Eyes on Code Smells: Analyzing Developers’ Responses During
Code Snippet Analysis

Vinicius Martins, Pedro Lopes Verardo Ramos, Breno Braga Neves, Maria Vitoria Lima, Johny Arriel,

Joao Victor Godinho, Joanne Ribeiro, Alessandro Garcia, Juliana Alves Pereira
Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil

ABSTRACT

Detection and refactoring of smelly code are crucial activities, along
with software maintenance and evolution. Code smells are indica-
tors of poor design and implementation choices, which are expected
to affect the developers’ program comprehension. The use of eye-
tracking technology provides an interesting means of analyzing
the impact of code smells on program comprehension. However,
there is limited existing effort in this direction. This paper reports a
study in which we have used an eye tracker to investigate how the
presence of smells influences developers’ program comprehension.
We observed that the smell data class leads to a lower cognitive
effort, while long methods and feature envies imposed a consid-
erably higher cognitive effort. That explains why refactoring of
feature envies and long methods smells has been much more com-
mon across the projects. We also have complementary eye-tracking
indicators to reveal other smell aspects harming program compre-
hension. These findings reinforce the importance of enhancing
IDE features to reduce the developer’s burden when engaging in
cognitive processes of largely coupled code.

KEYWORDS

eye tracker, code smell, software quality, program comprehension

1 INTRODUCTION

Code smells are claimed to be a key influencing factor in harming
program comprehension, as they are symptoms of poor design
and implementation decisions [14]. Thus, addressing code smells
is important for companies to avoid rework, increased costs, and
decreased productivity in software development projects [12]. This
highlights the need to thoroughly understand the impact of code
smells on program comprehension.

Eye tracking is a sophisticated technology used to monitor eye
movements and gaze patterns, providing a valuable tool for exam-
ining the effects of code smells on program comprehension [26]. By
using eye-tracking technology, researchers can explore developers’
physiological responses during program analysis, identifying which
parts of the code they focused on, which elements cause distrac-
tion, and how long certain stimuli or triggers capture attention.
Analyzing eye movements is essential to understand the cognitive
process, as they guide and orient visual attention to regions of
interest, which are subsequently processed by the brain [33].

Eye trackers have been widely used in research to develop new
insights into how developers interact with software systems over
a wide variety of tasks [33]. Sharafi et al. [33] highlight that this
non-invasive technology leverages metrics such as pupil diameter,
saccade patterns, scanning paths, and fixation points, allowing
researchers to achieve pioneering discoveries and advancements
in software engineering research. However, currently there is no

empirical study on using eye trackers to understand the impact of
code smells on program comprehension activities.

In this context, this paper reports on a study in which we have
used an eye tracker to investigate the influence of code smells on
developers’ program comprehension. The eye tracker was used
to monitor participants’ visual attention, enabling a quantitative
evaluation of their visual efforts while they engaged with analyt-
ical tasks on code snippets. During the experiment, participants
performed tasks on code snippets with and without code smells,
allowing us to examine their interactions with the code. Specifically,
we utilized eye-tracking information such as fixation duration and
areas of interest (AOI) to understand how the presence of code
smells influenced developers’ program analysis. Fixation duration
assesses the cognitive effort expended by developers during the
analysis of code snippets. This metric indicates in which part of the
code and for how long developers are focusing their attention. For
the metric AOI, we use the syntactic categorization functionality
of iTrace based on the syntactic categories of the code.

To capture and analyze data, we used the iTrace Eclipse Plu-
gin [30], iTrace-Toolkit [6] and OBS Studio!. Additionally, question-
naires were administered to gather complementary information
from participants. By analyzing eye-tracking data while developers
reviewed code snippets with and without code smells, this study
identifies the key aspects that developers focus on during their
analysis and compares their responses. Through this detailed anal-
ysis, our aim was to gain a deeper understanding of how specific
code attributes influence developers’ perceptions and responses to
structural problems within the code. These insights are crucial to
improving the development of more effective tools and practices
for code refactoring and software maintenance.

Our key findings and related implications are as follows:

(1) We observed that the smell data class leads to a lower cog-
nitive effort, while the smells feature envy and long method
imposed a considerably higher effort. That explains, for in-
stance, why recent studies have reported that the refactoring
of feature envies and long methods has been much more com-
mon across projects [7, 10, 22, 23].

Long methods were smells that clearly yielded the greatest
effort. Knowing which code smell demands the most from the
developer can help one formulate best practices. Moreover,
IDE features should better equip developers with clues to
support (re)writing of long methods and help developers
prioritize refactoring efforts. For example, IDE support could
automatically suggest which parts of a long method could
be further decomposed into two, three, or more methods,
taking eye-tracking measures to support the decision.

—
S
~

!https://obsproject.com/pt-br

https://obsproject.com/pt-br

Vinicius Martins, Pedro Lopes Verardo Ramos, Breno Braga Neves, Maria Vitoria Lima, Johny Arriel,

SBES’24, September 30 — October 04, 2024, Curitiba, PR

(3) We observed that most participants struggled to correctly
identify the presence of feature envies in the programs they
analyzed. Some participants did it right. However, the ones
that did wrong, engaged in complex cognitive processes as
they were looking all around to understand all the depen-
dencies. For them, it was difficult to determine if the "envy"
should or not be moved to another class. The difficulty comes
from the fact that: (i) there were many dependencies with
different weights and responsibilities all around, and (ii) each
dependency carried a different semantics, which could only
be inferred after analyzing varying context-specific variables.
Existing IDEs and refactoring tooling should indicate which
dependencies were better conditioned to be removed.

(4) Our findings also highlight the importance of good and clear
nomenclature for code readability and maintainability. Cer-
tain categories such as function_decl and if indicate a
deeper analysis of functions and control flow structures,
likely due to their complexity and potential impact on pro-
gram execution.

Audience and contribution. The audience for this paper is re-
searchers and professionals in the field of software engineering,
particularly those involved in code refactoring, software quality
assessment, and software maintenance and evolution, who seek a
deeper understanding of the cognitive processes and behavioral
responses of developers during code comprehension. Eye-tracking
measures can be leveraged in real time as developers write, review,
or understand the source code. By integrating eye-tracking technol-
ogy into development environments, tools can identify the cognitive
patterns developers exhibit in response to specific code smells, lead-
ing to more nuanced and precise detection algorithms that surpass
traditional static, dynamic, and repository-based measures (e.g.,
change history metrics) commonly reported in the literature. This
integration enables tools to provide immediate feedback by alerting
developers to high cognitive loads, highlighting problematic areas
of code, and suggesting prioritization strategies. Moreover, it can
prompt developers to take breaks or seek help, thereby improving
overall productivity and well-being. This paper aims to advance the
field of software engineering by inspiring further research and the
development of more effective tools for identifying and refactoring
code smells.

2 BACKGROUND

In this section, we introduce the basic concepts of code smells and
motivate the use of the eye tracker in the field. Furthermore, we
present related work.

