others, we chose these tools due to their notable
popularity and the prestige of the companies that developed them,
which were recognized for their technical robustness. Products from
these corporations are often considered safer, more reliable, and
affordable. These factors and the ability to process and understand
natural language on a large scale of these tools, representing a cru-
cial milestone in Artificial Intelligence, guided our choice. Big Tech
companies like Microsoft, OpenAl, and Google are at the forefront
of this progress through their advanced tools and platforms.

Table 1 presents relevant characteristics of the LLM tools selected
for the experiment, highlighting aspects such as the model used and
the ability to perform web queries in real-time (internet consults),
a feature that can always guarantee updated answers. Regarding
access, most tools offer both a user interface and APIs to facilitate
integration and use, except for Copilot, which currently does not
have an official API; however, unofficial versions developed by
third parties are available. Another crucial point is the availability
of documentation, which is essential to fully exploit these platforms’
resources.

Table 1: LLM tools feature

Tool Model Web Query Access Doc.
Copilot Prometheus Yes Ul No
ChatGPT-3.5 GPT-3.5-turbo Not UI/API Yes
ChatGPT-4 GPT-4-turbo Yes UI/API Yes
Gemini LaMDA Not UI/API Yes

5.2 Choosing BDD scenarios

At this stage, a complexity scale is established to categorize the sce-
narios, ranging from very low to very high complexity, explained
below, followed by their selection and classification. This catego-
rization considers the scenarios’ domain relevance and specificity,
which can range from generic and common to highly specific. Ad-
ditionally, the complexity of input data is considered, which can
vary from simple data and integrated data from different sources
to data requiring more complex mathematical reasoning for their
generation.

Very Low complexity: It is defined based on widely recognized
domains, making them easily understandable by the general public.
It focuses on performing basic math operations and presenting
simple input and output data.

Low complexity: At this level, more specific and specialized
domains may require some degree of technical knowledge, although
not necessarily specialization. Tasks at this level typically include
manipulating variables and simple data types.

Medium complexity: This level of complexity may require
integrating diverse, interconnected information. It involves more
complex data types with interdependence that need to be under-
stood.

High complexity: Complex tasks that demand expertise and
skills in a specific area. Include mathematical calculations that
require comprehension and application of knowledge to the context.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Very High complexity: Tasks at this level of complexity can be
more challenging, involving logical reasoning in a specific mathe-
matical domain that demands a more advanced understanding than
the previous level and the types of data with specific nomenclatures.

As detailed below, five BDD scenarios (S1-S5) from various con-
texts were selected to align with this complexity scale. These scenar-
ios include real cases from open-source repositories and company
projects. Additionally, we created two fictitious scenarios (S4 and
S5) designed to evaluate scenarios involving mathematical calcula-
tions and logical deduction in the High and Very High complexity
categories. The objective of classifying and choosing this variety
of scenarios is to evaluate the tools’ effectiveness and efficiency in
generating input test data.

Scenario 1 (S1): Very Low complexity

This scenario checks the validity of triangles by analyzing the
lengths of their sides. Evaluates whether the given measurements
can form a triangle based on geometric principles. Specifically, it
checks whether the sum of the lengths of any two sides is greater
than the length of the third side for each possible combination.
Scenario outline: Checking triangles

Given that I have sides '<side_a >",

'<side_b >' and '<side_c >'

When I check if it's a triangle

Then it should display '<result >’
Examples:

| side_a|side_b|side_c|result|isValid |

Scenario 2 (S2): Low complexity

Focuses on scanning a target host for open TCP ports within a
specific range. Verify that the configuration of the host and network
is as expected.

Scenario outline: Host Configuration

Given the target host name '<host>"'
When TCP ports from '<startPort >'

to '<endPort>' are scanned using
'<threads >' threads and a timeout
of '<timeout>' milliseconds
And the '<state >' ports are selected
Then the ports should be '<ports>'
Examples:

|host|startPort |endPort|threads

|timeout | state | ports|isValid |

Scenario 3 (S3): Medium complexity

The functionality describes registering a new location in a system
that needs to deal with interconnected geographic location infor-
mation, making it essential to generate accurate, correct, authentic,
and valid data.

