
Detecting Code Smells in JavaScript: An Annotated Dataset for
SoftwareQuality Analysis

Diego S. Sarafim
Karina V. Delgado
Daniel Cordeiro
d.s.sarafim@usp.br

kvd@usp.br
daniel.cordeiro@usp.br

School of Arts, Sciences and Humanities — University of São Paulo
São Paulo, São Paulo, Brazil

ABSTRACT
The source code quality level attained during the development
phase is an important factor in increasing costs in later stages of
software development. Among the most detrimental quality prob-
lems are code smells, which are violations of both programming
principles and good practices that negatively affect themaintainabil-
ity and evolution of computer programs. Much effort has been put
into creating tools for code smell detection over the last decades. A
promising approach relies on machine learning (ML) algorithms for
automated smell detection. Those algorithms usually need datasets
with labeled instances pointing to the presence/absence of smells
in programming constructs such as classes and methods. Despite a
good number of studies using ML for code smell detection, there is a
lack of studies adopting this approach for programming languages
other than Java. Even widely popular languages like JavaScript have
few or no studies covering the usage of ML models for smell detec-
tion despite lexical, structural, and paradigm differences when com-
pared to Java. A symptom of the lack of such studies in JavaScript
is the absence of standard code smell datasets for this language
in the literature. This work presents a new dataset for code smell
detection in JavaScript software focused on detecting God Class
and Long Method, two of the most prevalent and harmful code
smells. We describe the strategy used for the dataset construction,
its characteristics, and a few preliminary experiments using our
dataset, along with ML models for code smell detection.

KEYWORDS
dataset, code smells, JavaScript, machine learning, classification

1 INTRODUCTION
One important factor of cost increasing in the later stages of the
software development life cycle is the source code quality level
attained during the development phase [6]. In many situations,
for reasons such as lack of experience, tight deadlines, and even
community factors [27], programming professionals may lack the
ability, time, discipline, or willingness to find suitable solutions
to common problems and to keep source code complexity under
control [26].

As a consequence of the inability developers may face to keep
code complexity and quality under control, many projects can be
affected by the introduction of code smells. Code smells are symp-
toms of poor choices during development activities that violate

good programming practices that negatively affect maintainability
[30] and the evolution of computer programs [1]. A key common
outcome of the presence of code smells is a decrease in source code
comprehensibility [1] that makes software more prone to changes
and faults [17].

Ideally, code smells should be detected and fixed as early as pos-
sible in the software development life cycle in order to mitigate
their negative effects. Over the years, tools for code smell detection
have been produced both for commercial SonarQube1 and academic
purposes such as SMURF [20], JSNose [11] and more recently La-
cuna [24]. When it comes to academic research, a handful of studies
employedmachine learning techniques to detect either the presence
or the severity degree of code smells, finding promising results for
both tasks [5]. Although many studies explored interesting tech-
niques and strategies with machine learning, mostly all focus on
detecting smells in Java programming language. JavaScript offers
good research opportunities, three important reasons for that are
(I) it is one of the most popular languages worldwide, (II) to the
best of our knowledge was not explored for smell detection with
machine learning, and (III) when compared to Java, it has struc-
tural, paradigm, and syntactical differences that can affect how code
smells are perceived, introduced, or detected [2, 11]. We describe
those differences and how they can affect code smell introduction
or perception in Section 3.1 of this paper.

Something that is both a consequence and probably part of the
reason for the lack of studies that focus on the employment of
machine learning in the task of detecting code smells on software
JavaScript is the fact that, to the best of our knowledge, there are
no standard code smell datasets for the JavaScript language in the
literature.

Encouraged by the apparent lack of publicly available datasets
for code smell on JavaScript, we set out to construct one comprised
of human-labeled positive and negative instances of two of the
most pervasive and harmful types of code smells, God Class and
Long Method. This dataset is the main contribution of this study
and can be used for code smell presence binary detection.

The structure of the paper is comprised of the following sections:
In Section 2, we introduce related works on code smell data set
construction as well as studies on code smell detection based on
machine learning techniques. Section 3 provides an overview of
code smells, some of the challenges to detect them, it also presents

1https://www.sonarqube.org/ (Accessed: 12 March 2024)

https://orcid.org/0009-0009-2312-4333
https://orcid.org/0000-0002-9120-8987
https://orcid.org/0000-0003-4971-7355
https://www.sonarqube.org/


SBES’24, September 30 – October 04, 2024, Curitiba, PR Sarafim D, et al.

the code smells included in our data set and describes some of
the main aspects that distinguish JavaScript in terms of how code
smells can be introduced, detected and perceived when compared
to Java which is by far the language most explored by studies
looking into detection of code smells based on machine learning.
Section 4 describes the approach we followed to construct the
dataset and Section 5 presents the details of the finished dataset.
In Section 6, we present the results obtained employing different
machine learning techniques on our finished data set. In Section 7,
we discuss limitations and threats to the validity of ourwork. Finally,
Section 8 concludes the paper.

2 RELATEDWORKS
To the best of our knowledge, there are no standard code smell
datasets for the JavaScript language in the literature. Therefore, in
this section, we are limited to describing related works within the
scope of different programming languages.

Approaches to the creation of datasets for code smell detec-
tion can vary. Those differences include the criteria adopted for
project selection, the type or number of code smells included, the
features used to represent each instance (i.e., software metrics or
word embedding), the goal of the classification—i.e., smell presence
binary classification or smell severity classification—and finally the
instance labeling strategy.

When it comes to the labeling approach, an option is to fully rely
on existing automated tools for code smell detection such as the
dataset presented by Lenarduzzi et al. [18]. This approach makes
the labeling process much more efficient. Still, it has some major
drawbacks: (I) the dataset is limited by the list of smells the tool can
detect, (II) whatever model trained with such dataset will very likely
learn the underlining detection rules of the automated tool, which
may limit reaching the detection via the discovery of new rules
or approaches, and (III) it takes real developers with professional
experience out of the annotation loop and that may reduce the final
quality and precision of the annotations.