2.1 Code Smells

The term "code smell” was used by Riel [29] and Beck et al. [9], to
highlight symptoms that can lead to poor design and cause problems
in software maintenance. Soon after, Fowler et al. [14] defined code
smells formally, and Méntyla et al. [20] came up with another defi-
nition for code smells as a term that refers to a somewhat subjective
indicator of poor design or coding style. They are normally intro-
duced when developers make modifications and enhancements to
software to accommodate new requirements, resulting in complex
code and deviating from its original design [17].

Joao Victor Godinho, Joanne Ribeiro, Alessandro Garcia, Juliana Alves Pereira

In this work, we focus on three specific types of code smells:
long method, feature envy, and data class. According to Méntyl4 et
al. [19] the following are the definitions for these three types of
code smells:

e Long method: A method that is too long, making it difficult
to understand, change, or extend.

e Data class: A class that primarily serves as a container for
data fields, but does not encapsulate any additional logic.

e Feature envy: A method that shows more interest in other
class(es) than the one it is currently located.

We selected these three smell types as (i) they are quite different
from each other in terms of structural problems they represent,
(ii) these different structural problems may stimulate the experi-
ment participant in a wide variety of different ways, (iii) choosing
more smell types would make our experiment too complex, and
(iv) complex experiments tend to make the subjects feel very tired
or stressed, which would unavoidably interfere in the results. In
future research, studies can replicate our experiments using other
smell types.

2.2 Eye Tracker

Eye-tracking technology provides a comprehensive understanding
of how individuals interact with visual elements. By collecting data
on eye movements, this technology reveals how people navigate
reading material [28] and respond to visual prompts [11]. It is
valuable for understanding the cognitive processes involved in
comprehension and problem-solving. Since cognitive functions
guide gaze direction, analyzing eye movements offers valuable
insights into the cognitive efforts employed during various software
engineering activities. Thus, eye tracking is a powerful tool for
studying cognitive interactions with different stimuli, as eye gaze
patterns can reveal much about an individual’s thought processes.

The relation between eye gaze and cognitive processing is groun-
ded in two key assumptions: the immediacy assumption and the
eye-mind assumption [16]. The immediacy assumption suggests
that the interpretation of stimuli begins as soon as they are seen. The
eye-mind assumption posits that individuals focus their attention
only on the part of the stimulus currently being processed [16].
These assumptions form the foundation for understanding how eye
gaze reflects cognitive processes. Thus, eye gaze data indicate both
the target of an individual’s attention and the effort and duration
spent understanding the stimulus.

In the context of software development, an eye tracker becomes
a powerful tool for assessing a developer’s attention and cognitive
processes. By capturing precise eye movements and gaze patterns,
researchers and developers can gain insights into how individuals
interact with visual stimuli on a screen. Analyzing which elements
attract the most attention helps developers understand the visual
hierarchy within a codebase, enabling them to prioritize essential
components and optimize code readability.

When working with an eye tracker, several metrics can be an-
alyzed, including saccades, pupil diameter, constriction, areas of
interest, and fixation [26]. For this study, we will focus on develop-
ers’ fixations. Fixations indicate areas of the stimulus where visual
attention is concentrated, leading to cognitive processing. Most

Eyes on Code Smells: Analyzing Developers’ Responses During Code Snippet Analysis

fixations last between 100 and 600 milliseconds, but this can vary
significantly depending on context and other relevant factors [26].

3 RELATED WORK

The application of eye trackers in Software Engineering studies is
varied, e.g. for program comprehension and code review.

In program comprehension, there is a study conducted by Peitek
et al. [27] that focuses on the relationship between programming
experience and programming comprehension efficacy, encompass-
ing both code comprehension correctness and speed. The experi-
ment combined the use of electroencephalography (EEG) and eye-
tracking technologies to observe 38 participants as they compre-
hended Java code snippets. Their finding was that developers with
higher comprehension efficacy tended to read the source code in a
more targeted manner and experienced a lower cognitive load.

In code review, Alcocer et al. [2] employed an eye tracker to
monitor the interaction of software developers with unified views
in GitHub for bug detection. The findings suggest that this view
may facilitate more efficient code analysis and potentially lead to
the discovery of more bugs. The study also observed that partici-
pants primarily focused on conditionals, class/instance variables,
and changes in the code. Huang et al. [15] conducted a study to
understand the differences in how men and women conduct code re-
views. With the support of eye-tracking technology, they examined
the differences in code review practices between genders. Their
findings reveal distinct differences in how men and women perform
code reviews highlighting the need for specialized tools.

Several studies [13] use visualization techniques such as heatmaps
and scan paths to investigate the behavior of developers when they
are coding a software system. Other works are directly related to
this research, such as those by Shaffer et al. [30] who developed the
iTrace tool used in the study, capable of capturing the movement
of developers’ eyes while performing tasks in different develop-
ment environments. In conjunction with iTrace, Behler et al. [6]
developed a complementary tool called iTrace-Toolkit, which pro-
cesses the raw data, maps, and generates fixes, saving the data in a
database which helps and facilitates data analysis.

Although previous studies have explored various aspects of soft-
ware development and code comprehension, our work specifically
investigates how developers analyze code snippets with and with-
out code smells. By understanding the cognitive load imposed by
code smells, we can better support developers in their efforts to
write cleaner, more maintainable code.

4 STUDY DESIGN

In this study, we investigate how developers react to code smells by
analyzing their cognitive responses during code review. To capture
these responses, we used an eye tracker, aiming to identify the
behavioral patterns developers present during code analysis. This
approach allows us to detect code sections that are difficult to
understand and, consequently, more likely to contain code smells.

To ensure the success of the experiment, we divided our research
methodology into 7 stages (see Figure 1): (1) preparation of the
experiment, (2) selection of a state-of-the-art dataset, (3) selection of
the code snippets, (4) pilot study, (5) call for volunteers, (6) execution
of the experiment, and (7) data analysis.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

4.1 Preparation of the Experiment

It should be noted that the experiment in question was submitted
and approved by the research ethics committee (CEP) through the
Plataforma Brasil under the Certificate of Presentation of Ethical
Appreciation (CAAE) number 74286223.4.0000.5235. Any data or
elements that could identify the participant, such as their name
or image, have not been and will not be disclosed or exposed, be-
ing kept anonymous. If the participant agreed to participate, they
agreed with the "Free and Informed Consent Form" (TCLE), a docu-
ment containing all the information regarding data collection and
how their data will be treated.

The study took place at PUC-Rio; it lasted approximately 1 hour,
depending on the level of experience and detail in which the de-
veloper analyzed the code snippets and responded to the survey
carried out together. It was carried out in an isolated room, away
from noise and interruptions. Information was provided before
the experiment for developers to familiarize themselves with the
materials (eye tracker, keyboard, mouse, and IDE where the devel-
opers analyze the code snippets), instructions on how they have to
experiment, and any questions they may have. We emphasize to
the participant that everyone has their own way of approaching
when solving coding problems. The interest lies in observing their
distinct perspectives, and they should not concern themselves with
the correctness of their answers or the time taken to analyze each
code file. They are encouraged to take the necessary time. The
primary objective is to observe the answers they gave for the tasks
presented, where there are no incorrect answers.