Scenario outline: Register location
Given that the user is logged in
as an administrator
And accesses the homepage
And click on the 'Locations '
And click on the 'New Location' button
And fill in ‘'<Description >', '<Zip Code>",

button

SBES’24, September 30 — October 04, 2024, Curitiba, PR

'<Address >', '<Number>', '<Complex>",
'<Neighborhood >', '<City >",
"<Country >', '<Latitude >' and '<Longitude >'
When the 'Save' button is clicked
Then the user is redirected to the

'<State >,

'List of Locations' page
And the last registered location has
the name '<Description >’
And delete the last location of
description '<Description >'
Examples:
| Description | ZipCode | Address | Number
| Complement | Neighborhood | City | State
| Country | Latitude | Longitude | isValid |

Scenario 4 (S4): High complexity

Describes the nature of a problem that involves logical reasoning
in a mathematical context. The math problem is about a paint-
mixing machine that creates shades. Check if the amount of colors
to be increased results in the correct shade.

Scenario outline: Check the amount of paint
Given a machine that mixes paints of different
colors to obtain different shades
When someone buys <total_liters > liters of

paint of one shade from a mixture of

'<liters_colorX >' liters of color X and

'<liters_colorwhite >' liters of white color
And the quantity of paint purchased needed
to be increased, buying more '<value >'
liters of the same paint mixture with
the same shade is necessary.
Then the amount of paint in color X to preserve
the same tones when mixed with the
color white is the '<result>' liters
Examples:
| total _liters |liters_colorX

|liters_colorwhite | value| result |

Scenario 5 (S5): Very High complexity

This scenario is more complex linear algebra calculations, the
inner product of two degree-2 polynomials. It provides the poly-
nomials and expects the solution based on their values at specific
points (-1, 0, and 1).

Scenario outline: Inner product
Given two polynomials of degree 2,

'<pl>' and '<p2>"' the inner product
given by calculating the value of
the polynomials at -1, 0 and 1
When p(t) = '<pl>' and q(t) = '<p2>'
Then solve <p,q> by calculating the value
of the polynomials at -1, 0 and 1
Examples:

| p1 | p2 | result |

Mendoza et al.

5.3 Benchmark

The benchmark consists of two types of data: “Included” data, which
are reference data extracted from real industry projects, and “Cre-
ated” data, developed by the researchers of this study for scenarios
that do not have example data. Scenarios S2 and S3 were included
from real industry projects. In these cases, the test analysts respon-
sible for creating these test data provided the “Examples” for each
scenario.

Scenarios S1, S4, and S5 were created by our research team
through desk checking. This manual process is performed by test-
ing specialists to validate the logic of a specific functionality, result-
ing in a manually created table with the input and output variable
values of the program. To do this, we manually created this table
of values for each of the variables in each scenario, following the
Gherkin language and the structure of the “Example” step, and
applying black-box testing criteria such as Boundary Value Anal-
ysis (BVA) and Equivalence Partitioning (EP), to assign different
data combinations to these variables. Both sets of data, obtained
manually from the real and fictitious project scenarios, are later
compared with those generated by the tools.

5.4 Prompt engineering

Prompt engineering involves providing specific commands to the
LLM tool to direct the model on how to answer a question, influ-
encing its behavior toward desired results without changing the
model’s weights. We developed a specific prompt for this experi-
ment using the zero-shot-learning and few-shot-learning prompt
techniques, following the corresponding guidelines in [2]. Accord-
ing to Wang et al. [18], zero-shot-learning and few-shot-learning
techniques are the most prevalent in software testing applications.

There are two main types of zero-shot-learning [18]. The first,
“No instructions”, provides the model with just the task text to obtain
the results directly. The second, “With instructions”, involves giving
the template specific headers or guidelines about the expected result.
For example, a scenario is provided, and the tool is asked to generate
“Examples” suitable for that scenario. Few-shot-learning presents
a set of explanations and demonstrations with inputs and desired
results about the target task; for example, complete scenarios are
provided, presenting their structure and syntax with their valid and
invalid test data from the “Examples” table. As the model sees the
examples for the first time, it can better understand human intent
and the criteria for the desired response types. It is essential for
tasks that are more complex and intuitive for LLM that involve
specific contexts like this.

