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ABSTRACT

Context: Intelligent environments are complex interaction spaces
between people, sensors, devices, and systems. The Internet of
Things (IoT) has provided, in recent years, the gradual exposure
of society to these environments. However, Software Engineering
requires specific techniques to deal with the development of these
systems. Software Engineering must tackle the intrinsic character-
istics of devices and sensors and complex interactions in intelligent
environments to consolidate good development practices. Objec-
tive: The main objective of this article is to present a self-adaptive
IoT architecture in an intelligent environment. The proposal con-
cerns how different architecture modules cooperate and interact
to develop new applications. Method: The work was developed
through a real-world case study in an intelligent e-health envi-
ronment. Conclusion: The results showed how a self-adaptive
architecture using artificial intelligence can support the manage-
ment of an intelligent e-health physical space. With this, it was
possible to observe how data collection, environment monitoring,
prediction of using IoT devices, and optimization of environment
management can occur.
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1 INTRODUCTION

The Internet of Things (IoT) has consolidated itself in people’s daily
lives and interactions with the environment in which they are [5].
Environments that use IoT characterize intelligent environments or
smart ecosystems [28]. The IoT is responsible for allowing different
devices and sensors to connect through the internet, allowing the
sharing and collection of data about the environment [8].

The introduction of IoT brought several complexities to software
development. Teams have to deal with some challenges [2], such
as distributed devices and sensors, heterogeneous configuration of
behavior, intrinsic characteristics, and integration and interoper-
ability with other sensors and systems [22]. The systems interacting
with these sensors and devices are critical parts of the intelligent
environments in which they are involved [15]. Software must deal
with the connectivity, management, scalability, and integration of
sensors and devices in different contexts and quantities. Finally,
developers are also affected, given the non-consolidation of good
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development practices, causing the arrival of low-quality systems
on the market [20].

Therefore, the dynamics of intelligent environments are chal-
lenging topics for software development. With the expansion of IoT
and intelligent environments, modern software engineering aims
to support the development of systems for intelligent environments
[20]. For this, software engineer experts study how different ele-
ments of these environments interact, behave, communicate, and
cooperate, seeking to provide techniques and methods to help [14].
Examples of dealing with these challenges proposed by contem-
porary software engineering are IoT computational architectures,
which define standards to be followed by developers to achieve
quality attributes systems.

A complex, intelligent environment in this context is e-health.
This environment is where interactions between sensors, devices,
systems, and people can be essential to a person’s life. These appli-
cations deal directly with other people’s lives and how to facilitate
and support everyday life [38]. In a complex and vital scenario, such
failure to establish efficient computational architectures for these
environments can lead to low-quality software, affecting society.
IoT systems can use data generated by sensors and devices to adapt
to situations occurring in the environment. This characteristic is
related to self-adaptation, which may occur due to a user’s need,
the environment in which sensors and devices are found, or even to
meet the security and functioning requirements of an environment.
For example, a system that monitors patients in real-time when it
detects an electric power outage cannot stop sending patient data,
but it is necessary to adapt. Self-adaptive architectures are being
used in other application domains. An example can be seen in [26].

Therefore, based on the challenges presented, the research prob-
lem addresses the construction of IoT architectures for intelligent
environments, with the support of Artificial Intelligence (AI). The
designed architecture aimed to adapt to the needs of an intelligent
environment. The following research question was established to
develop the architecture: "How have self-adaptive architectures
been used to support intelligent environments?".

The use of self-adaptive architecture aims to support the differ-
ent interactions in the complex and intelligent environment. In a
scenario in which intelligent environments change people’s daily
lives, in addition to the rise of large-scale use of IoT devices and
sensors, the need for architectural proposals for systems that deal
with these complexities becomes even more evident. We developed
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the work following the Design Science Research methodology. This
methodology assumes artifacts (solutions) are designed to solve a
practical problem [17]. A real case study was conducted in a cor-
porate intellignet environment to evaluate the architecture. We
developed a system using the architecture, demonstrating the in-
teractions between people, devices, sensors, the environment, and
the computational resources for each scenario. The case study re-
sults show how the use of a self-adaptive architecture supports the
development of software for a complex, intelligent environment.
As a contribution, we present the architecture to support the de-
velopment of IoT applications that directly impacts people’s daily
lives.

The work is organized into six sections. The Section 2 deals with
background knowledge. Section 3 discuss related works and an
exploratory study. Section 4 detail methods and materials. Section
5 discuss a real case study. Finally, the last section presents the
conclusion and future work.