The eye tracker was calibrated with the participant (see Sec-
tion 4.6). Participants also had a brief introductory discussion with
the study authors to familiarize themselves with the eye-tracking
equipment used. This dialogue was supposed to calm down the sub-
jects so that their emotional state would be neutral, which would
only make them concentrate on the experiment task of code smell
identification and classification. This preparatory step is crucial to
minimize any external influences on the data collected through the
eye tracker.

4.2 Selection of a State-of-the-Art Dataset

There are several code smells datasets available, such as the one
published by Palomba et al. [24], which contains 243 instances of
five types of code smells and another containing 17,350 instances
of 13 types of code smells. There are also two datasets developed by
Fontana et al. that work with binary classification [3] and severity
scale [4]. The reason for not using these datasets is that they were
either labeled automatically by software tools or by students and
researchers, missing developers working in the industry.

Thus, we choose to use the dataset called "MLCQ" (Madeyski
Lewowski Code Quest) developed by Lech Madeyski and Tomasz
Lewowski [18], which was manually labeled with the support of 26
developers from industry who participated in reviewing the code
snippets. All developers were actively involved in activities related
to code smells. In total, 4,770 code samples from 792 open-source
and industry-relevant projects were reviewed, totaling 14,739 re-
views. Moreover, the authors provided detailed information about
the background of the reviewers involved in the labeling process.

Vinicius Martins, Pedro Lopes Verardo Ramos, Breno Braga Neves, Maria Vitoria Lima, Johny Arriel,

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Selection of a
state-of-the-art
dataset

Selection of the
code snippets

Preparation of
the experiment

Pilot study

Joao Victor Godinho, Joanne Ribeiro, Alessandro Garcia, Juliana Alves Pereira
Stage 5 Stage 6 Stage 7
L] [} []

Call for)
Data analysis

volunteers

Figure 1: Overview of our research methodology.

This provided us with a detailed level of information when eval-
uating the data. The reviewers focused on 4 code smells: Feature
Envy and Long Method at the method level; and Data Class and
Blob at the class level. These were chosen due to a literature review
carried out by the authors as the most popular code smells present
in the literature. They also classified code smells according to 4
severity degrees based on knowledge and experience. The 4 severity
degrees are: none, minor, major, and critical. We must emphasize
that none is the classification given when the developer did not see
the presence of the smell attributed to the code snippet. A minor
code smell means a relatively low-impact issue in the code. A ma-
Jjor code smell suggests a more significant issue in the code that
could impact maintainability and readability. A critical code smell
indicates a severe issue that can significantly impact the software’s
maintainability and readability. A questionnaire with 59 questions
was applied to the 26 reviewers, of which 20 responded. The au-
thors carefully selected the number of questions to allow a detailed
understanding of the background of the reviewers participating in
the study, to obtain a more comprehensive and in-depth view of
their skills and experience. For more details on how the dataset
was developed, see the original study [18] and access the dataset at
https://zenodo.org/records/3666840.

4.3 Selection of the Code Snippets

To select the code snippets from MLCQ, it was decided to filter by
the background of the reviewers who manually labeled the code
snippets. To do this, we applied the following inclusion criteria (IC):

(IC1) Experience in software development greater than 3 years.
(IC2) Experience in the software industry greater than 3 years.
(IC3) Experience with the Java language greater than 1 month.

Moreover, we applied the following exclusion criteria (EC):

(EC1) Developers who did not answer any questions related to the
code smells that were presented.
(EC2) Code snippets longer than 44 lines.

Although the iTrace Eclipse Plugin allows developers to use
the scroll bar, we chose to consider EC2 for two main reasons:
(1) Keeping the snippets more readable on standard screen resolu-
tions, without the need for constant scrolling within the IDE (but
allowing participants to explore the complete code file). (2) Longer
code snippets would require more time for developers to analyze
from a total of 13 code snippets. These factors were confirmed in
a pilot experiment, where developers spent over two hours finish-
ing the experiment, guiding our decision to limit the code snippet
length, and ensuring a balance between data quality and participant
workload.

We selected a total of 13 code snippets. 1 code snippet was se-
lected for the participant to become familiar with the presentation
format, while the remaining 12 were used for data collection. For
these 12 snippets, we randomly selected 4 snippets related to each
code smell, except for the Blob code smell. We decided to eliminate
Blob because including 16 code snippets would take too much of
the participants’ time, as highlighted in the pilot study (Section 4.4).

Before starting the experiment, two researchers evaluated these
13 code snippets to ensure their clarity and comprehensibility.

4.4 Pilot Study

We piloted the survey with two practitioners to estimate its length
and clarity. The pilot study was carried out based on the guide-
lines provided by Sharafi et al. [32]: (i) we ensured that the eye
tracker and room were set up correctly; (ii) we verified that the
recording process properly acquired and saved data to disk; (iii) we
checked the quality of the recorded data to ensure that the lighting
conditions were appropriate for capturing eye movements; (vi) we
observed how the participant reacted to the research questions,
setup, and tasks; (v) we recorded the time taken by the participant
to complete the study; and (vi) we analyzed the data to evaluate
the results and prevent any data loss.

The first participant took 90 minutes to analyze 16 code snippets
and noted fatigue, discomfort with the chair, and errors found in the
forms to be filled out. This feedback led to minor adjustments. Due
to the extensive duration of the pilot, we decided to focus on 3 code
smells and select 12 code snippets. As a result, the duration of the
second pilot was reduced to 60 minutes, including the time allocated
for completing a questionnaire on the researcher’s background,
which was conducted after the code snippet analysis.

4.5 Call for Volunteers

We selected participants under a few constraints: (i) participants
must have contact with Java or other similar syntax programming
language, and (ii) participants must have heard about code smells.
With these minimum requirements, we seek to ensure that the par-
ticipants have a minimum understanding of the code snippet and
software quality assurance. We seek participants from universities
and companies. We use the snowballing strategy [25], asking each
participant to refer our survey to colleagues with similar experi-
ences and interest in joining.

4.6 Experiment

The survey was carried out via Google Forms, containing both
multiple-choice and free-text questions. It begins by outlining the

https://zenodo.org/records/3666840

Eyes on Code Smells: Analyzing Developers’ Responses During Code Snippet Analysis

survey’s purpose and research goals, emphasizing the confiden-
tiality of participants’ responses. The survey is divided into three
phases: before, during, and after the experiment.

The first phase presents the definition and types of code smells.
The second phase involves analyzing the code snippets using the
eye tracker. Finally, in the third phase, participants are asked about
their feelings during and after the analysis and their perceptions
regarding the use of biosensors. Additionally, to better understand
their background, participants’ knowledge of the software engi-
neering area is collected. All responses were supplemented by audio
and video recordings. The survey is available in our supplementary
material [21].