Among the approaches that rely on humans conducting the
labeling process, we can find the works by Fontana et al. [13] that
introduced a data set with 420 instances for each of the four code
smells—Data Class, God Class, Feature Envy, and Long Method—all of
them extracted from Java projects. Their dataset was used for both
smell severity classification [4] and smell binary classification [13].
The approach taken by the authors inspired most of the approach
we used in our construction process, the most important aspects
of their approach are (I) the usage of automated tools to select
candidate instances for further human analysis and annotation and
(II) a human-centered annotation process conducted by trained
evaluators and carefully designed to avoid a known sensibility of
code smell detection based on the opinion of a single developer
[21]. Three evaluators in total worked on the labeling process and
each instance was labeled by all three evaluators. One drawback of
this specific dataset is the fact that the projects used are taken from
Qualitas Corpus [28] that, despite being constantly used in software
engineering research, contains projects as old as 2002, way before
the introduction of many recent techniques and features, which
can make them less relevant for recent code smell detection [19].

Guggulothu and Moiz [16], Di Nucci et al. [10], and Mhawish
and Gupta [22] created new datasets that are modified versions
of the dataset created by Fontana et al. [13]. The authors of those
three studies either (I) employed feature selection techniques to sort
out redundant and less representative features, (II) merged class
and method-wise instances to produce multi-class datasets, or (III)
reduced the imbalance between positive and negative instances. To
the best of our knowledge at this point—8th of April 2024—among
them, only Guggulothu and Moiz [16] have made their dataset
publicly available.

In a more recent work, Madeyski and Lewowski [19] presented
a data set with nearly 1500 instances focusing on four code smells—
Data Class, God Class, Feature Envy, and Long Method—all extracted
from recent Java projects. While they conducted a purely human-
centered annotation process with multiple evaluators per instance,
they did not include a rechecking process like Fontana et al. [13]
did in their approach. The lack of a rechecking process in case of
divergence between human evaluators can lead to noise and incor-
rect labels in case of human error during manual annotation. In
this study 20 evaluators worked on the annotation process with
an uneven distribution of evaluators per instance. They also did
not include any features for the instances in their data set, such
as software metrics, leaving this task to interested researchers. Al-
though software metrics are not very complex to obtain, their lack
leaves the dataset in a not readily usable state. One detail that dis-
tinguishes this dataset from other human-centered annotated smell
sets is that the authors included an auxiliary dataset comprised of
data extracted from an extensive survey of developers involved in
the study to open new research opportunities.

Although the majority of studies that covered code smell detec-
tion using machine learning did so with datasets from Java systems,
a few studies focused on other languages such as C# [29] and C [31].
Both studies focused on Duplicated Code, an important type of code
smell. Wang et al. [29] extracted their instances from two projects
without names disclosed due to regulation questions leading to
replication barriers, and the study by Yang et al. [31] focused on
proposing a new classification model. To the best of our knowledge,
their dataset is not publicly available.

Our dataset construction approach takes advantage of Fontana
et al. [13] by conducting a human-centered annotation process
with multiple evaluators with an enforced rechecking process for in-
stanceswhere the initial agreementwas not achieved. LikeMadeyski
and Lewowski [19], we selected more recent projects to extract the
instances from. Finally, unlike studies that described the creation
of datasets without making them publicly available, our dataset is
available to the public2.

3 CODE SMELLS
Code smell is a term coined by Fowler and Beck [15] to refer to
violations of programming principles and good practices. Although
errors or incorrect application behavior are not direct manifesta-
tions of code smells, it has been shown before that code smells can
negatively affect maintainability [30], the evolution of computer
programs [1], as well as make them more prone to changes and
faults [17].

2https://www.dataset.com/

https://www.dataset.com/


Detecting Code Smells in JavaScript: An Annotated Dataset for SoftwareQuality Analysis SBES’24, September 30 – October 04, 2024, Curitiba, PR

One commonly discussed aspect of code smells is their objective-
ness, which results in differences in their evaluation by developers
[21], scarce agreement in results among detectors [12], and even
differences in the way they are perceived by different communities
of developers[27].

To construct the data set described in this paper, we selected two
code smells that pose a considerable negative impact on the soft-
ware quality [25] and are among themost pervasive code smells [32].
Additionally, following the methodology used by Fontana et al. [13],
we focused on two smells that have detection rules defined in the
literature; one is at the class level, and the other is at the func-
tion/method level. For these reasons, we decided to focus on the
code smells Long Method and God Class.
Long Method. The increase in reading complexity, the existence
of too many lines of code or too many statements, and the usage
of too many control flow structures in a method may indicate that
the method aggregates too many responsibilities. A Long Method
tends to be complex, difficult to understand, uses more attributes
from other classes than from its own, and tends to centralize the
functionality of a class [13].
God Class. A class that has many responsibilities, many lines of
code, or many methods is a class that does too much work and
should be refactored into smaller classes that are easier to maintain
and evolve. A God Class tends to be complex, to have too much
code, to implement several different functionalities, and in more
extreme cases, it tends to centralize the system’s intelligence [13].

3.1 Code Smells in JavaScript
JavaScript is a flexible and widely used programming language.
The 2023 edition of the Stack Overflow Developer Survey3 found
that for the eleventh consecutive year, JavaScript was the most
commonly used programming language.

Although it is a formidable feature and a major component of
what makes the language so powerful, the flexibility of JavaScript
is a factor that can make code more challenging to write, read, and
maintain when not correctly used.

JavaScript is a prototype-based language. It proposes a class-free
style of object-oriented programming that allows objects to inherit
properties from other objects directly. It also allows prototypes to
be redefined at runtime, leading to immediate redefinition of all the
objects referring to them. In JavaScript, object properties including
their methods can be created, changed or deleted at runtime, this
is a major difference between JavaScript and Java as Java is more
rigid and class-based not allowing class redefinition at runtime.

Another aspect that differentiates JavaScript from Java is that
JavaScript functions are first-class values which means they can
contain nested functions and properties, they can be stored in
variables and be passed as arguments to other functions. Functions
in JavaScript can even be objects themselves.