In this experiment, the prompts were developed and refined un-
til the final version was reached. Initially, we provided only the
scenario and requested the generation of test data, which resulted
in repeated and limited combinations. Therefore, we incorporated
black-box testing criteria in the subsequent prompts. Additionally,
since the results were not presented in standardized formats, we
specified the structure of the BDD language we needed. Finally,
we included specific examples to ensure that the final prompt was
robust, meeting our expectations, and producing data with the de-
sired accuracy and quality. The process to achieve the final prompt

Comparative Analysis of Large Language Model Tools for Automated Test Data Generation from BDD

is detailed in the flowchart in Figure 4, which shows the recom-
mended sequence of instructions for generating the input test data
for BDD scenarios.

[Input 1: Context + Examples J

|

Response 1

l

[Input 2: Task Command + BDD Scenarios J

\‘ Response 2 /

Figure 4: Prompts flow in the data generation process.

The proposed prompt is composed of two main elements. First,
Inputl prepares the tool by providing context, explanations, and
examples of BDD scenarios, including their language and structure.
Interaction with each tool begins by entering Input1 and waiting
for confirmation of understanding, usually an 'OK’. Second, after
confirmation, we proceed with Input2, which addresses specific
commands related to the context of each functionality, the order
of tasks, and the corresponding BDD scenario. For each scenario,
Input?2 is repeated. The prompts used are:

Input 1: Context and Examples:

In the following prompts, receive the Scenarios corresponding
to a given functionality as input; based on this information,
only the set of test data pertinent to the ’Examples’ table of
each scenario as an output will be generated, with a set of
values to meet the criteria of ‘Equivalence Partitioning” and
’Boundary Value Analysis’.

Create the ’Examples’ table below each "Scenario’ that will be
provided, where each column header corresponds to the vari-
ables defined in the *Scenario’ represented between smaller
than (<) and greater than (>) signs. Make sure the answer
correctly follows the syntax and structure of the Gherkin
language.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Do not chat with the user or make comments; return just
the request. Below are examples to better understand the
structure of a BDD ‘Scenario’ that includes "Examples’ data.

(Here two examples of BDD scenarios are presented)
Reply OK if it was clear and understandable.
TOOL RESPONSE: *OK’

Input 2: Task command and BDD Scenarios:

Knowing that a triangle can be equilateral, isosceles, scalene,
or NULL. Complete the example below with valid and
invalid cases.

(Followed by the S1 script)

TOOL RESPONSE: (Example table for this scenario)

Knowing that startPort, endPort, threads, and timeout are
integers, host an IP/site, the State is open or closed, and the
ports are the ports. Complete the example below with
valid and invalid cases.

(Followed by the S2 script)

TOOL RESPONSE: (Example table for this scenario)

The description is the name of the Address; the ZIP code is
the postal address code; the Address is the street/location;
the number is an integer; the Complement is NULL or some
letter; Names of neighborhood, city, and country; State is
the abbreviation of the State, and Latitude and Longitude
are geographic coordinates. Complete the example below
with valid and invalid cases.

(Followed by the S3 script)

TOOL RESPONSE: (Example table for this scenario)

For scenarios S4 and S5, it was enough to define the task order
and the BDD scenario without additional specifications. The full
prompt and results are available in our repository [10].

5.5 Evaluation

The results are evaluated based on the accuracy of each tool’s
response, ensuring that the data correctly reflects the information or
scenarios intended for the test compared to the defined benchmark
(desk check), which is also evaluated. In this section, we establish
the metrics and the criteria based on response prediction, quality,
diversity of test data, and coverage of test cases described in the
BDD to evaluate the results and compare them with the benchmark.
The criteria are organized into two groups: i) rating criteria for
tool responses and ii) rating criteria for the set of input test data
generated. Furthermore, we describe the procedure for analyzing
these data.

The criteria use a Likert satisfaction scale as a metric. The defini-
tion of this metric and the evaluation of the criteria were conducted
by the authors of this article, all of whom were actively involved
in the study. Among them are two early career researchers and

SBES’24, September 30 — October 04, 2024, Curitiba, PR

one doctoral candidate in software testing, supervised by senior
researchers, who are also authors of this work.