4.6.1 First Phase: Introduction to Code Smells. In the first phase, the
developer is introduced to the concept of code smell and 7 types of
code smells (Long Method, Data Class, Duplicate Code, Data Clumps,
Feature Envy, Refused Bequest, and Message Chains). We include
a wider variety of code smells to ensure no bias in the responses.
These measures were adopted to establish a knowledge base, as
many are aware of code smells but do not know how to identify or
classify them correctly. Thus, the participant can be more confident
evaluating the code snippets.

4.6.2 Second Phase: Analysis of Code Snippets. In this phase, the
developers performed the analysis of the code snippets. The first
code snippet was an example so that the participant could clarify
any doubts with the researcher. In subsequent sections, he carried
out the analysis without any interference, aiming for the integrity
of the data. We presented the code snippets in the same order for all
participants. To mitigate the risk of order effects, such as learning
or mental fatigue, we diversified the types of code smells through-
out the experiment. We show in our supplementary material [21]
that there was no significant variation in the time taken or fixation
metrics for code snippets placed at the end of the questionnaire,
indicating that neither learning effects nor mental fatigue signifi-
cantly impacted the results.

During the analysis of each code snippet, participants were asked
to (i) describe how the code snippet works, (ii) whether it was diffi-
cult or not to understand and explain why, (iii) if it has a code smell
and, if so, what is its severity and why choose this severity, and,
lastly, (iv) how the participant felt when analyzing the code snippet
on a scale of 1 to 5. Knowing that each participant has their own
style and approach to solving coding problems, the authors were
interested in seeing each participant’s perspective. Attention check
questions were also included to identify whether the participant
remained attentive during the experiment.

4.6.3 Third Phase: Collecting participant background data. In the
third phase, the participant responded to a subset of questions de-
rived from the original MLCQ article. This inclusion is intended
to allow future research to establish a link between both studies.
The questions focused on the participant’s history as a developer,
to understand their development experience. We explored aspects
such as the duration of their programming career, their experience
with software development, the programming languages they are
familiar with, and their knowledge of the concept of code smells,
among others. The objective of this phase is to segment the data

SBES’24, September 30 — October 04, 2024, Curitiba, PR

more precisely and to contextualize the analysis based on the par-
ticipants’ backgrounds. Additionally, we solicited the participants’
opinions on the utility of the data gathered by the eye tracker in
understanding their assessments.

4.7 Data Analysis

In the Data Analysis, we conducted a thorough investigation into
the developers’ responses while analyzing code snippets, using
advanced tools for precise data collection and analysis. The pri-
mary tool used was the iTrace-core software [30]. This software,
when employed in the experiments, generated detailed XML files,
allowing us to understand where each participant was looking at
specific times, the duration of their gaze, and the specifics of the
code being analyzed.

In addition to iTrace-core, we also used the iTrace ToolKit[6], a
complementary tool to process raw data. This toolkit was crucial in
creating a database and calculating fixations. Among all collected
data, the fixation and syntactic categories were of particular im-
portance. We chose to work with fixation because it is a proven
metric related to the cognitive process [32], which indicates where
developers are focusing their attention in the code and is derived
from time. We chose the I-VT algorithm [6], to calculate fixation
duration, recommended for eye trackers with a refresh rate higher
than 200Hz aligning with our equipment (see Section 4.8).

Data preparation initially consisted of analyzing the fixation
durations and eliminating outliers. To do this, we used boxplots to
visualize the severities and determined the upper and lower limits
as 1.5 times the Interquartile Range (IQR). For our analysis, we
utilized several eye-tracking metrics, including Average Fixation
Duration (AFD), also known as Mean Fixation Duration (MFD),
which calculates the average duration of all fixations within the
area of interest (AOI); and fixation count (FC), which measures the
total number of fixations in each AOI [31].

4.7.1 Research Questions. To investigate how developers react and
comprehend code snippets, we focused on analyzing the following
research questions (RQs):

RQ1 What is the average time that developers spend when ana-
lyzing code snippets with potential code smells?

RQ2 Which sections of the code are most frequently examined by
developers when analyzing code snippets?

RQ3 How do fixation patterns differ between developers who
accurately identify code smells, and those who do not?

The data collected through the eye tracker were analyzed to iden-
tify patterns in the developer’s behavior and answer the research
questions above. This analysis took into account physiological re-
sponses, time spent on each code snippet, and the developer’s read-
ing pattern according to its accuracy in detecting the code smell
and code smell type.

Analysis of RQ1. Developers often spend time reviewing and
analyzing code snippets, either their own or those of others, to
identify refactoring opportunities. The time spent on this process
can vary widely based on several factors, including the complexity
of the code, the developer’s familiarity with the codebase, the pres-
ence and nature of the code smells, and the developer’s experience
level. In this context, this research question seeks to analyze how

Vinicius Martins, Pedro Lopes Verardo Ramos, Breno Braga Neves, Maria Vitoria Lima, Johny Arriel,

SBES’24, September 30 — October 04, 2024, Curitiba, PR

developers’ fixations behave during the analysis of code snippets,
calculating the Average Fixation Duration (AFD) multiplied by the
Fixations Count (FC). A high amount of fixations indicates that
more effort is required to maintain and evolve the system [5, 8, 34].
Knowing which code smell demands the most from the developer
can help formulate best practices for writing code and help priori-
tize refactoring efforts.

Analysis of RQ2. This research question aims to discover the
regions of the code that receive the most attention from develop-
ers. Understanding these Areas of Interest (AOI) can shed light on
critical aspects of the code that require closer analysis for effec-
tive code smell detection. For this analysis, we used a syntactic
hierarchical model extracted from the database generated by the
iTrace ToolKit. The syntactic context column stores an arrowed
list of tags that describes where the text is located contextually
[6]. Using AFD times FC, we calculated the time in minutes for the
syntactic categories that developers spent the most time looking at.
After identifying the 10 categories, we break the chain to identify
which abstract synthetic information appears most within the 10
identified categories.

Analysis of RQ3. This research question aims to explore the rela-
tionship between developers’ fixation patterns and their ability to
identify code smells. The goal is to determine whether there is a
significant difference in fixation patterns between developers who
successfully identified smells and those who did not. First, we veri-
fied the smelly and non-smelly instances reviewed by professionals.
Then, we compared the fixation count between these reviews. To
carry out this analysis, we performed a Min-Max normalization.
We also analyzed the AFD % FC boxplots, so that we can understand
if the pattern of fixations varies for each code smell.

4.8 Data Collection and Availability

To collect data from participants, the Tobii TX300 eye tracker was
used. According to its manufacturer, combination of 300Hz sam-
pling rate, very high precision and accuracy, robust tracking and
compensation for large head movements extends the possibilities
for unobtrusive research of oculomotor functions and human be-
havior [1]. In addition, we use Eclipse IDE? to present the code
excerpt in conjunction with Itrace Eclipse plugin and Open Broad-
caster Software (OBS Studio)® to record our experiment. Google
Forms was also used to collect participants’ responses.