Such dynamism not only poses difficulties to common software
analysis techniques such as static analysis and even manual code
inspection but also can change how code smells are introduced
and perceived. For instance, a prototype can contain an acceptable
number of lines, number of methods, number of attributes, overall
methods complexity in the place it is first defined just to be redefined

3https://survey.stackoverflow.co/2023/, (Accessed: 12 March 2024)

by lines of code in a different place. Additionally, functions can have
nested functions and attributes that can be redefined at runtime
that in turn can have other functions or objects assigned to them.

Due to those differences and all this dynamism, JavaScript source
code static analysis is more challenging, manual analysis is more
time-consuming and code smell detection is more error-prone es-
pecially in large code bases [11].

4 DATASET CONSTRUCTION PROCESS
Supervised machine learning algorithms rely on datasets with la-
beled instances so that they can be trained and learn how to cor-
rectly classify unseen and unlabeled instances they are exposed to.
Our study aimed to construct a data set that can be used on the
classification of code smells so that our solution could simultane-
ously detect each type of code smell (if any) affecting a method or a
class. To attain that goal, we constructed two different datasets with
a very similar structure, both of which are composed of software
metrics and indications of the presence or absence of each type of
code smell. One dataset contains metrics extracted from classes as
well as indications of the presence/absence of those code smells
that affect classes. The other one does the same for methods and
functions.

As mentioned in Section 3, we selected two of the most common
and harmful types of code smells to focus on during the construction
of the data set: God Class and Long Method. The composition of
each data set and the strategy we used to construct them were
inspired by previous studies [4, 13] that achieved good results on
detecting code smells using machine learning models. The whole
construction process for the dataset can be divided into three main
phases: (I) the construction, setup, and execution of an automated
advisor to help us conduct a stratified sampling, using it as an initial
filter that could provide us with positive and negative candidate
instances of God Class and LongMethod, for this phasewe extracted
a reduced set of software metrics to be used by the automated
advisor; (II) a manual evaluation process conducted byMSc students
with programming experience and software developer professionals
to produce the ground truth labels for the positive and negative
smell instances; and finally (III) the extraction of a broader set of
software metrics to compose the dataset as the defining features
of each instance of class or method. Figure 1 illustrates the three
phases and main activities executed during the construction of
the dataset. The activities are numbered in the order in which they
occurred and are listed within the sections that describe each phase.

Most of the construction process, which is presented in more
detail in Sections 4.1, 4.2, and 4.3, was inspired by a strategy em-
ployed by Fontana et al. [13] for the construction of a data set for
code smell detection on Java software. Finally, Section 5 presents
details of the finished dataset.

4.1 Phase I: Advisor and Sampling
In this study, we refer as an advisor to any tool, method, or technique
capable of detecting the presence of code smells with at least some
expected—even if low—success rate.

The low density of code smells in source code poses a big draw-
back if the selection of instances for a dataset is achieved by pure
random sampling. Such selection will, in most cases, produce very

https://survey.stackoverflow.co/2023/


SBES’24, September 30 – October 04, 2024, Curitiba, PR Sarafim D, et al.

Figure 1: Data set construction phases.

imbalanced sets that lack enough positive instances—those affected
by code smells—and machine learning models trained with such im-
balanced sets are more likely to produce bad and imprecise results.
Moreover, manually evaluating thousands of source code files from
several projects to gather a sufficient amount of positive instances
may require much effort that is too big to handle when human
resources are limited.

One way to deal with this problem is using a stratified sampling
that relies on indications made by one or more advisors whose
purpose is to provide hints at the presence or absence of code
smells in classes or methods.

As illustrated in Figure 1 and described in this section, the main
activities in phase I are:

(1) Acquisition of a Java code smell dataset;
(2) Training of a transfer learning model using Java dataset;
(3) Selection and cloning of open source JavaScript projects;
(4) Extraction of some software metrics from those projects;
(5) Using transfer learning model to detect candidate instances;

and
(6) Stratified random sampling of candidate instances.

Fontana et al. [13] selected as advisors, external tools that detect
code smells using deterministic rules. For this work, we choose to
construct our own advisors using transfer learning, a technique
that utilizes a trained model for a specific task that is re-purposed
to execute a different but related task. In our case, we trained a
model using an existing Java code smell data set and used it to make
predictions about the presence or absence of the same code smells
on JavaScript code. Although some error rate was expected due to
the differences between Java and JavaScript outlined in Section 3.1,
by using our advisor’s classification as a starting point, we could
greatly reduce the number of instances to be manually analyzed
when compared to the universe of instances contained in all selected
projects. For our work, we used two advisor models, one to classify
instances of classes to detect the presence of God Class and another
to predict the presence of Long Method on method instances.

The Java code smell data set we used to train our two advisor
models is comprised of software metrics calculated from classes and
methods. Unlike Java, JavaScript does not possess proper object-
oriented programming (OOP) capabilities. This implies that some
metrics calculated following OOP principles cannot be calculated
for JavaScript. Due to those differences affecting metrics calculation,
we reduced the number of features we used from the original data
set to train the advisors.

Following a common practice for previous works that used data
sets for code smell detection using machine learning models, all
instances that were classified by our advisor and later included in
our data set were extracted from a set of open-source JavaScript
projects cloned from GitHub repositories. Table 1 shows the list of
all the projects we used.

Table 1: Projects used for dataset construction.

Name Resource Hash

Map Talks github.com/maptalks/maptalks.js d69448ee
Atom github.com/atom/atom 07edc2b25
Chart.js github.com/chartjs/Chart.js 6283c6f1
JSPaint github.com/1j01/jspaint 4fdd061
Xeokit-SDK github.com/xeokit/xeokit-sdk 63e0f8f8
Play Canvas github.com/playcanvas/engine 5222de3ad
Open Layers github.com/openlayers/openlayers 7ca0aee84
Apex Charts github.com/apexcharts/apexcharts.js 218bda9f

After training both advisor models, we employed a metric cal-
culation process to extract from JavaScript classes/methods the
same set of software metrics the models were trained on. The set of
metrics for both methods and classes extracted for the first phase
to use with the advisors is reduced when compared to the set of
metrics calculated for the final phase of the construction process.