5.5.1 Metrics. The metric used to evaluate the criteria is based on
the Likert scale.

The values that define the scale are: 0-Dissatisfied; 1-Minimally
satisfied; 2-Partially satisfied; 3-Mostly satisfied; and 4-Completely
satisfied. Each tool will be evaluated for each established criterion,
determining to what extent the tool’s response meets that criterion.

5.5.2 Criteria for tool response (TR). The criteria defined to evalu-
ate tools responses are Learning (L), Assertiveness(A), and Structure
(S), as explained below:

Learning (L): This criterion evaluates the tool’s ability to assim-
ilate and understand information from the examples and contexts
provided. Measuring how the tool processes and integrates new
data to produce responses that align with expectations is essen-
tial. Effectiveness in this criterion indicates that the tool can adapt
and learn continuously, improving its accuracy and relevance in
subsequent interactions.

Assertiveness (A): This criterion measures the relevance and
adequacy of the tool’s answers. An assertive response must not
only directly address the question being questioned but also respect
the context in which the question was asked, implying that the tool
must discern nuances of context and provide technically correct
and contextually appropriate responses. Assessing assertiveness
is crucial to ensure the tool is valuable and effective in practical
situations, avoiding generic or decontextualized responses.

Structure (S): This criterion evaluates the format of the re-
sponses generated by the tool, checking whether they follow an
appropriate structure based on the example information previously
provided regarding a BDD scenario and its different stages, mainly
in the "Examples" stage, which contains the set of input test data,
respecting the Gherkin language. This criterion ensures that the
tool not only correctly absorbs the required format but also ap-
plies this knowledge in a practical and structured way, facilitating
integration and understanding. Evaluating the framework in this
context is crucial to ensure that responses are helpful and targeted
in BDD test environments.

5.5.3 Criteria for the test data generated (DG). To evaluate the test
data generated, we considered the following criteria:

Quality (Q): This criterion evaluates the integrity of the set
of input test data generated by the tools. Data must be correct,
consistent, valid, complete, and relevant to the test. Quality is crucial
to ensure that test data can be effectively used to evaluate system
functionality without errors that could compromise the integrity
of test results.

Representativeness (R): Refers to the ability of the set of input
test data to accurately reflect the behavior and characteristics of
the functionality being tested. The set of input test data must be
representative to be applied to the test environment and ensure
accurate and valid test results. Lack of representation can lead to
misleading results, negatively influencing system development or
maintenance decisions.

Coverage (C): It involves the extent to which the set of input test
data covers the features. Good coverage means the test adequately
explores the potential variations or states the scenario intends to

Mendoza et al.

test. Coverage is essential to ensure that no significant aspects of
the system are overlooked. A comprehensive set of input test data
helps identify hidden vulnerabilities in less apparent areas and
ensures the system is thoroughly tested.

By generating a set of input test data ensuring compliance with
these criteria, we can ensure that test results are reliable, compre-
hensive, and valuable. Each criterion is essential to validate the
quality and effectiveness of the tests.

5.5.4 Data Analysis Procedures. The results were analyzed both
quantitatively and qualitatively, as explained below. All data are
available in our GitHub repository [10].

Quantitative analysis: We assigned a score to each tool’s re-
sponse, indicating how well the response met each criterion. Then,
we added the values assigned to each criterion and considered
the tool with the highest total value as the one that best met our
expectations.

The initial results were peer-reviewed to reach a consensus on
the score to be assigned. In cases where there was no consensus, the
senior researcher in the testing area reviewed and analyzed these
cases, discussing them with everyone. After achieving an adequate
level of agreement on the initial results, the task was divided, and
the remaining results were evaluated individually.

The number of set test data generated for each scenario per tool
and the benchmark are counted; then, the data coverage percentage
is calculated using formula (1), where, for each scenario, the number
of ‘Unique set of test data’ is divided by the “Total set of test data’
generated.