All files we used for the elaboration of the study and to display
the graphics and data tables present in this paper can be accessed
at our GitHub repository [21].

5 RESULTS

In this section, we will discuss the participants’ characterization
and the research questions based on the results obtained from the
data collected by the eye tracker.

5.1 Participants Contextualization
In total, we carried out 11 valid survey responses and 12 experiments

where we collected valid data via eye tracker.

https://www.eclipse.org/ide/
3https://www.obsproject.com/

Joao Victor Godinho, Joanne Ribeiro, Alessandro Garcia, Juliana Alves Pereira

Careful Data Sanitization. To analyze the validity of the data,
we first checked the completeness of the collected data; i.e., we
checked whether all the questions were appropriately answered,
ensuring that there were no missing entries that could impact the
integrity of the analysis. Also, after the experiment and generation
of the databases, it was checked whether the data collected via
eye tracker were consistent. We checked for (ab)normality bases
with little data, discrepancies in the size of the generated database
file, and few fixations. All data collected via the eye tracker were
also validated, except for experiment 10, code snippet 2, as the eye
tracker was not working due to an iTrace error.

The difference between the number of experiments and sur-
veys was due to 1 of the surveys not being saved due to internet
connection problems. Moreover, among the 11 surveys collected,
experiment 1, code snippet 12; and experiment 2, code snippet 13,
were not collected due to errors. Thus, when data analysis was
directly related to these code snippets or responses missing from
the survey, data were disregarded.

Figure 2 shows that most participants, either already heard about
code smells (54.55%) or know what they are (36.36%). Only a few
participants (9.09%) only heard about the concept during the exper-
iment. Figure 3 shows that more than 50% of the participants have
at least a bachelor’s degree in Science or Engineering.

| heard about them during the experiment 9.09%

| know what they are and used some related tools

| heard about them in the past 54.55%

0 25 50

Percentage

Figure 2: Participants’ familiarity with the concept of smells.

Graduated Doctoral

Graduated Master of Science/Engineering
Graduated Bachelor of Science/Engineering
Current Bachelor of Science/Engineering 4|5.45%

0 25 50

Percentage

Figure 3: Participants’ degree.

5.2 ROQ1: Fixation Time

The process involves a detailed analysis aimed at understanding
the relationship between developers’ attention (AFD) and their
cognitive load (FC) while they analyze code snippets, particularly
those with potential code smells. We assume that more time and
more fixations correlate with greater difficulty or complexity.
Figure 4 shows the frequency of different levels of cognitive load
for AFD * FC in milliseconds per smell type. The code smell data
class has the median lower than the boxplots of the other code smells
and code snippets without code smells (none). It is also observed that
the third quartile is lower than the second quartile of the other code
smells. Notice that for long method, the opposite of the smell data

Eyes on Code Smells: Analyzing Developers’ Responses During Code Snippet Analysis

o}

500000 -

400000 - —
m
E
U 300000 -
[V
*
)
a S
< 200000 -

o]
.. =

data class feature envy long method none
Code Smell Type

Figure 4: Boxplot of AFD * FC per smell type.

code smell type
m data class
m feature envy

long method
s none

. I

Count

6_
4_
, I .
0 100000 200000 300000 400000 500000
AFD * FC (ms)

Figure 5: Stacked bar of AFD * FC per smell type.

class occurs, with the median, third quartile and upper limit above
the other boxplots. Both interquartile ranges are also smaller when
compared to the other boxplots. This indicates that the code smell
data class may not be as impactful as the other code smell types,
suggesting that these may be less problematic in relation to the
complexity of the code, while the smell long method presents greater
complexity during its analysis. The smaller interquartile range also
indicates that the values are more consistent and less variable than
the other two boxplots (feature envy and none) presented. This

SBES’24, September 30 — October 04, 2024, Curitiba, PR

consistency may imply that both code smells are more predictable
and potentially more manageable compared to feature envy.

The stacked bar chart in Figure 5 presents the cognitive load
(AFD * FC) for each code snippet. With a higher count for data class
at the beginning of the plot, we see that this smell type presents
a lower cognitive effort when compared to the other code smells.
Whereas the long method smells led to a higher effort.

To demonstrate our results, we used normalized qualitative data
about the perceived complexity of the code snippet by the par-
ticipants and quantitative fixation data from the eye tracker. Our
results indicate that the code snippets considered more complex by
the developers required more fixations, resulting in higher cogni-
tive effort [21]. This is particularly evident in the case of the long
method smells. Additionally, we noted that the data class smell
presents a lower cognitive effort compared to other code smells, as
reflected by lower fixation values.

Our data revealed a consensus among the participants’ explana-
tions when there was no code smell or when a specific type of code
smell, such as the data class smell, was present. This consensus is
further reflected in the lower perceived complexity for none and
data class. For long method, which has higher perceived complexity,
participants’ explanations were more varied and less consistent.

5.3 RQ2: Most Examined Code Sections

To answer this research question, we need to understand the gran-
ularity of the syntactic categories involved. block, class, or unit
are very broad categories, making them cover significant parts
of the code concerning their scope and organizational structure.
On the other side, there are much more granular categories such
as name, if, decl, and call. They are related to the specific ele-
ments of the code inside each statement like variables, conditionals
operations, declarative operations, and function calls.

One of the types of data that we can collect from the database
generated using eye tracker data is syntactic_category. This
column stores an arrowed list that presents syntactic categories
and shows where in the code the fixation was performed contextu-
ally. Thus, we identified 10 arrows lists that presented the highest
AFD*FC in minutes for all developers (Figure 6). From these 10
arrowed lists, we counted all syntactic categories that are present
within the arrowed lists to identify which ones have the greatest
representation.

Figure 7 shows the syntactic categories that appeared the most in
the 10 arrowed lists with high AFD*FC. We observe that developers
pay fair attention to both, i.e., the general and the specific categories
of the code while inspecting code snippets. The categories that are
more general, like block, class, and unit, are the first three; they
allow one focusing on understanding the architectural organization
and program layout. Surprisingly, the granular category name comes
in with an equivalent count of "function" despite its low scope. This
shows that developers invest much time in understanding the names
within the code. This highlight demonstrates the importance of
good and clear nomenclature even for tinier elements, for the sake
of supporting code readability and maintainability. Other categories
such as function_decl and if indicate a deeper analysis into
functions and control flow structures, likely due to their complexity
and potential impact on program execution.