The class and method metrics calculated in the first phase to be
used by the automated advisors are listed on Tables 2 and 3. The

github.com/maptalks/maptalks.js
github.com/atom/atom
github.com/chartjs/Chart.js
github.com/1j01/jspaint
github.com/xeokit/xeokit-sdk
github.com/playcanvas/engine
github.com/openlayers/openlayers
github.com/apexcharts/apexcharts.js


Detecting Code Smells in JavaScript: An Annotated Dataset for SoftwareQuality Analysis SBES’24, September 30 – October 04, 2024, Curitiba, PR

broader set of metrics extracted for the composition of the final data
set, as well as how the metrics calculation process was executed,
are presented in Section 4.3.

Table 2: Initial class related metrics.

Metric Description

(LOC) lines of code
(LOCNAMM) lines of code excluding accessor and

mutator methods
(WMC) weighted methods count
(WMCNAMM) weighted methods count of not accessor

or mutator methods
(NOM) number of methods
(NOMNAMM) number of methods excluding accessor

and mutator methods

Table 3: Initial method related metrics.

Metric Description

(LOC) lines of code
(CYCLO) cyclomatic complexity
(NOP) number of parameters
(MAXNESTING) maximum nesting level of control

structures

We applied the metric extraction process to calculate metrics
for all classes and methods contained on each of the 8 open-source
projects listed on Table 1, which resulted in approximately 2,000
class instances and 16,000 method instances upon which we con-
ducted a stratified random sampling to gather roughly 200 positive
candidate instances and 400 negative candidate instances of both
God Class and Long Method. The process resulted in two sets with
600 instances each, with an imbalance of 1/3 positive and 2/3 nega-
tive candidate instances.

4.2 Phase II: Labeling Process
This labeling process was carefully designed and conducted to
reduce the bias given by the sensibility of code smell detection
based on a single developer opinion, as pointed by Mäntylä et al.
[23].

As illustrated in Figure 1 and described in this section, the main
activity in phase II is:

(7) Each selected instance is evaluated by three human evalua-
tors.

Our main objective was to create one data set with 420 instances
for each code smell, each set should have 140 positive instances
and 280 negative instances to keep the 1/3 to 2/3 imbalance. To
achieve this goal, we had to conduct a manual evaluation to label
each instance until we reached the desired number of positive and
negative instances among the 1,200 instances. The evaluation was
performed by MSc students with software development experience
and by professional developers, all of them were specifically trained

for the task. The labeling process was conducted by 13 evaluators,
and each instance was labeled by exactly three evaluators. The
training consisted of presentations and discussions regarding the
nature of code smells and the usual characteristics of both God
Class and Long Method smells. The presentations and discussions
considered both the dynamic nature of JavaScript and a set of
guidelines for God Class and Long Method code smell detection
proposed by Fontana et al. [13], which are:
God Class:

• God classes tend to access many attributes from many other
classes; the number of attributes contained in other classes
that are used from the class, considering also attributes ac-
cessed using accessors methods, tends to be high;

• God classes usually contain large and complex methods;
• God classes are large;
• God classes usually expose a large number of methods.

Long Method:

• Long methods tend to be complex;
• Long methods tend to access many attributes;
• Long methods contain many lines of code;
• Long methods tend to have many parameters.

During themanual labeling phase, each instancewas individually
labeled by three different evaluators. During the manual evalua-
tions, all participants should not communicate with each other and
could only use a source code editor with code highlighting as a
tool. No plugins or options to detect any problem in the code were
allowed. No metrics were exposed, calculated, or considered, and
neither did the participants know the classification results given
by the advisor models.

In the first round of labeling, each instance was given a label
that indicates the severity degree for the specific code smell, God
Class for class instances and Long Method for method instances.
The initial severity labeling followed an ordinal scale:
0 — no smell: the class (or method) is not affected by the smell;
1 — light: the class (or method) is only partially affected by the
smell;
2 — moderate: the smell characteristics are all present in the class
or method;
3 — severe: the smell is present and has high values of size, com-
plexity, or coupling.

When the labeling was finished, each instance label was col-
lapsed to a binary label: {0}→NEGATIVE, {1, 2, 3}→POSITIVE. For
cases when there was conflict on the binary labels (total agreement
regarding the presence or absence of the code smell in a particular
instance was not met), the participants reached an agreement to
decide which label to apply. The process was repeated until we
reached two sets: (I) a set with labels for 420 classes, of which 140
are positive and 280 are negative instances of God Class, and (II) a
set with labels for 420 methods, of which 140 are positive and 280
are negative instances of Long Method.

4.3 Phase III: Software Metrics Extraction
As illustrated in Figure 1 and described in this section, the main
activities in phase III are:

(8) Increased set of metrics is extracted from the projects;



SBES’24, September 30 – October 04, 2024, Curitiba, PR Sarafim D, et al.

(9) Labeled instances andmetrics combined compose the dataset.
As a final step of the construction process, we computed software

metrics for all 420 classes and 420 methods manually annotated
in the labeling phase. Our decision to rely on software metrics for
constructing the data set is attributed to good results from previous
works that applied machine learning to detect code smells using
such metrics as defining features [5].

Table 4 contains names and descriptions of all metrics computed
from all labeled classes, and Table 5 contains names and descriptions
of all metrics computed from all labeled methods.

Table 4: Final class related metrics list.

Metric Description

(LOC) lines of code
(LOCNAMM) lines of code excluding accessor and

mutator methods
(NOA) number of attributes
(NOM) number of methods
(NOAM) number of accessor and mutator methods
(NOMNAMM) number of methods excluding accessor

and mutator methods
(WOC) weight of class
(WMC) weighted methods count
(AMW) average methods weight
(WMCNAMM) weighted methods count of not accessor or

mutator methods
(AMWNAMM) average methods weight of not accessor or

mutator methods

Table 5: Final method related metrics list.