2 BACKGROUND

Given the challenges of developing systems for intelligent environ-
ments, modern software engineering seeks to support technology
teams that deliver software [22]. Gubbi et al. [13] show that one
of the ways to support software development is through computa-
tional architectures. These architectures are intrinsic to all software,
but they establish a set of characteristics that software must have
to deal with most of the challenges and meet the interests of its
end users. The authors also define that architectures must ensure
that it is possible to capture, process and display data on a large
scale; integrate and interoperability between devices, sensors, and
systems; and scalability and flexibility for the entry of new devices.
Furthermore, data security and privacy are topics of interest for
these systems.

Self-adaptive software architecture solutions can be helpful for
environments that have a changing nature and need different soft-
ware configurations, as we can observe in intelligent environments.
According to Weyns et al. [36], self-adaptive architectures must
consist of two systems, a management system, and a managed
system. The management system is responsible for adapting the
managed system to the momentary demands of the software, for
example, switching between a managed system module capable of
doing more data collection and another capable of doing more data
processing. The management system follows defined and mapped
metrics to adapt the managed system to different configurations.
These metrics may be related to response time, number of requests
received, and number of failures. Managed systems are the systems
that must handle the end use of the application.

Weyns et al. [36] define a self-adaptive system as one that can
deal with changes and uncertainties in the environment, the system
itself, and the objectives defined for it. These systems must also
interact with the environment and have a feedback loop to collect
information about what is happening with them. Finally, the authors
state that self-adaptive systems have emerged as a fundamental
element of modern software engineering.

Computational resources are essential for IoT. They provide the
interface for devices and sensors to communicate with systems,
allowing the collection and processing of data. Examples of what
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computational resources can help are related to edge, fog, and cloud
processing, collecting data close to the generated source, and the
cloud infrastructure needed to scale the number of devices and in-
tegrated sensors, ultimately storing the data for stakeholders to use.
This stored data can still be processed and used for decision-making.
Computational resources provide the computational structure for
these processes [25].

3 RELATED WORKS AND EXPLORATORY
STUDY

This section summarizes the main related works resulting from a
systematic mapping of the literature on the research topic. All data
relating to the systematic mapping can be seen in [12]. The system-
atic mapping was conducted to support our research conjectures
(Section 4) and identify related works in the literature. We also
present an exploratory study. The exploratory study reinforces our
conjectures and presents the challenges and obstacles encountered
in the area of interest.

Golec et al. [6] present a set of good development practices using
serverless, focusing on security and privacy. Even presenting the
use of serverless for the development of the study, the authors have
privacy and security as their primary focus, not aiming to address
the scalability and interoperability of IoT devices and sensors. Golec
et al. also present an IoT application for e-health that monitors
cardiac patients and helps in clinical decision-making. They used
computational resources related to serverless connected to IoT
devices to develop the system. Data processing and the analysis
of the patient’s situation use Al Even though the work listed the
importance of scalability of computational resources, the focus was
on the application, the use of Al and serverless rather than on how
they developed the architecture. Also, the authors did not present
aspects of how the architecture adapts to the environment’s needs
and the details about it.

Self-adaptive architectures for IoT applications are present in the
literature. Alfonso et al. [1] present techniques to model and create
self-adaptive IoT systems. The approach supported by the authors
focuses on three main items: modeling interactions between devices,
sensors, and computational resources; how to perform the division
of services for deployment and how to ensure the architecture
adaptation strategies. The authors present all the theoretical parts
and how to implement the model. However, they do not validate
the proposal. Furthermore, the framework must consider scalability
and interoperability between sensors, devices, and computational
resources. The solution proposed by the authors does not consider
the need for self-adaptation according to the sensitivity in which
the context is inserted. The authors focus on the adaptation strategy
and not on how it is carried out according to the context.

Muthu et al. [23], Verma and Sood [35], Kaur, Kumar and Kumar
[19], Verma, Agarwal and Gupta [34], and Tuli et al. [33] present
the use of artificial intelligence based on data generated by sen-
sors and devices, predict what types of diseases a person may be
suffering or being affected by. Once again, Al is used in the final ap-
plication, not alongside computational resources. Gupta, Al-Naime
and Al-Anbuky [14] present the proposed architecture where ar-
tificial intelligence could be used. However, they do not present
the use made in their work. Al is related to the application’s data
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processing, not computational resources. Talaat [31] proposes using
artificial intelligence to predict real-time resource allocation. The
work focuses on the algorithms that can support this prediction.
Therefore, the author aims to verify which machine learning algo-
rithms are best suited to reduce latency, improve service quality
metrics, reduce response time, and ensure energy efficiency. The
author focuses on demonstrating how algorithms work and not
necessarily linking them to an architecture. Finally, the authors
test the algorithms in a patient environment. Dai et al. [3] propose
using Al to help predict and measure the energy expenditure that
some aspects of the architecture can use. In this way, the authors
hope there will be less energy expenditure. Dhasarathan et al. [4]
propose using deep learning techniques to help predict privacy
metrics in e-health environments. Deep learning techniques are
applied at the application level rather than at the architectural level.