Vinicius Martins, Pedro Lopes Verardo Ramos, Breno Braga Neves, Maria Vitoria Lima, Johny Arriel,

SBES’24, September 30 — October 04, 2024, Curitiba, PR

unit-=class-=block->function-=name |
unit->class->block->comment -

unit->class-=block->class->block->class-=block->function_decl->type-=specifier -

syntactic_category

unit->class-=block->function->block->block_content->if_stmt->if->condition->expr->name -
unit->class->block->function->type-=name -

unit->class->block->function->block->block_content->return->expr->call->name |

unit->class-=block->function->block-=block_content-=if_stmt-=if->block->block_content-=if_stmt->if->block |
unit->class-=block-=function-=block-=block_content-=decl_stmt-=decl-=name -
unit->class->block->class->block->class->block->function_decl-=name -

unit->class->block->function->parameter_list->parameter->decl-=type->name

Joao Victor Godinho, Joanne Ribeiro, Alessandro Garcia, Juliana Alves Pereira

o -
- -

Figure 6: TOP 10 arrowed list for the hightest AFD*FC (minutes) for all developers.

unit: -
function -
name -
block_content - NNENG_——
if -
it_stmt -
type -
function_dec! -
decl -
expr -
specifier |
comment -l
decl_stmt -l
parameter_list -l
parameter -l

words

i ' l
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Count

Figure 7: Count of the most frequent syntactic categories in
the 10 arrowed list of Figure 6.

5.4 RQ3: Fixation Patterns

When analyzing Table 1, we noticed that there is no huge difference
between right and wrong answers regarding the identification or
not of code smells.

Table 1: Total count and percentage of right and wrong an-
swers for all code snippets.

Answer Type Count Percentage (%)

Right 51 43.22
Wrong 67 56.78

Figure 8 distinguishes the stacked bar of normalized FC count
for right (purple) and wrong (blue) answers for all code snippets.
It also presents a higher count for the right answers at the lowest
values of normalized FC; the wrong answers present a distribution
more centralized. This may indicate that developers who correctly

2 3 4 5
AFD * FC (minutes)
17.5 -
15.0 -
12.5 -
»
% 10.0 -
5 .
(]
7.5 -
>0 |q
2.5-
I
0.0 - I 0 0 0 0]
0.0 0.2 0.4 0.6 0.8 1.0

FC Normalized

Figure 8: Stacked bar of normalized FC count for right (pur-
ple) and wrong (blue) answers for all code snippets.

identified code smells did so with fewer fixations, possibly indicat-
ing a greater level of knowledge and familiarity with the code smell,
which can be interpreted as a greater efficiency in the analysis
process.

Increasing the granularity of the analysis, we plot boxplots for
AFD * FC in milliseconds for each group of code snippets with
or without code smells. Figure 9 shows the bloxplots for the right
answers, and Figure 10 shows the bloxplots for the wrong answers
for the same scale. First, comparing the medians, we notice that
the code smell feature envy stands out with a median with a higher
value for wrong answers, while the other boxplots do not have that
much difference. Analyzing the distribution of the data, we noticed
a different tendency for long method and none when compared to
feature envy. While long method and none have longer interquartile
ranges and larger upper whiskers for correct answers in relation
to incorrect answers, feature envy has the opposite trend, having a

Eyes on Code Smells: Analyzing Developers’ Responses During Code Snippet Analysis

Right Answers

175000 -
150000 -
125000 -
100000 -

75000 -

AFD*CF (ms)

50000 -

25000 -

=

data_class feature_envy long_method none

0-

Figure 9: Boxplot of AFD * FC by smell type for right answers.

Wrong Answers

175000 -
150000 -
125000 -
100000 -

75000 -

AFD*CF (ms)

50000 -

",

25000 -

0-

data_class feature_envy long_method none

Figure 10: Boxplot of AFD * FC by smell type for wrong an-
swers.

very narrow interquartile range and small upper and lower whiskers
for correct answers in relation to wrong answers.

Thus, for feature envy, developers who correctly identified the
smell demonstrated greater efficiency and consistency in identifying
this specific type of code smell compared to those who did not. For
the long method smell, the results showed that a more detailed
analysis accurately identified it, which is expected since this smell
is defined by the excessive length of the code.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

6 THREATS TO VALIDITY

In the present study, there are threats to validity. Threats to internal
validity include individual participant variations and the length
of the experiment. The different programming skills, experience,
and individual physiological conditions of developers can influence
their responses to biosensors. To mitigate these threats, several
measures were implemented, including ensuring participants had
knowledge of the Java language, presenting the concept and types of
code smells prior to the analysis, and following a protocol designed
to keep participants calm during the experiment. Another threat
to the validity of the study is the duration of the experiment. The
participants needed to remain in their position so that the data
captured by the eye tracker was reliable, but they had the freedom
to make natural movements to look at the screen. With a duration of
up to 1 hour and 30 minutes, some participants may no longer be as
comfortable as they were at the beginning, which could compromise
the data collected due to loss of eye tracker calibration. It was also
observed that some participants were more restless than others,
which could also affect the data collected.

As external threats to the validity, we have the number of par-
ticipants who carry out the study and the selection of short code
snippets. The number of participants may be limited due to the
fact that the study is carried out in a specific location, requiring
participants to travel to the location, which may not be feasible
for all potential interested participants. Furthermore, the duration
of the study, which can vary from 30 minutes to 1 hour and 30
minutes, and the number of code smells to be analyzed, asking par-
ticipants for detailed explanations about their analysis, may deter
some participants, potentially impacting the diversity of the sample.
The choice of Java as the language for the study, despite its current
lower popularity, was a deliberate decision, but it may also limit
the generalization of the results to other more current program-
ming languages. The use of smaller code snippets was necessary
to maintain a reasonable duration of the experiment, considering
that the evaluation of all three code smells, and their four severities
already takes a significant amount of time. Expanding to larger
code snippets could make the experiment impractical in terms of
duration and inaccurate data.

We chose to work only with metrics related to fixations, how-
ever other metrics such as pupil diameter and eye blinks can also
provide valuable data for analyzing cognitive effort. The choice not
to use these metrics was because it might be influenced by exter-
nal factors, such as ambient lighting and emotional states, making
its interpretation more complex and less accurate. In future work,
we aim to explore more deep these metrics, as they could provide
additional insights into the cognitive effort of developers during
code analysis. Moreover, we also plan to conduct a more in-depth
examination of the qualitative data collected during the study with
a larger number of participants to further develop our conclusions.

7 CONCLUSION

This study explores the physiological responses of developers when
analyzing code snippets with and without the presence of code
smells. By analyzing eye tracker data, we identified specific cate-
gories of developer focus and their responses during code smell
analysis. The implications of the findings are significant for code

Vinicius Martins, Pedro Lopes Verardo Ramos, Breno Braga Neves, Maria Vitoria Lima, Johny Arriel,

SBES’24, September 30 — October 04, 2024, Curitiba, PR

review practice and the development of software tools for code
smell detection. The recognition that long method smells require
more cognitive resources suggests that new developers may need
targeted training to better recognize and manage these smells. Also,
attention to general and specific syntactic categories in code re-
view indicates that tools and checklists should be designed to guide
developers in inspecting macro and micro elements of code.
Overall, our findings contribute to the broader field of human-
computer interaction by demonstrating the value of eye-tracker
data in understanding developers’ cognitive processes imposed
by code smells. Participants highlighted the utility of specific fea-
tures such as fixation duration, which was a key metric in our
analysis. Additionally, participants mentioned saccade length, pupil
dilation, and gaze location. Participants also offered rationales for
their perceptions, suggesting that these additional metrics could
provide a more comprehensive view of their cognitive processes
and difficulties encountered during code analysis.