Unique set of test data

Coverage = x 100 1
& Total set of test data W

Qualitative analysis: The responses generated by the tools for
each scenario were analyzed and discussed based on the criteria
defined and followed by a thorough analysis of the responses ac-
cording to the complexity of the scenarios and in comparison with
the benchmark.

6 RESULTS AND DISCUSSION

The scores awarded to each LLM tool and the benchmark for each
criterion are shown in Table 2. The LLM that achieved the highest
score was ChatGPT-4 and Gemini, demonstrating the best perfor-
mance and satisfaction in all criteria, followed by ChatGPT-3.5.
Copilot came in last place with the lowest score.

Table 2: Evaluation scores by criterion

Criteriatype TR TR TR DG DG DG TOTAL

Tools/Criteria L A S Q R C SCORE
Copilot 3 4 2 4 2 2 17
ChatGPT-3.5 4 4 4 4 3 3 22
ChatGPT-4 4 4 4 4 4 3 23
Gemini 4 4 4 4 3 4 23
Benchmark 4 4 4 4 3 3 22

The graph in Figure 5 illustrates the number of set of test data
generated for each scenario per tool and the benchmark. The graph

Comparative Analysis of Large Language Model Tools for Automated Test Data Generation from BDD

in Figure 6 reveals the percentage of the input data sets generated
by the tools concerning coverage.

20
6 18 . sl e s2 . Ss3 . sS4 . S5
16

]

o 14

s 12

o

i 12 n

S50 10, 10 101

5 ° 7 7 7

P 6

3 5 5 55 5555 5 5

4
4 3
2
o [
Benchmark Copilot ChatGPT-3.5 ChatGPT-4 Gemini

Figure 5: Number of set input test data

e S2 . S3 . S4 . S5

. Sl
100 100
o
5 % 50 o
80 75 75
74
70 6 3
1.1 60 60
50
o 40 40
40 363
3 0
o

30 s
20 =
10

0

3
Benchmark Copilot ChatGPT-3.5 ChatGPT-4 Gemini

Scenario coverage percentage
@
3

Figure 6: Coverage of each scenario for tools

6.1 Analysis based on evaluation criteria

According to the Learning (L) criterion, all tools adequately under-
stood the context and examples provided, responding as expected,
except Copilot. The latter only partially interpreted the instruc-
tions, misinterpreting the context since the first three scenarios
(S1, S2 e S3) returned results in a table format as shown in Ta-
ble 3, corresponding to scenario S1 of Copilot, unlike the requested
BDD format, as specified in the prompt. However, in the last two
scenarios, Copilot delivered responses adequately. This deviation
from the initial format negatively impacted the evaluation of the
Structure (S) criterion, which checks whether the format respects
the BDD Gherkin language. Regarding Assertiveness (A), all the
tools performed well, successfully discerning the nuances of each
scenario context and providing appropriate responses concerning
context.

Up to this point, the criteria (L, S, A) have been analyzed, focusing
mainly on the content of the answers provided and whether they
are appropriate to the question. The following criteria analysis
focuses on evaluating responses from the perspective of the input
test data, checking whether it is sufficient to test the scenario in
question.

About the Quality (Q) criterion of the set of test data, all tested
tools generated correct, no errors, valid, and reliable data aligned
with expectations regarding data quality, regardless of quantity.
Regarding Representativeness (R), which measures how much

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Table 3: Incorrect structure response Copilot scenario 1

Table

side_a side b side ¢ result isValid
3 4 5 Success: It’s a valid true
2 2 5 Failure: It’s not a valid false
6 6 6 Success: It’s a valid true
1 2 3 Failure: It’s not a valid false
0 0 0 Failure: It’s not a valid false

the generated data reflects the behavior of the functionality de-
scribed in the BDD scenarios, ChatGPT-4 obtained better efficiency
in returning accurate data. In fulfilling this criterion, Copilot was
the worst; in the low complexity scenario S2, no data was returned,
consequently affecting the coverage criterion.