After reading and exploring the selected works, it was possible
to observe that quality attributes are fundamental to the proposed
architectures. Moreover, architectural proposals were identified
for developing IoT applications in intelligent environments. The
proposed architectures and their use demonstrate the impact of a
good solution for creating quality and robust applications. Com-
putational architectures are one of the fundamental factors for
developing these applications with quality. Artificial intelligence is
being used in some applications, such as predicting situations with
patients, diseases, and scenarios. However, Al is not being applied
in architecture, how quality attributes and computational resources
behave.

Considering the research question, systematic mapping, and
conjecture, an exploratory study was also conducted [10]. With the
exploratory study, in addition to the difficulties and opportunities
found in the literature, the aim was to observe other challenges that
may arise during the development of IoT architecture environments
and evaluate the use of computational resources. Furthermore, the
objective was to validate and verify the challenges found in the
literature in practice. Moreover, the execution of the exploratory
study allowed us to learn more about the research question and our
conjecture.

Therefore, we conducted two cycles of the Design Science Re-
search methodology. The next section presents the Method and
Materials, detailing the components of an architecture for intelli-
gent environments that use IoT, exploring self-adaptation and Al
to make resources available according to the demand of the en-
vironment in which the solution is inserted. The use of artificial
intelligence will help to understand the dynamics that occur in the
generation of data in the environment, providing learning when
resources should be available and making them available through
the computational infrastructure proposed in the architecture.

4 METHODS AND MATERIALS

Design Science Research (DSR) assumes that artifacts (solutions)
are designed to solve a practical problem. Artifacts are objects,
whose construction followed scientific methods in different steps
to generate knowledge about a specific item or area of knowledge.
The focus of the DSR is on the artifact and the relevance of its
application [17]. According to Wieringa [37], research conducted
using the DSR approach deals with two types of problems: practical
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and knowledge problems. Practical problems require changes in
artifacts that are related to decision-makers. Knowledge problems
portray necessary changes to existing knowledge about the world
and the state of the art. Still, according to Wieringa [37], a practical
problem is responsible for safeguarding the research; therefore,
other practical problems and questions about existing knowledge
will arise. Both problems and questions chain a cycle of knowledge
construction.

To be able to perform the DSR execution, we establish the follow-
ing conjecture. Suppose we propose a self-adaptive architecture for
the development of IoT applications. In this case, can we improve
the use of computational resources by systems, supporting data col-
lection from intelligent environments and managing these spaces?
As a theoretical basis, this conjecture derives from the knowledge
we acquired in research we already carried out in [26], [10], [11]
and is also presented in sections 2 and 3 of the present work through
the presentation of concepts and the discussion of the solutions
proposed by others in the literature. The following section presents
the requirements established for implementing the architecture.

4.1 Requirements

The context is that of a corporate intelligent environment. It must
be capable of dealing with a large amount of data generated by
different sensors and IoT devices. Furthermore, the architecture
must be able to deal with the available computing resources and
use artificial intelligence to predict the use of computing resources.
Finally, the architecture must self-adapt to the environment’s needs.

The functional and non-functional requirements are established
through the knowledge obtained in the systematic mapping and
the exploratory study and the needs of an intelligent environment:
FRO1: The architecture must be capable of processing, storing, and
loading data from different IoT devices and sensors in an intelligent
environment; FR02: The architecture must be capable of allowing
the integration of different databases, as well as the storage of this
data; FRO3: The architecture must display the stored data to sup-
port the management of the physical intelligent space; FR04: The
architecture must adapt to the needs of the intelligent environ-
ment, enabling and disabling the use of computational resources;
FRO5: The architecture must use artificial intelligence to support
computational resources.