The results obtained so far are promising and suggest that the
continuation of this research, whether by better exploring the data
and responses from developers who participated in the experiment,
can offer valuable contributions to the area of Software Engineering.
Future research could explore the development of custom train-
ing modules for identifying code smells, focusing on smells that
are more cognitively demanding. The data collected also provides
information that can assist in future research focused on individ-
ual differences between developers — such as, level of experience
in code refactoring, tools they use and length of experience - to
generate more insights into how to support developers in the code
review process.

ACKNOWLEDGMENTS

This research was partially funded by the Brazilian funding agencies

CAPES (Grant 88881.879016/2023-01) and FAPESP (Grant 2023/00811-

0), and the State Institute of Engineering and Architecture (IEEA),
linked to the Infrastructure Secretariat of the State of Rio de Janeiro,
through Contract 001/2021 with funding from the Government
of the State of Rio de Janeiro. We also acknowledge the Brazilian
company Stone for the financial support.

REFERENCES

[1] [n.d.]. Tobii TX300 Eye Tracker. https://www.spectratech.gr/Web/Tobii/pdf

[2

l6

=

=

/TX300.pdf. https://www.spectratech.gr/Web/Tobii/pdf/TX300.pdf Accessed:
January 17, 2024.

Juan Pablo Sandoval Alcocer, Alejandra Cossio-Chavalier, Tiara Rojas-Stambuk,
and Leonel Merino. 2023. An Eye-Tracking Study on the Use of Split/Unified
Code Change Views for Bug Detection. IEEE Access 11 (2023), 136195-136205.
https://doi.org/10.1109/ACCESS.2023.3336859

F. Arcelli Fontana, M.V. Méantyld, M. Zanoni, et al. 2016. Comparing and experi-
menting machine learning techniques for code smell detection. Empirical Software
Engineering 21 (2016), 1143-1191. https://doi.org/10.1007/s10664-015-9378-4
Francesca Arcelli Fontana and Marco Zanoni. 2017. Code smell severity classifi-
cation using machine learning techniques. Knowledge-Based Systems 128 (2017),
43-58. Universita degli Studi di Milano-Bicocca, Milan, Italy.

R Bednarik. 2012. Expertise-dependent visual attention strategies develop over
time during debugging with multiple code representations. International Journal
of Human-Computer Studies 70, 2 (2012), 143-155. https://doi.org/10.1016/j.ijhcs.
2011.09.003

Joshua Behler, Praxis Weston, Drew T. Guarnera, Bonita Sharif, and Jonathan L.
Maletic. 2023. iTrace-Toolkit: A Pipeline for Analyzing Eye-Tracking Data of
Software Engineering Studies. In 2023 IEEE/ACM 45th International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion). 46-50. https:
//doi.org/10.1109/ICSE- Companion58688.2023.00022

[7]

[20]

[21

[22

[23

[24

[25

[26]

Joao Victor Godinho, Joanne Ribeiro, Alessandro Garcia, Juliana Alves Pereira

Ana Carla Bibiano, Anderson Uchoa, Wesley K.G. Assunc¢ao, Daniel Tenorio,
Thelma E. Colanzi, Silvia Regina Vergilio, and Alessandro Garcia. 2023. Composite
refactoring: Representations, characteristics and effects on software projects.
Information and Software Technology 156 (2023), 107134. https://doi.org/10.1016/
j.infsof.2022.107134

D Binkley, M Davis, D Lawrie, JI Maletic, C Morrell, and B Sharif. 2013. The impact
of identifier style on effort and comprehension. Empirical Software Engineering
18, 2 (2013), 219-276. https://doi.org/10.1007/s10664-012-9201-4

William J. Brown. 1998. AntiPatterns: refactoring software architectures and projects
in crisis. Wiley, New York.

Diego Cedrim, Alessandro Garcia, Melina Mongiovi, Rohit Gheyi, Leonardo
Sousa, Rafael de Mello, Baldoino Fonseca, Marcio Ribeiro, and Alexander Chavez.
2017. Understanding the impact of refactoring on smells: a longitudinal study of
23 software projects. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017). Association for
Computing Machinery, New York, NY, USA, 465-475. https://doi.org/10.1145/31
06237.3106259

Martha Crosby, Jean Scholtz, and Susan Wiedenbeck. 2002. The roles beacons
play in comprehension for novice and expert programmers. (07 2002).

Dipta Das, Abdullah Al Maruf, Rofiqul Islam, Noah Lambaria, Samuel Kim, Amr S.
Abdelfattah, Tomas Cerny, Karel Frajtak, Miroslav Bures, and Pavel Tisnovsky.
2022. Technical debt resulting from architectural degradation and code smells:
a systematic mapping study. SIGAPP Appl. Comput. Rev. 21, 4 (jan 2022), 20-36.
https://doi.org/10.1145/3512753.3512755

Daniel Kyle Davis and Feng Zhu. 2022. Analysis of software developers’ cod-
ing behavior: A survey of visualization analysis techniques using eye trackers.
Computers in Human Behavior Reports 7 (2022), 100213.

Martin Fowler and Kent Beck. 1999. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Longman Publishing Co., Inc., USA.

Yu Huang, Kevin Leach, Zohreh Sharafi, Nicholas McKay, Tyler Santander, and
Westley Weimer. 2020. Biases and differences in code review using medical
imaging and eye-tracking: genders, humans, and machines. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Virtual Event, USA)
(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,
456-468. https://doi.org/10.1145/3368089.3409681

Marcel A. Just and Patricia A. Carpenter. 1980. A theory of reading: From
eye fixations to comprehension. Psychological Review 87, 4 (1980), 329-354.
https://doi.org/10.1037/0033-295X.87.4.329

Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaél Guéhéneuc.
2020. Code smells and refactoring: A tertiary systematic review of challenges
and observations. Journal of Systems and Software 167 (2020), 110610. https:
//doi.org/10.1016/j.jss.2020.110610

Lech Madeyski and Tomasz Lewowski. 2020. MLCQ: Industry-Relevant Code
Smell Data Set. In Proceedings of the Evaluation and Assessment in Software
Engineering (EASE °20). Association for Computing Machinery, New York, NY,
USA, 342-347. https://doi.org/10.1145/3383219.3383264

Mika Mintyla. 2003. Bad Smells in Software - A Taxonomy and an Empirical Study.
Ph. D. Dissertation. Helsinki University of Technology.

Mika V. Mantyla and Casper Lassenius. 2006. Subjective evaluation of software
evolvability using code smells: An empirical study. Empirical Software Engineering
11 (2006), 395-431. https://doi.org/10.1007/s10664-006-9002-8

Vinicius Martins, Pedro Lopes Verardo Ramos, Breno Braga Neves, Maria Vitoria
Lima, Johny Arriel, Jodo Victor Godinho, Joanne Ribeiro, Alessandro Garcia,
and Juliana Alves Pereira. 2024. Eyes on Code Smells: Analyzing Developers’
Responses During Code Snippet Analysis. https://github.com/aisepucrio/EoCS.
Accessed: 2024-07-25.