Finally, most tools satisfied the Coverage (C) criterion, ade-
quately exploring critical parts of the functionality described in the
scenarios. Gemini demonstrated superior performance compared to
other tools in terms of coverage. The BVA and EP criteria employed
by Gemini enabled the generation of a comprehensive range of
data combinations and variations, leading to enhanced coverage.
Note that the benchmark produced more test data sets in quantity,
as shown in the graphic of Figure 5; this does not imply that they
have the best sets. Coverage, represented in the graph of Figure 6,
reveals the percentage of the best sets of input data generated by
the tools about coverage per scenario.

6.2 Analysis considering the scenarios’
complexity

Analyzing the tools’ responses according to the complexity of the
tested scenarios, we found that ChatGPT-3.5 and Gemini met our
expectations, providing appropriate responses aligned with the con-
text and equivalent to the benchmark. On the other hand, Copilot
showed deficiencies in the first three scenarios, as explained above;
however, its effectiveness improved in the last two scenarios, S4 and
S5, with high and very high complexity, respectively, and remaining
within the benchmark.

The third scenario S3, of medium complexity, presented a unique
challenge. In this case, the benchmarks provided valid dummy
data: the geographic coordinates. Interestingly, all the tools we
tested outperformed the benchmarks in this scenario. Each provided
several valid real-world examples, demonstrating their ability to go
beyond a programmed response and generate creative and relevant
results, underlining the capacity of these large linguistic models to
replicate information, analyze it, and interpret it in novel ways.

The tool that stood out in all scenarios was ChatGPT-4, demon-
strating greater efficiency in providing accurate responses, espe-
cially in the S3, where it took advantage of its ability to consult
online information and browse the web to provide accurate and au-
thentic data, saving time and human effort. Additionally, ChatGPT-4
outperformed the benchmark and the other tools in the latest very
high complexity S5 scenario involving mathematical logic, show-
ing significant potential in providing a substantial variety of input
test data sets and accurate solutions, excelling in tasks that would
require solid knowledge of linear algebra and more time and effort

SBES’24, September 30 — October 04, 2024, Curitiba, PR

if done manually. The following code presents part of ChatGPT-4’s
response to the S5 scenario, which includes complex polynomial
operations and calculations performed efficiently, surpassing the
human ability to produce similar data with the same efficiency.

Examples:
| pt | p2 | result |
["tr2"["tr2"] 3 | # (12 + 0%2 + 1%2) = 3
| " " |"t*2"|error| # Invalid polynomial pl
["tr2"| " " |error| # Invalid polynomial p2

7 THREATS TO VALIDITY AND LIMITATIONS

Some threats to validity and limitations could be associated with
subjective bias when evaluating the scenarios. However, this was
overcome, given that several authors evaluated the results. The
diversity and experience of evaluators are crucial to mitigating
this issue. However, even so, they do not eliminate the risk of
subjectivity.

Another limitation is associated with the exhaustiveness of the
generated scenarios, which could be the possibility that the sce-
narios generated by LLMs are not completely extensive. Language
models may not cover all possible variables and situations within a
test scenario. Human oversight is still required to ensure the gen-
erated scenarios are comprehensive and adequately represent the
complexities and nuances of the domain.

Models adjusted to the specific context. Models that have yet to
be trained with domain-specific data or examples may not produce
results that are as accurate or relevant to the particular require-
ments of BDD scenarios. Therefore, the model must be adjusted or
customized appropriately for the specific context of use to ensure
better accuracy and relevance of the generated examples.

Also, threats to validity may arise due to LLMs’ volatility and
continuous evolution. Frequent updates to these models can result
in variations in the results of repeated experiments over time, even
when performed under identical conditions. Stability in model ver-
sions, accessibility, and adequate documentation are essential to
ensure the reproducibility and replication of experiments.

8 CONCLUSION

This study proposed integrating BDD with LLM tools to generate
semantically coherent test data in BDD scenarios. Additionally, a
comparative evaluation was conducted between tools that could
be used in this approach. A prompt was defined to be executed in
these tools to conduct this evaluation, and criteria and metrics were
established to assess the results.

In response to RQ1: Can LLM tools generate sets of quality test
data semantically coherent with the BDD scenarios’ logic and context?,
we discovered that these tools greatly reduce the time and effort
required by evaluators by delivering quality, representative data.
This makes them a compelling alternative for companies to explore.
The responses generated by these tools were equivalent to, and in
many cases surpassed, those of a testing expert. Furthermore, the
time and effort to obtain this data through the tools was consider-
ably less and faster than creating it manually, given the difficulty
in obtaining various valid, correct, and viable data for testing.