As Non-functional requirements, we stated: NFR01: The archi-
tecture must be capable of dealing with different data models and
databases, at least two, relational and non-relational models. Each
10T device and sensor has characteristics and data storage needs.
Therefore, the solution must be flexible and extensible to address
this characteristic; NFR02: The architecture must be capable of pro-
cessing and storing large volumes of data. IoT devices and sensors
generate large-scale data. For this reason, processing performance
must be guaranteed; NFR03: The architecture must maintain low
response time and adequate data processing. Some sensors and
IoT devices can help with decision-making. For this reason, the
performance and reliability of data processing can be crucial in an
intelligent environment. Added to this is the need for some data pro-
cessing to be carried out quickly; NFR04: Processed and collected
data must be protected to avoid unauthorized access or leakage. Se-
curity and privacy must be guaranteed so that user and system data
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are not exposed to undue people; NFR05: The architecture must
be scalable to handle the increase in IoT devices and sensors. In
addition to supporting the increase in the amount of data generated.
Environments are changeable and can receive new sensors and IoT
devices; for this reason, the architecture must be scalable; NFR06:
The solution must be capable of using computational resources effi-
ciently, providing their use only when necessary. The solution must
adapt to the environment’s needs to avoid wasting computational
resources. In this work, efficiency is addressed by making compu-
tational resources available when necessary; NFR07: The solution
developed via architecture must be easy to use. Monitoring and
decision-making dashboards must be built in such a way that they
can be used without problems. In other words, users must be able
to visualize data and use decision-making tools without any prob-
lem; NFRO8: The developed system must provide clear and intuitive
views of what the data represents. Usability regarding applications
that use data is essential when developing the architecture; NFR09:
The solution must offer ways of accessing data for interoperabil-
ity with other applications. Integrating data generated with other
applications may be necessary as the architecture expands. In this
way, the database must interoperate with other solutions.

4.2 First Cycle

Considering the conjecture, the research problem, the systematic
mapping, the exploratory study, and the functional and non-functional
requirements, the first cycle of the DSR methodology was exe-
cuted. In the first cycle, an intelligent corporate environment was
considered to develop an architecture. The proposed architecture
was divided into modules related to different functional and non-
functional requirements for its development. Figure 1 presents the
proposed architecture.

loT devices
F
# and sensors * =
5 Edge + .
$ {} # Generates data

Send data

Send edge
processed data
Filter data
and send
to the cloud

Send data ’
Cloud

or events or events
5 Functions as
torage Middleware aaevicy
.. Integrates with Integrates with /Y o

Send data
requested

Request data to
visualize

Figure 1: First IoT architecture developed

The architecture is divided into some modules, namely: IoT de-
vices and sensors: Module responsible for all IoT devices and
sensors in the intelligent environment. These sensors are respon-
sible for generating data and can operate together or individually.
Sensors and devices communicate directly with the edge infrastruc-
ture. Edge: Part of the architecture responsible for carrying out the
first data processing using the capacity of devices on the edge. Fog:
Part of the architecture responsible for continuing data process-
ing after the Edge layer. Fog’s infrastructure already has greater
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processing capacity. Edge and Fog allow greater data processing ca-
pacity and reduced response time, given their use close to the origin
of data generation. Cloud: The cloud infrastructure used functions
as a service, which used snippets of code responsible for dealing
individually with each sensor and device. When a new sensor or de-
vice arrives, a new function must be built to be used as a necessary
resource. At this point, the function transforms the data received
by IoT sensors and devices into the data format required for storage.
Middleware: Responsible for coordinating access to data, writing,
and loading data servers. Furthermore, it connects functions as a
service with the data layer. The use of middleware is necessary to
guarantee security and data access policies and to allow coordina-
tion of functions as a service, ensuring that schemas are created
for data consumption. These schemas deal with information about
how functions can consume and access data. Storage: Responsible
for storing data on file servers and databases. Visualization: Part
of the architecture responsible for requesting and interpreting data
that has been stored. This layer ensures that data is available for
decision-making based on its display. Web applications: Various
web applications for viewing data generated from the environment.
These applications can be on cell phones, computers, and even on
wearable devices (such as watches).

To deal with FR01, FR02, NFR01, NFR04, and NFR09, the architec-
ture uses middleware. The middleware approach allows a function
as a service for each sensor and device. Furthermore, the middle-
ware has a layer that maps access to the database, generating access
and control policies according to the needs of each application.
Given that each device and sensor have a function as a service, data
processing began to be distributed between different parts of the
computing resources. This meant the load did not just remain in
a monolith. Furthermore, using edge and fog allowed the filtering
and processing of data close to the origin of its generation. This
edge and fog approach also allows for reduced application response
time. In this way, the needs of FR06, NFR02, and NFR03 were ad-
dressed. The architecture also deals with the proposition of a data
visualization platform. For this, an application with dashboards
can be specified. In this way, FR03, NFR07 and NFR08 were treated.
Figure 2 presents the dashboard.