Metric Description

(LOC) lines of code
(CYCLO) cyclomatic complexity
(MAXNESTING) maximum nesting level of control

structures
(NOAV) number of accessed variables
(NOLV) number of local variables
(NOP) number of parameters
(MaMCL) maximum message chain length
(MeMCL) mean message chain length

The metric extraction process was implemented in JavaScript
with the help of Babel4 (version 7.17.3), a library that can work as a
transpiler and can be used to generate and traverse abstract syntax
trees (AST) from JavaScript source code. Generating and traversing
an abstract syntax tree is useful as the traversal process allows us
to visit all code entities, objects, properties, functions, and code
blocks as well as keep track of scope. During the traversal of the
AST for a given input file, our process extracts the information it
needs to calculate class and method metrics.
4https://babeljs.io/ (Accessed: 12 March 2024)

Besides calculating softwaremetrics, we also extracted additional
information to help us uniquely identify each instance of method
and class contained in our data set. Table 6 describes the identifica-
tion data we extracted from instances of classes and methods.

Table 6: Additional information extracted from classes and
methods.

Name Description

(ID) unique identifier of the class or method instance
(Project) project that the class or method belongs to
(File) path to the file that contains the method

or class starting from project root directory
(Start) line number where the class or method starts
(End) line number where the class or method ends

5 DATASET DESCRIPTION
The finished dataset comprises two comma-separated value (CSV)
files, one containing the set of class instances and the other contain-
ing the set of method instances. Figures 2 and 3 illustrate the final
format of each of those sets, class and method-related, respectively.

Both sets contain information for class/method instance iden-
tification comprised of a unique ID, the project that contains the
method or class, the path to the file that contains the method or
class relative to the root directory of the project as well as the start
and end lines of the respective class/method.

After the identification data, comes the software metrics calcu-
lated for the class or method in question followed by a binary label
indicating the presence or absence of Long Method for method
instances or God Class for class instances.

Figure 2: Class set schema.

Figure 3: Method set schema.

The finished dataset comprises 420 instances of classes and 420
of methods, each having 140 positive instances—instances affected
by the specific smell—and 280 negative instances. Table 7 indicates
how many instances were included in the final dataset from each
project.

https://babeljs.io/


Detecting Code Smells in JavaScript: An Annotated Dataset for SoftwareQuality Analysis SBES’24, September 30 – October 04, 2024, Curitiba, PR

Table 7: Instances per project.

Project Class Instances Method Instances Total

Map Talks 72 43 115
Atom 51 62 113
Chart.js 29 34 63
JSPaint 29 37 66
Xeokit-SDK 67 55 122
Play Canvas 58 72 130
Open Layers 77 52 129
Apex Charts 37 65 102

As a result of having the finished dataset, we could assess two
important questions regarding our construction approach: (I) What
was the overall performance of the transfer learning advisor we
used during the first phase? and (II) How well machine learning
models could perform using our data set? We present the answer
to the first question in this section and the answer for the second
one in Section 6, where we discuss some preliminary experiments
we conducted with our finished data set.

Table 8 indicates the performance of our model advisor when
compared to the ground truth data obtained from the manual an-
notation process for the instances included on the finished dataset.

Table 8: Advisor performance.

Code Smell Evaluated Correct Incorrect

God class 420 329 91
Long method 420 356 64

6 EXPERIMENTS AND RESULTS
Supervised machine learning algorithms have shown promising
results in the task of code smell detection, as pointed out by Azeem
et al. [5]. The learning process of such algorithms—when used for
classification tasks—relies on training datasets comprised of fea-
tures that adequately represent the object of the classification—i.e.,
software metrics, demographics data, etc.—and targets representing
the correct outcome of the classification—i.e., labels indicating the
presence of code smells, the price value of an item or the content
of an image. A useful dataset for a classification task—i.e., classi-
fication indicating the presence/absence of code smells—should
be comprised of trustworthy targets and features that adequately
represent characteristics of the classification subject that possess
relationships with the target.

To confirm that our dataset is adequate to support the detection
of God Class and Long Method in JavaScript code using machine
learning techniques, we conducted preliminary experiments with
three different algorithms. In this section, we present those algo-
rithms and their results.

6.1 Algorithms
Results from a recent literature review on the usage of machine
learning techniques for code smell detection [5] showed that two

of the best-performing algorithms for such tasks were JRip and
Random Forest. Additionally, Support Vector Machine (SVM) also
achieved good performance in code smell prediction as found by
Fontana et al. [13] and Fontana et al. [14]. Due to the promising
results achieved in previous studies, we decided to explore these
three algorithms as a preliminary experiment on the data set to
assess their effectiveness. Next, we briefly introduce each algorithm,
JRip, Random Forest, and Support Vector Machine, respectively.

JRip is an implementation of RIPPER [8] (Repeated Incremental
Pruning to Produce Error Reduction) and works as a classification
and rule induction algorithm that uses a rule-based approach to
generate classification rules from datasets. JRip operates by building
and refining rule sets through rule generation, testing, and pruning
iteratively.

Random Forest [7] works by forming a forest composed of ran-
dom decision trees, each using a specific subset of the input features.
Each tree performs a classification that is taken as a vote, and the
algorithm then chooses the classification that has the most votes
among all the trees in the forest.

Support vector machine (SVM) [9] works by finding a hyper-
plane in the data space that produces the largest minimum distance
(called margin) between the samples that belong to different classes.
This hyperplane is called the maximum margin hyperplane, and
SVM uses the instances on the edges of the margin (called support
vectors) to classify every instance.

6.2 Experimental setup
We conducted experiments for both types of code smell using our
finished dataset and the three algorithms.

We trained two models of each algorithm, one model for each
type of code smells.

To measure the performance of the machine learning algorithms,
we adopted three metrics that are broadly used in the machine
learning domain [3], which are Precision, Recall, and F-Measure.
The results were assessed using 10-fold cross-validation to accu-
rately estimate the performance of each model in the predictive
task.

In our experiments with JRip we used JRip implementation avail-
able in Waikato Environment Knowledge Analysis (WEKA)5. For
our tests with Random Forest and Support Vector Machine models,
we used their respective implementations available in the Python
library scikit-learn6 (version 1.4.1).