In response to RQ2: Which tool most efficiently and effectively met
our expectations?, we found that the most efficient and practical tools

Mendoza et al.

that met our expectations were ChatGPT-4 and Gemini. Although
ChatGPT-4 is a paid tool and provides very good resources, Gemini
stood out as the best free option, scoring equally high. ChatGPT-
3.5 also proved a viable alternative, with performance close to the
others. Among the tools analyzed, only Copilot failed to produce
satisfactory results. Consequently, due to its lower performance
compared to the other tools, Copilot will not be considered in our
approach.

Among the main contributions of our study, we highlight, firstly,
the proposed approach for the automatic generation of input test
data from BDD scenarios, which are semantically linked to the
logic of functional requirements for system testing. Large Scale
Language Models (LLM) tools significantly optimize the time and
effort of companies’ test analysts without compromising test data
quality, which in many cases proved to be more representative
than that created manually. Furthermore, the study offers a well-
structured and developed methodology, facilitating its replication
in future studies. The prompt designed and the techniques used
for this, which proved to be the most appropriate and best met our
expectations, is also considered one of our significant contributions.

For future work, we propose continuing the evaluation of other
available tools. Additionally, an immediate step is to develop a
plugin that can be integrated into Integrated Development Envi-
ronments (IDEs) to facilitate the examples generation process for
testers. We also intend to test the approach’s effectiveness in real-
world industry scenarios to validate its applicability and efficiency
in production environments. It is essential also to consider inte-
grating our approach with the existing software testing approaches
using LLMs. According to the classification of the approaches pre-
sented in [18], our proposal is aligned with the system testing level
and with the "Test Case Preparation” and "Test Execution" stages of
the life cycle of software testing. This alignment makes integrating
our approach with existing methods at different levels and stages
of the software testing process more accessible. Finally, compar-
ing the time and effort of manually generating test data versus the
preparation, execution, and human supervision of the prompt could
prove compelling.

ACKNOWLEDGMENTS

This paper has been supported by CNPq - National Council for
Scientific and Technological Development (grants 143289/2021-7,
420025/2023-5, and 307088/2023-5) and FAPER] - Fundagao Car-
los Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro
(processes SEI-260003/000614/2023 and SEI-260003/002930/2024).

REFERENCES

[1] Valentina Alto. 2023. Modern Generative AI with ChatGPT and OpenAI Models:
Leverage the capabilities of OpenAI's LLM for productivity and innovation with
GPT3 and GPT4. Packt Publishing Ltd.

[2] DAIR.AL 2024. Prompt
https://www.promptingguide.ai/techniques.

[3] Yao Deng, Jiaohong Yao, Zhi Tu, Xi Zheng, Mengshi Zhang, and Tianyi Zhang.
2023. Target: Automated scenario generation from traffic rules for testing au-
tonomous vehicles. arXiv preprint arXiv:2305.06018 (2023).

[4] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M Zhang. 2023. Large Language Models for Software Engineer-
ing: Survey and Open Problems. In 2023 IEEE/ACM International Conference on
Software Engineering: Future of Software Engineering (ICSE-FoSE). 31-53.

[5] Roger Ferguson and Bogdan Korel. 1996. The chaining approach for software
test data generation. ACM Transactions on Software Engineering and Methodology

Engineering Guide.

=

Comparative Analysis of Large Language Model Tools for Automated Test Data Generation from BDD

(TOSEM) 5,1 (01 1996), 63-86.

Dorothy Graham and Mark Fewster. 2012. Experiences of Test Automation: Case
Studies of Software Test Automation. Addison-Wesley.

Zhe Liu, Chunyang Chen, Junjie Wang, Xing Che, Yuekai Huang, Jun Hu, and
Qing Wang. 2023. Fill in the blank: Context-aware automated text input genera-
tion for mobile gui testing. In 2023 IEEE/ACM 45th International Conference on

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Alegre, BR, 57-64.