Real time monitoring

Figure 2: Developed application with dashboards

Although the first cycle of the architecture deals with several
functional and non-functional requirements, some aspects can still
need to be explored. They are:

(1) At certain times of the day, the computational resources are
idle or receive a large load of data to process. The serverless
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paradigm supported these characteristics, but the computa-
tional resources could be better used according to interac-
tions in the scenario. An example can be seen in the intelli-
gent an e-health environment operation; it operated between
6 am and 11 pm. However, all computational resources were
available without real need throughout the day. Therefore,
functional requirements FR04, FR05, and NFR06 were not
addressed;

(2) The context in which the sensor is inserted directly influ-
ences the computational resources required. Various behav-
iors and actions can occur within an environment, for exam-
ple, people walking, a sensor generating data, and a lack of
electricity. In this way, the mapping of essential interactions
to this environment must be privileged and mapped so that
the computational resources are always prepared to receive
this data. Functional requirements FR04, FR05, and NFR06
were not addressed as before;

(3) The usability of the dashboards and the tools to help the
decision-makers could be improved, given the limitations
encountered with the proposed visualization module. The
NFR07 and NFRO8 can still be better explored in a new ar-
chitecture;

(4) The architecture presented how to deal with the entry of
new IoT devices and sensors but did not present aspects
related to artificial intelligence and the management of these
computational resources. FR04, FR05, NFR05, and NFR06
were not treated.

Therefore, a second DSR cycle was conducted, to improve the
architecture, considering the aspects previously identified and not
explored in the first version.

4.3 Second Cycle

In addition to the aspects identified above, we considered the need
of expansion of intelligent environments and their presence in
people’s lives [7]. The development of these applications requires
flexible computational architectures that can handle the input of
new loT devices and sensors, scalability to ensure that it functions
correctly in times of large-scale use and interoperability with other
systems and devices [22]. Another need is supporting the interac-
tions in these environments, adapting, and ensuring computational
resource availability [22]. The use of serverless allows the creation
of flexible computational applications adaptable to other cloud
structures and can scale according to existing needs. In addition to
these benefits, serverless allows computational resources to handle
the most minor parts of an environment, such as sensors and IoT
devices. The use of edge and fog allows data processing close to the
origin of their generation. Allowing pre-processing and filtering of
data to be performed.

We evolved the architecture developed in the first cycle to present
a self-adaptive IoT architecture to deal with FR04, FR05, NFRO06,
NFRO07, and NFR08. The self-adaptive IoT architecture provides a
mechanism for choosing computational resources that meet the
needs of intelligent environments — mapping the use of sensors
and IoT devices and exemplifying how processes occur from data
capture to use across the applications. The architecture is detailed
in Figure 3, with emphasis on self-adaptive features.
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Figure 3: Self-adaptive Architecture proposed in the second
DSR cycle

In the cloud, the first layer is called the Manager Layer. It is
responsible for managing whether the Managed Layer meets the
non-functional requirements established by the developers and
stakeholders, such as scalability, interoperability, response time,
memory usage, and processing usage. It is also responsible for
changing the computational resources according to these defini-
tions. The second component is the Managed Layer. It is the layer
the final users use to monitor the intelligent environment. The Man-
aged Layer will also be self-adapted according to the definitions
established by the Manager Layer.

Connected to the Manager Layer and the Managed Layer, the
repositories store data for the Manager Layer and also about the
health of the Managed layer and the environment, such as response
time metrics, amount of memory used, and amount of processing.

The self-adaptive architecture aims to adapt the use of com-
putational resources according to the needs established through
non-functional requirements and scenarios of using sensors and
IoT devices.

An example of adaptation is that at a specific time of day, a
computational resource is necessary for data processing, with up to
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5 seconds of response time, from a temperature sensor to determine
whether the environment is comfortable.

The Managed Layer is also responsible for running the applica-
tion used by users. It has all the necessary computational infrastruc-
ture defined in the Manager Layer. It is composed of a serverless
component that uses functions as a service to communicate with
IoT device sensors; a middleware component to isolate access to
the database from the application and allow the definition of usage
rules; the database to store application data, the application com-
ponent to follow the mapped intelligent environment; a workflow
engine component for changing serverless component settings.

Applications are constructed to serve those interested in the data
generated by IoT sensors and devices. In this way, the IoT systems
in intelligent environments perform requests for middleware to
obtain data. These functions communicate with the middleware
and receive the requested data in return.

The last part of the Managed layer is the workflow engine. It
is responsible for changing the configurations of computational
resources according to the needs of the scenario. It executes the
configurations defined by the Managed layer. The workflow engine
has an API, and whenever it needs to change some computational
resources, it sends an event to the cloud to execute the changes.
More details about the workflow engine can be reached in [9].