Hyperparameters tuning is an important aspect of the machine
learning training process because it has an impact on the predictive
performance of models. During our experiments, we employed a
manual search as a hyperparameter tuning strategy and were able
to achieve good results with just a few iterations.

During God Class classification experiments, we kept most of
the hyperparameters with the default values as they are proposed
by the libraries we used to implement them.

For JRip, we only changed the value of optimizations from 2 to
10. For Random Forest, we changed the parameters n_estimators
(which controls the number of trees in the forest) from 100 to 10
and random_state (that controls the randomness of the process that

5https://www.cs.waikato.ac.nz/ml/weka/ (Accessed: 12 March 2024)
6https://scikit-learn.org/ (Accessed: 12 March 2024)

https://www.cs.waikato.ac.nz/ml/weka/
https://scikit-learn.org/


SBES’24, September 30 – October 04, 2024, Curitiba, PR Sarafim D, et al.

is responsible for building the threes) from None to 0. Finally, for
SVM, we did not change any hyperparameter default value.

During Long Method classification experiments, similarly, as
with God Class, we kept most hyperparameters unchanged. For JRip,
we only changed the value of optimizations to 95. For Random Forest,
we changed the parameters n_estimators to 25 and the random_state
to 0. Finally, for SVM, we did not change the default value of any
hyperparameter.

Sections 6.3 and 6.4 present the performance achieved by all three
algorithms on the code smell classification task. They also describe
how we explored features of those algorithms that provide hints
on the learning process and rules they devised for the classification
of both types of code smells.

6.3 God Class Results
Table 9 presents the performance achieved by the three algorithms
for the God Class classification task. Because we used a cross-
validation test to estimate model performance, we present Preci-
sion, Recall and F-Measure using their average values and standard
deviation, except for JRip for which we were not able to extract stan-
dard deviation using WEKA’s implementation. All models achieved
good and very similar results with a minor margin in favor of Ran-
dom Forest. Those results are consistent with previous studies that
pointed to a good performance for these algorithms for code smell
classification tasks.

Table 9: Model performance for God Class classification.

Algorithm Precision Recall F-Measure
Avg. (Std.) Avg. (Std.) Avg. (Std.)

JRip 0.93 (—) 0.94 (—) 0.93 (—)
Random Forest 0.94 (0.038) 0.94 (0.034) 0.94 (0.036)
SVM 0.94 (0.032) 0.93 (0.033) 0.94 (0.032)

Two of the algorithms we used during our experiments (JRip
and Random Forest) have interesting features that can be explored
to provide us hints about each model’s classification process.

JRip displays the precise detection rules discovered and used by
the algorithm as part of its results. During the classification task,
for God Class classification, the rule produced by JRip was:
(LOC > 236 and AMW > 2.63) or (LOC > 276) or (WMC > 47)
For Random Forest, it is possible to export the importance of each

feature—software metrics in our case—to the classification process.
Figure 4 shows the feature importance for God Class classification.
The features that most affect are lines of code (LOC), followed by
weighted methods count (WMC), lines of code excluding accessor,
mutator methods (LOCNAMM), weighted methods count of not
accessor or mutator methods (WMCNAMM), number of methods
excluding accessor and mutator methods (NOMNAM), and finally
average methods weight (AMW).

Those results indicate that Random Forest considered a broader
set of metrics during the classification process when compared to
JRip. Since both algorithms achieved very good and similar results,
this difference may indicate that either Random Forest is more
suited to better represent the complex nature of this code smell or
that JRip did a better job discovering a simpler generalization rule.

Such discussion is out of the context of this work and can be better
explored in future research.

Figure 4: Feature importance for God Class classification.

Finally, we compare our results for JavaScript with the results
obtained by Fontana et al. [13] for a Java-based dataset for the God
Class. The rule found by Fontana et al. [13] with JRip is:

WMCNAMM > 47 .
This detection rule is similar to the third part of the rule for

JavaScript generated by JRip (WMC> 47) both in terms of value and
the metrics involved. The metric WMCNAMM (weighted methods
count of not accessor or mutator methods) is closely related to the
metric WMC (weighted methods count) in the JavaScript rule since
WMCNAMM has the same calculation base excluding getter and
setter methods. Additionally, despite WMCNAMM not appearing
in the rule generated by JRip for JavaScript, it is among the most
important features for Random Forest classification, as shown in
Figure 4.

6.4 Long Method Results
Table 10 presents the performance achieved by the three algorithms
for Long Method classification. Because we used a cross-validation
test to estimatemodel performance, we present Precision, Recall and
F-Measure using their average values and standard deviation, except
for JRip for which we were not able to extract standard deviation
using WEKA’s implementation. All models achieved good and very
similar results, but this time JRip had a slightly better performance
compared to the others. Those results, once again, are consistent
with previous studies that pointed to a good performance for these
algorithms for code smell classification tasks.

We also exported JRip detection rules and Random Forest feature
importance. JRip produced the following detection rule:

(CYCLO > 9 and LOC > 40) or (LOC > 32 and MAXNESTING > 5)
Figure 5 shows that the most important features for classifica-

tion of Long Method for Random Forest are lines of code (LOC),
cyclomatic complexity (CYCLO), and maximum nesting level of
control structures (MAXNESTING).



Detecting Code Smells in JavaScript: An Annotated Dataset for SoftwareQuality Analysis SBES’24, September 30 – October 04, 2024, Curitiba, PR

Table 10: Model performance for Long Method classification.

Algorithm Precision Recall F-Measure
Avg. (Std.) Avg. (Std.) Avg. (Std.)

JRip 0.95 (—) 0.95 (—) 0.95 (—)
Random Forest 0.95 (0.027) 0.94 (0.038) 0.94 (0.033)
SVM 0.93 (0.037) 0.92 (0.041) 0.93 (0.039)

Figure 5: Feature importance for Long Method classification.

Results here indicate that both Random Forest and JRip mod-
els produced detection rules that mostly relied on the same three
metrics: lines of code (LOC), cyclomatic complexity (CYCLO), and
maximum nesting level of control structures (MAXNESTING).