Daniel Oliveira, Wesley K. G. Assuncéo, Alessandro Garcia, Ana Carla Bibiano,
Marcio Ribeiro, Rohit Gheyi, and Baldoino Fonseca. 2023. The untold story of
code refactoring customizations in practice. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). 108-120. https://doi.org/10.1109/IC
SE48619.2023.00021

Matheus Paixio, Anderson Uchda, Ana Carla Bibiano, Daniel Oliveira, Alessandro
Garcia, Jens Krinke, and Emilio Arvonio. 2020. Behind the Intents: An In-depth
Empirical Study on Software Refactoring in Modern Code Review. In Proceed-
ings of the 17th International Conference on Mining Software Repositories (Seoul,
Republic of Korea) (MSR °20). Association for Computing Machinery, New York,
NY, USA, 125-136. https://doi.org/10.1145/3379597.3387475

Fabio Palomba, Dario Di Nucci, Michele Tufano, Gabriele Bavota, Rocco Oliveto,
Denys Poshyvanyk, and Andrea De Lucia. 2015. Landfill: An Open Dataset of
Code Smells with Public Evaluation. In 2015 IEEE/ACM 12th Working Conference
on Mining Software Repositories. 482—485. https://doi.org/10.1109/MSR.2015.69
Charlie Parker, Sam Scott, and Alistair Geddes. 2019. Snowball Sampling. SAGE
Publications, Inc., London. https://doi.org/10.4135/9781526421036831710
Accessed on January 16, 2024.

Joseph R Pauszek. 2023. An introduction to eye tracking in human factors
healthcare research and medical device testing. Human Factors in Healthcare 3
(2023), 100031.

https://www.spectratech.gr/Web/Tobii/pdf/TX300.pdf
https://www.spectratech.gr/Web/Tobii/pdf/TX300.pdf
https://www.spectratech.gr/Web/Tobii/pdf/TX300.pdf
https://doi.org/10.1109/ACCESS.2023.3336859
https://doi.org/10.1007/s10664-015-9378-4
https://doi.org/10.1016/j.ijhcs.2011.09.003
https://doi.org/10.1016/j.ijhcs.2011.09.003
https://doi.org/10.1109/ICSE-Companion58688.2023.00022
https://doi.org/10.1109/ICSE-Companion58688.2023.00022
https://doi.org/10.1016/j.infsof.2022.107134
https://doi.org/10.1016/j.infsof.2022.107134
https://doi.org/10.1007/s10664-012-9201-4
https://doi.org/10.1145/3106237.3106259
https://doi.org/10.1145/3106237.3106259
https://doi.org/10.1145/3512753.3512755
https://doi.org/10.1145/3368089.3409681
https://doi.org/10.1037/0033-295X.87.4.329
https://doi.org/10.1016/j.jss.2020.110610
https://doi.org/10.1016/j.jss.2020.110610
https://doi.org/10.1145/3383219.3383264
https://doi.org/10.1007/s10664-006-9002-8
https://github.com/aisepucrio/EoCS
https://doi.org/10.1109/ICSE48619.2023.00021
https://doi.org/10.1109/ICSE48619.2023.00021
https://doi.org/10.1145/3379597.3387475
https://doi.org/10.1109/MSR.2015.69
https://doi.org/10.4135/9781526421036831710

Eyes on Code Smells: Analyzing Developers’ Responses During Code Snippet Analysis SBES’24, September 30 — October 04, 2024, Curitiba, PR

[27] Norman Peitek, Annabelle Bergum, Maurice Rekrut, Jonas Mucke, Matthias
Nadig, Chris Parnin, Janet Siegmund, and Sven Apel. 2022. Correlates of pro- [31

York, NY, USA, 954-957. https://doi.org/10.1145/2786805.2803188
Z Sharafi, T Shaffer, S Bonita, and YG Guéhéneuc. 2015. Eye-tracking metrics in

grammer efficacy and their link to experience: a combined EEG and eye-tracking
study. In Proceedings of the 30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
120-131. https://doi.org/10.1145/3540250.3549084

K. Rayner. 1998. Eye movements in reading and information processing: 20 years
of research. Psychological Bulletin 124, 3 (1998), 372-422. https://doi.org/10.103
7/0033-2909.124.3.372

Arthur J. Riel. 1996. Object-oriented design heuristics. Addison-Wesley Pub. Co,
Reading, Mass.

Timothy R. Shaffer, Jenna L. Wise, Braden M. Walters, Sebastian C. Miiller,
Michael Falcone, and Bonita Sharif. 2015. ITrace: Enabling Eye Tracking on
Software Artifacts within the IDE to Support Software Engineering Tasks. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering
(Bergamo, Italy) (ESEC/FSE 2015). Association for Computing Machinery, New

software engineering. In Proceedings of the 22nd Asia-Pacific Software Engineering
Conference (APSEC ’15). IEEE CS Press.

Zohreh Sharafi, Bonita Sharif, Yann-Gaél Guéhéneuc, Andrew Begel, Roman
Bednarik, and Martha Crosby. 2020. A Practical Guide on Conducting Eye
Tracking Studies in Software Engineering. Empirical Softw. Engg. 25, 5 (sep 2020),
3128-3174. https://doi.org/10.1007/s10664-020-09829-4

Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaél Guéhéneuc. 2015. A systematic
literature review on the usage of eye-tracking in software engineering. Informa-
tion and Software Technology 67 (2015), 79-107. https://doi.org/10.1016/j.infsof
.2015.06.008

B Sharif, M Falcone, and JI Maletic. 2012. An eye-tracking study on the role of
scan time in finding source code defects. In Proceedings of the Symposium on Eye
Tracking Research & Applications (ETRA’12). ACM, New York, 381-384.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://doi.org/10.1145/3540250.3549084
https://doi.org/10.1037/0033-2909.124.3.372
https://doi.org/10.1037/0033-2909.124.3.372
https://doi.org/10.1145/2786805.2803188
https://doi.org/10.1007/s10664-020-09829-4
https://doi.org/10.1016/j.infsof.2015.06.008
https://doi.org/10.1016/j.infsof.2015.06.008

	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 Code Smells
	2.2 Eye Tracker

	3 Related Work
	4 Study Design
	4.1 Preparation of the Experiment
	4.2 Selection of a State-of-the-Art Dataset
	4.3 Selection of the Code Snippets
	4.4 Pilot Study
	4.5 Call for Volunteers
	4.6 Experiment
	4.7 Data Analysis
	4.8 Data Collection and Availability

	5 Results
	5.1 Participants Contextualization
	5.2 RQ1: Fixation Time
	5.3 RQ2: Most Examined Code Sections
	5.4 RQ3: Fixation Patterns

	6 THREATS TO VALIDITY
	7 Conclusion
	Acknowledgments
	References