One of the critical aspects is that one or more computational
resources can interoperate, causing computational resources to
run simultaneously. Furthermore, given the characteristics of the
environment, computational resources can be scaled because of
the loosely coupled cloud resources into the architecture. Each
device and sensor act in this context, generating data related to its
purposes. For example, a temperature sensor generates data about
the environment. The data needs to be used by the managed system
and end users. Computational resources are essential for this data’s
loading, processing, and visualization. In this article, our focus in on
AT use. Therefore, the detailing of other modules can be consulted
in [9].

4.4 Al processing

As previously stated, to adapt to the environment’s needs, the archi-
tecture uses Al In the context of intelligent environments, artificial
intelligence is essential to optimizing the allocation of computa-
tional resources. By analyzing usage patterns, it decides when to
activate or deactivate resources, dynamically adapting to the en-
vironment’s needs. Furthermore, predictive analysis techniques
predict future demand, reduce waste, and improve operational effi-
ciency for more sustainable and economical management.

The proposed architecture uses artificial intelligence techniques.
Examples of techniques that could be used in the architecture are
machine learning, expert systems, recommendation systems, and
automatic learning (AutoML). Some algorithms that can be used for
these techniques are decision trees, random forests, linear regres-
sion, logistic regression, and collaborative filtering. One example is
the use of AutoML. In the AutoML process, the decision on which
algorithm to use is made through established criteria that evaluate
the adequacy of the model to a given algorithm. The first phase of
the selection process is preparing the test data. This phase executes
the data cleaning and transformation. In the next phase, different
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algorithm models are evaluated on the data set. Each model’s per-
formance is evaluated using precision, recall, and F-1 score metrics.
Given the models’ performances, the worst are discarded. The mod-
els” hyperparameters are optimized to extract better performance
from the models. Finally, in the last phase, there is the final choice
of the model and which algorithm suits the chosen model [18].

Artificial intelligence trains with historically recorded data, al-
lowing training sessions to be executed occasionally and allowing
model learning and validations to be performed according to the
time of year. One of the critical aspects is that one or more computa-
tional resources can interoperate, causing computational resources
to run simultaneously. Furthermore, given the characteristics of
the environment, computational resources can be scaled because
of the loosely coupled cloud resources into the architecture.

In the proposal for using artificial intelligence, the characteristics
of the model chosen via AutoML are taken into account when choos-
ing an algorithm. This approach allows for greater assertiveness in
using the algorithm with the model, allowing metrics related to the
model to be optimized and explored. Given that the entire AutoML
process checks the adequacy of the model to the algorithm, this
use together brings benefits in terms of metrics related to precision,
assertiveness and F1-score.

Artificial intelligence can help to improve the management of
the intelligent environment, reduce the unnecessary use of com-
putational resources, and, consequently, allow more efficient man-
agement of computational resources. Using loosely coupled cloud
resources that can be easily activated and related to sensors is nec-
essary for the architecture. The loosely coupled resources allow
artificial intelligence to define which computational resource is
vital for the scenario and understand when its use is necessary for
the environment. Examples are machine learning, expert systems,
recommendation systems, and automatic learning (AutoML).

For example, the use of AutoML allows the data generated from
the application to be collected and pre-processed; algorithms can
be tested, hyperparameters can be optimized, and training and
evaluation of the models used.

The AutoML component is responsible for processing machine
learning. This module trains and evaluates several machine learning
models and selects the best model to be used for the data provided.
This model is then used to analyze new data from resources, environ-
ment, and historical data to estimate the probability of occurrence
of certain classes. A new predictive model can be selected and ad-
justed with each new input dataset or as demanded. This way;, it
is possible to maintain solutions generated by the architecture, for
each specific application, about the predictive model used. After
analysis by AutoML, the data has a label assigned by the selected
Al algorithm and can be processed by expert and recommendation
systems. The architecture uses historically recorded data, allowing
training sessions to be executed occasionally and allowing model
learning and validations to be performed according to the time of
year.

The second cycle of the DSR aimed to deal with FR04, FRO5,
and NFRO6. For this, the self-adaptive architecture was presented.
The use of computational resources is presented according to the
needs of the intelligent environment in which they are inserted. Fur-
thermore, artificial intelligence was used to enable the processing
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and self-adaptation of architecture to different scenarios in intelli-
gent environments. The approach makes computational resources
predictable, not allowing inappropriate use. This approach allows
for reducing costs and waste of resources and a more adequate
management of the environment’s needs, whether or not they are
available.