Mohaimenul Azam Khan Raiaan, Md Saddam Hossain Mukta, Kaniz Fatema,
Nur Mohammad Fahad, Sadman Sakib, Most Marufatul Jannat Mim, Jubaer Ah-
mad, Mohammed Eunus Ali, and Sami Azam. 2024. A Review on Large Language
Models: Architectures, Applications, Taxonomies, Open Issues and Challenges.
IEEE Access 12 (2024), 26839-26874.

Software Engineering (ICSE). IEEE, 1355-1367. [15
[8] Zhe Liu, Chunyang Chen, Junjie Wang, Mengzhuo Chen, Boyu Wu, Xing Che,
Dandan Wang, and Qing Wang. 2023. Chatting with gpt-3 for zero-shot human- [16] John Ferguson Smart and Jan Molak. 2023. BDD in Action: Behavior-driven
like mobile automated gui testing. arXiv preprint arXiv:2305.09434 (2023). development for the whole software lifecycle. Simon and Schuster.
Nicholas Nishimoto Marques and Rafael Alves Fernandes. 2020. Um arcabougo [17] Auri Marcelo Rizzo Vincenzi, Marcio Eduardo Delamaro, Arilo Claudio Dias Neto,

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing
Engine for C. ACM SIGSOFT Software Engineering Notes 30, 5 (2005), 263-272.

=
X0

para a geracdo automatizada de testes funcionais a partir de cenarios BDD.
Bachelor in Computer Science.

Isela Mendoza, Fernando Silva Filho, Gustavo Medeiros, Aline Paes, and Vania O.
Neves. 2024. Data Repository for Comparative Analysis of LLM Tools in BDD
Test Data Generation. https://github.com/bbd- test-research/LLM-Tools-BDD-
Test-Data Companion repository.

[11] Jean Carlos P. Miranda, Hugo T. Almeida, and Vania O. Neves. 2018. PySoCA -

Python Source-code Coverage and Analysis. In Anais do IX Congresso Brasileiro
de Software (CBSoft 2018) - Sessdo de Ferramentas. Sao Carlos/SP.

Glenford J Myers, Corey Sandler, and Tom Badgett. 2011. The Art of Software
Testing. John Wiley & Sons.

Vania O. Neves, Marcio E. Delamaro, and Paulo C. Masiero. 2017. Pateca: uma
ferramenta de apoio ao teste estrutural de veiculos auténomos. In Anais do VIII
Congresso Brasileiro de Software (CBSoft 2017) - Sessao de Ferramentas. SBC, Porto

Sandra Camargo Pinto Ferraz Fabbri, Mério Jino, and José Carlos Maldonado. 2018.
Automatizacao de teste de software com ferramentas de software livre. Elsevier
Brasil.

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2024. Software Testing With Large Language Models: Survey, Landscape,
and Vision. IEEE Transactions on Software Engineering 50, 4 (2024), 911-936.
Guozhu Ye, Zhiqiang Tang, Shih-Hao Tan, Shiqi Huang, Dongdong Fang, Xi-
aoyang Sun, Lei Bian, Haibo Wang, and Zhendong Wang. 2021. Automated
conformance testing for JavaScript engines via deep compiler fuzzing. In Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. 435-450.

Ruilian Zhao and Qing Li. 2007. Automatic test generation for dynamic data
structures. In 5th ACIS International Conference on Software Engineering Research,
Management & Applications (SERA 2007). IEEE, 545-549.

https://github.com/bbd-test-research/LLM-Tools-BDD-Test-Data
https://github.com/bbd-test-research/LLM-Tools-BDD-Test-Data

	Abstract
	1 Introduction
	2 BDD terms and concepts
	3 Related works
	4 LLM-based approach for automatic generation of BDD examples
	5 Methodology
	5.1 Selection of LLM tools
	5.2 Choosing BDD scenarios
	5.3 Benchmark
	5.4 Prompt engineering
	5.5 Evaluation

	6 Results and Discussion
	6.1 Analysis based on evaluation criteria
	6.2 Analysis considering the scenarios' complexity

	7 Threats to validity and limitations
	8 Conclusion
	Acknowledgments
	References