Again, we compare our results for JavaScript with the results
obtained by Fontana et al. [13] for a Java-based dataset for the Long
Method. The rule found by Fontana et al. [13] with JRip for the
Long Method is:

CYCLO > 8 and LOC > 79 .
This detection rule is similar to the first part of the rule for

JavaScript generated by JRip ((CYCLO > 9 and LOC > 40)) in terms
of the metric involved. For CYCLO the rules have very similar
values. It is worth noting that LOC and CYCLO appear in both
rules and are the two most important features for Random Forest
classification, as shown in Figure 5.

7 THREATS TO VALIDITY
One important threat to any study that focuses on code smell de-
tection is the inherent subjectivity they hold. Even experienced
developers can disagree with one another on whether a code smell
candidate is indeed a real smell. The manual evaluation is, therefore,
subject to a certain degree of error, distortion, and bias, especially
when conducted by a single developer. There is no easy way to
avoid this threat completely, but we believe our approach of ag-
gregating the opinions of three evaluators’ opinions considerably
alleviates this threat.

A very important threat specific to our study is bias and general-
ization. All candidate instances later randomly selected for human
analysis were gathered according to the results of an advisor trained
to detect code smells with a Java dataset. This approach has one
major advantage and one major drawback. The advantage is that
it drastically reduces the time needed for us to detect potential
smelly instances. The drawback is that it can cause distortions and
generalization problems. Since it relies on an advisor trained with
Java data, it introduces a higher probability that selected smelly in-
stances are similar to the ones found in Java, and since code smells
can affect different languages in different ways, as explained in Sec-
tion 3.1. This may pose a special threat to producing a training set
that represents the entire code smell domain in terms of JavaScript
programming language.

The lack of other JavaScript code smell datasets hinders our
ability to perform benchmark comparisons and learn from previous
mistakes, which are powerful tools that certainly help during the
planning and execution of such work.

8 CONCLUSION
This paper presented a dataset for code smell detection in JavaScript.
The construction approach we used in our dataset, which focuses
on the God Class and Long Method (two of the most pervasive and
harmful code smells described in the literature), was designed to
avoid known bias problems and to mitigate the risks posed by code
smell subjectivity.

We described the whole approach we took to construct this data
set, startingwith the employment of a transfer learning technique to
produce an advisor model that we used to help us identify candidate
instances, followed by a stratified random sampling of the candidate
instances that were then labeled in a human-centered process with
enforced multi-person analysis and agreement of each instance to
produce labels. These labels were, finally, combined with software
metrics extracted from each instance to compose the finished data
set. Moreover, we discussed the advantages and drawbacks of other
works, including the ones that inspired our construction strategy.

We also described the results of preliminary experiments with
three machine learning algorithms that delivered good results in
code smell classification in previous studies. The results of our ex-
periments were promising and helped indicate our dataset’s useful-
ness when used as a training set for machine learning classification
models.

ARTIFACT AVAILABILITY
As described in Section 5 our dataset is divided into two CSV files,
one with class and one with method instances. Both files can be
found at:
https://github.com/d-sarafim/js-code-smells-dataset.

REFERENCES
[1] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol.

2011. An empirical study of the impact of two antipatterns, blob and spaghetti
code, on program comprehension. In 2011 15th european conference on software
maintenance and reengineering. IEEE, 181–190.

[2] Nabil Almashfi and Lunjin Lu. 2020. Code smell detection tool for Java Script
programs. In 2020 5th International Conference on Computer and Communication
Systems (ICCCS). IEEE, 172–176.

https://github.com/d-sarafim/js-code-smells-dataset


SBES’24, September 30 – October 04, 2024, Curitiba, PR Sarafim D, et al.

[3] Nuno Antunes and Marco Vieira. 2015. On the metrics for benchmarking vulner-
ability detection tools. In 2015 45th Annual IEEE/IFIP international conference on
dependable systems and networks. IEEE, 505–516.

[4] Francesca Arcelli Fontana and Marco Zanoni. 2017. Code smell severity classifi-
cation using machine learning techniques. Knowledge-Based Systems 128 (2017),
43–58. https://doi.org/10.1016/j.knosys.2017.04.014

[5] Muhammad Ilyas Azeem, Fabio Palomba, Lin Shi, and Qing Wang. 2019. Machine
learning techniques for code smell detection: A systematic literature review and
meta-analysis. Information and Software Technology 108 (2019), 115–138.

[6] Rajiv D Banker, SrikantMDatar, Chris F Kemerer, and Dani Zweig. 1993. Software
complexity and maintenance costs. Commun. ACM 36, 11 (1993), 81–95.

[7] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (01 Oct 2001), 5–32.
https://doi.org/10.1023/A:1010933404324

[8] William W. Cohen. 1995. Fast Effective Rule Induction. In Machine Learning
Proceedings 1995, Armand Prieditis and Stuart Russell (Eds.). Morgan Kaufmann,
San Francisco (CA), 115–123. https://doi.org/10.1016/B978-1-55860-377-6.50023-
2

[9] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
Learning 20, 3 (01 Sep 1995), 273–297. https://doi.org/10.1007/BF00994018

[10] Dario Di Nucci, Fabio Palomba, Damian A. Tamburri, Alexander Serebrenik, and
Andrea De Lucia. 2018. Detecting code smells using machine learning techniques:
Are we there yet?. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). 612–621. https://doi.org/10.1109/SANER.
2018.8330266

[11] Amin Milani Fard and Ali Mesbah. 2013. Jsnose: Detecting Javascript code smells.
In 2013 IEEE 13th international working conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 116–125.

[12] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. 2012. Automatic
detection of bad smells in code: An experimental assessment. J. Object Technol.
11, 2 (2012), 5–1.

[13] Francesca Arcelli Fontana, Mika V Mäntylä, Marco Zanoni, and Alessandro
Marino. 2016. Comparing and experimenting machine learning techniques for
code smell detection. Empirical Software Engineering 21, 3 (2016), 1143–1191.

[14] Francesca Arcelli Fontana, Marco Zanoni, Alessandro Marino, and Mika V
Mäntylä. 2013. Code smell detection: Towards a machine learning-based ap-
proach. In 2013 IEEE international conference on software maintenance. IEEE,
396–399.