Therefore, the proposed architecture demonstrates the essential
elements for developing IoT applications in an intelligent environ-
ment, focusing on computational resources using a self-adaptive
architecture. The next section presents an initial evaluation of the
architecture provided in this second DSR cycle.

5 EVALUATION

A real-world case study is detailed, to explore the research question:
"How have self-adaptive architectures been used to support intelli-
gent environments?". As previously presented, this study followed
the DSR methodology. This section presents a specific case study.
Other case studies can be accessed in [9]

5.1 Context

We designed the architectures and tested the application developed
in a corporate e-health environment. The intelligent environment
was a medical clinic with a coworking space, waiting room, and
medical offices for patient care. We mapped the sensors and devices
used in the medical clinic. Then, we talked with users of the intelli-
gent environment to understand people’s interactions, in addition
to sensors and IoT devices. Finally, we identified the users of the
environment.

The devices and sensors in the clinic spaces are: Coworking:
Presence sensor, temperature sensor, and humidity sensor; Waiting
room: Presence sensor, cameras, and totem; Doctor’s office: tablet.
The functioning of the presence sensor works to detect a person in
the environment periodically. The presence sensor is available in
all areas of the medical clinic. Temperature and humidity sensors,
for example, perform coworking measurements every hour. The
cameras are used in real- time to monitor the flow of people in the
waiting areas. The totem is responsible for recording the arrival of
patients for consultations and receiving payment for the services —
the tablets in the doctors’ offices record which health professionals
are using the environment. As a result, all devices and sensors of
the intelligent e-health environment were presented.

5.2 Preparation

Considering the sensors and IoT devices, as well as the environ-
ments present in the medical clinic, a mapping of the use of the
environment was carried out and divided into two usage scenarios
to be supported using the self-adaptive architecture.

o The first usage scenario ensures the professionals’ coworking
environment has a pleasant temperature. Temperature and
humidity sensors generate data to support the management
of this environment and ensure that it is comfortable. These
sensors generate data about the environment every hour and
notify the medical clinic coordinators.

o The second scenario deals with professionals’ essential use of
consultation offices to provide care to their patients. When-
ever a health professional arrives at the clinic, he waits for
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his patient in the coworking space. The coworking presence
sensor periodically sends whether an environment has peo-
ple or not. Therefore, if a health professional arrives at the
coworking space, the presence sensor sends an alert to the
environment coordinators, warning them about using the
area. When a patient is going to attend, the health profes-
sional leaves the coworking space and goes to the doctor’s
office designated for use. The presence sensor indicates the
environment used when entering the doctor’s office. Still,
in the current scenario, a patient attending must notify the
health professional of their arrival using the totem in the
waiting room. The use of the totem alerts the health pro-
fessional that the patient is already waiting in the room. A
presence sensor in the waiting room identifies whether peo-
ple are in that environment to support this alert. When the
medical appointment finishes, a health professional clears
the room, and the patient leaves. At that moment, the pres-
ence of sensors in the waiting room, and coworking space
sent data on the release of the premises.

The data used in this phase of the architecture was generated in
real-time. To this end, a one-week cycle was carried out to measure
its operation not to harm employees’ daily lives or the business
environment’s policies.

5.3 Implementation Strategies

For the implementation of the application, derived from the ar-
chitecture, we used some specific technologies. Some are already
implemented in the architecture.

OpenFaas [24] was used as the serverless technology approach.
Given the need for IoT devices and sensors, in addition to the
need for experimentation, functions as a service were written us-
ing Python [30]. The use of serverless with OpenFaas also made
it possible to monitor the performance of functions as a service.
Information such as response time, hour of use, number of requests,
processing time, and memory usage are monitored and stored in
a database. OpenFaas uses Prometheus [29] to manage and mon-
itor performance metrics. OpenFaas allows the migration of the
architecture’s serverless structure to any cloud.

To use the Middleware layer, the architecture used Hasura [16].
Hasura offers integrations to different databases and allows the
creation of data schemas. Different services, such as functions as a
service, can consume their data and generate schemas.

We used a PostgreSQL relational [27] database to store scenario
event data. The Thingsboard [32] was used to provide the displayed
data, generate alerts, and display scenarios for those interested.

Figure 4 presents an example of a function as a service. The
presented function as a service is a template for generating func-
tions for new IoT devices and sensors. The exposed code points to
loading, processing, and sending data for visualization.