[15] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[16] Thirupathi Guggulothu and Salman Abdul Moiz. 2020. Code smell detection
using multi-label classification approach. Software Quality Journal 28, 3 (01 Sep
2020), 1063–1086. https://doi.org/10.1007/s11219-020-09498-y

[17] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. 2012. An exploratory study of the impact of antipatterns on class
change-and fault-proneness. Empirical Software Engineering 17, 3 (2012), 243–
275.

[18] Valentina Lenarduzzi, Nyyti Saarimäki, and Davide Taibi. 2019. The Technical
Debt Dataset. In Proceedings of the Fifteenth International Conference on Predictive
Models and Data Analytics in Software Engineering (Recife, Brazil) (PROMISE’19).
Association for Computing Machinery, New York, NY, USA, 2–11. https://doi.
org/10.1145/3345629.3345630

[19] Lech Madeyski and Tomasz Lewowski. 2020. MLCQ: Industry-Relevant Code
Smell Data Set. In Proceedings of the 24th International Conference on Eval-
uation and Assessment in Software Engineering (Trondheim, Norway) (EASE
’20). Association for Computing Machinery, New York, NY, USA, 342–347.
https://doi.org/10.1145/3383219.3383264

[20] Abdou Maiga, Nasir Ali, Neelesh Bhattacharya, Aminata Sabane, Yann-Gaël
Guéhéneuc, and Esma Aimeur. 2012. Smurf: A svm-based incremental anti-
pattern detection approach. In 2012 19th Working Conference on Reverse Engineer-
ing. IEEE, 466–475.

[21] Mika V. Mäntylä and Casper Lassenius. 2006. Subjective evaluation of software
evolvability using code smells: An empirical study. Empirical Software Engineering
11, 3 (01 Sep 2006), 395–431. https://doi.org/10.1007/s10664-006-9002-8

[22] Mohammad Mhawish and Manjari Gupta. 2019. Generating Code-Smell Pre-
diction Rules Using Decision Tree Algorithm and Software Metrics. Interna-
tional Journal of Computer Sciences and Engineering 7 (05 2019), 41–48. https:
//doi.org/10.26438/ijcse/v7i5.4148

[23] M.V. Mäntylä, J. Vanhanen, and C. Lassenius. 2004. Bad smells - humans as
code critics. In 20th IEEE International Conference on Software Maintenance, 2004.
Proceedings. 399–408. https://doi.org/10.1109/ICSM.2004.1357825

[24] Niels Groot Obbink, Ivano Malavolta, Gian Luca Scoccia, and Patricia Lago.
2018. An extensible approach for taming the challenges of JavaScript dead code
elimination. In 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 291–401.

[25] Steffen M. Olbrich, Daniela S. Cruzes, and Dag I.K. Sjøberg. 2010. Are all code
smells harmful? A study of God Classes and Brain Classes in the evolution of
three open source systems. In 2010 IEEE International Conference on Software
Maintenance. 1–10. https://doi.org/10.1109/ICSM.2010.5609564

[26] David Lorge Parnas. 1994. Software aging. In Proceedings of 16th International
Conference on Software Engineering. IEEE, 279–287.

[27] Damian A Tamburri, Fabio Palomba, Alexander Serebrenik, and Andy Zaidman.
2019. Discovering community patterns in open-source: a systematic approach
and its evaluation. Empirical Software Engineering 24, 3 (2019), 1369–1417.

[28] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe,
Hayden Melton, and James Noble. 2010. The Qualitas Corpus: A Curated Collec-
tion of Java Code for Empirical Studies. In 2010 Asia Pacific Software Engineering
Conference. 336–345. https://doi.org/10.1109/APSEC.2010.46

[29] Xiaoyin Wang, Yingnong Dang, Lu Zhang, Dongmei Zhang, Erica Lan, and Hong
Mei. 2012. Can I clone this piece of code here?. In 2012 Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering. 170–179.
https://doi.org/10.1145/2351676.2351701

[30] Aiko Yamashita and Leon Moonen. 2013. Exploring the impact of inter-smell rela-
tions on software maintainability: An empirical study. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 682–691.

[31] Jiachen Yang, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, and Shinji Kusumoto.
2015. Classification model for code clones based on machine learning. Empirical
Software Engineering 20, 4 (01 Aug 2015), 1095–1125. https://doi.org/10.1007/
s10664-014-9316-x

[32] Min Zhang, Tracy Hall, and Nathan Baddoo. 2011. Code Bad Smells: a review
of current knowledge. J. Softw. Maint. Evol. 23, 3 (apr 2011), 179–202. https:
//doi.org/10.1002/smr.521

https://doi.org/10.1016/j.knosys.2017.04.014
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/B978-1-55860-377-6.50023-2
https://doi.org/10.1016/B978-1-55860-377-6.50023-2
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.1109/SANER.2018.8330266
https://doi.org/10.1007/s11219-020-09498-y
https://doi.org/10.1145/3345629.3345630
https://doi.org/10.1145/3345629.3345630
https://doi.org/10.1145/3383219.3383264
https://doi.org/10.1007/s10664-006-9002-8
https://doi.org/10.26438/ijcse/v7i5.4148
https://doi.org/10.26438/ijcse/v7i5.4148
https://doi.org/10.1109/ICSM.2004.1357825
https://doi.org/10.1109/ICSM.2010.5609564
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1145/2351676.2351701
https://doi.org/10.1007/s10664-014-9316-x
https://doi.org/10.1007/s10664-014-9316-x
https://doi.org/10.1002/smr.521
https://doi.org/10.1002/smr.521

	Abstract
	1 Introduction
	2 Related works
	3 Code Smells
	3.1 Code Smells in JavaScript

	4 Dataset Construction Process
	4.1 Phase I: Advisor and Sampling
	4.2 Phase II: Labeling Process
	4.3 Phase III: Software Metrics Extraction

	5 Dataset Description
	6 Experiments and Results
	6.1 Algorithms
	6.2 Experimental setup
	6.3 God Class Results
	6.4 Long Method Results

	7 Threats to Validity
	8 Conclusion
	References