OpenFaas uses functions as a service. Functions as a service of-
fers flexibility to configure and allow each IoT device’s and sensor’s
needs according to their characteristics. The serverless paradigm
also allows for scalability using computational resources in daily
situations that generate high demand. To verify the scalability of
computational resources, the clinic’s day-to-day experimentation
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import requests
import json

def handle(req):

requestObject = json.loads(req)

baseUrl = 'http://host.docker.internal:8081/api/v1l/"
key = requestObject['key']

finalUrl = '/telemetry'

url = baseUrl+key+finalurl

del requestObject['key']

requests.post(url, json = requestObject)

Figure 4: Custom function as a service code

allowed the visualization of scenarios with the need to expand com-
putational resources and others where resources were not required.

OpenFaas allows the migration of the architecture’s serverless
structure to any cloud. This feature is essential to ensure compu-
tational resources’ flexibility, scalability, and portability. To use
the functions as a service in OpenFaas, it is enough to access the
function’s source code and create a YAML file. YAML files estab-
lish guidelines for using a computational resource, such as port,
amount of memory, and processing capacity. Based on these set-
tings in the YAML file, containers use functions as a service. Using
containers allows the portability of functions and their activation
and deactivation when necessary. In a scenario of different sensors
and IoT devices, such as the clinic, the characteristics of each of
the sensors can be privileged and met via the source code of the
functions and through the configuration file that establishes the
use of computational resources.

In addition to configuring computational resources by the man-
agement system, one of the critical factors is when we should have
activated the computational resources. For this, data from the use
of sensors and scenarios were essential. Based on the data stored
from the execution of the scenarios in the Managed system, it was
possible to predict the hours of the day that the computational
resources were used. With this data, we developed an artificial in-
telligence model using Python’s SciKit Learn [21]. The model used
in the SciKit Learn library was the Linear Support Vector Classifier
(Linear SVC). It is a linear classification model which uses a linear
function for classifications. One of its characteristics is that it allows
the separation of data according to their characteristics based on a
linear hyperplane. Artificial intelligence aims to establish whether
a computational resource should be available during a specific time
of day. To train the artificial intelligence model to construct the
model, we used historical data from the execution of sensors and
IoT devices.

The API calls the self-adaptative executor if a computational
resource must be available or unavailable according to the time of
day. An autonomous agent generates an event by an API request.
The API request generates an event to the OpenFaas to activate or
deactivate a computational resource.

Do Nascimento et al.

5.4 Conducting

Given that an intelligent environment composed of sensors and
IoT devices, they are responsible for generating data about what
is happening in the environment. The interactions between all ac-
tors form the intelligent environment. The temperature, humidity,
presence, camera, tablet, and totem sensors use edge computing
techniques to perform the first data processing. Edge usage is es-
sential to help filter important data, assess the integrity of this data,
and reduce the amount that must be stored. After processing the
data initially at the edge, the data goes to the fog. The Fog structure
is used in doctors’ offices, waiting rooms, and medical coworking.
Its use allows the data generated to be even more filtered, given the
greater processing capacity of fog compared to the edge. By follow-
ing the path of the data, after passing through the Fog structure, it
will be processed in the Managed system. The Managed system has
a Serverless, Middleware, Storage, and Application component. To
verify the scalability of computational resources, the clinic’s day-to-
day procedures allowed the visualization of scenarios with the need
to expand computational resources and others where resources
were not required. Figures 5 and 6 present dashboards provided by
the application.

Temperature / Humidity

- s s
per

60 40 20 0 20 40 60 8 100

- | |

Figure 5: Temperature/ Humidity control

Shared spaces usage
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Figure 6: Dashboard presenting interactions

Executing the sensors and the proposed architecture in the cor-
porate environment generated some data. A sample of this data,
regarding execution over 15 days, can be seen on GitHub!.

!https://github.com/mateusgon/architecture/
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5.5 Analyzing

Through case study, the self-adaptive architecture was developed
and evaluated to understand how much it supports data processing
and management of the physical environment through computa-
tional resources. Artificial intelligence is also presented alongside
computational resources, and its impact is discussed in the results
subsection. Given the exposed scenario of interactions in the corpo-
rate e-health environment, the objective of the architecture was to
support the use of computing resources in the intelligent e-health
environment and improve the usability of applications.

In this way, the data generated by the intelligent corporate e-
health environment was used, and the built application was eval-
uated. The results obtained through developing the architecture
and monitoring of computational resources supported by artificial
intelligence were satisfactory and are discussed in the following
subsection.

5.6 Results

Implementing the architecture for the experimental scenario al-
lowed us to obtain results and observations about the proposed
architecture.

The scenario mapping was critical and conducted with profes-
sionals working in the e-health environment. These professionals
helped to map when a computational resource was needed accord-
ing to user interaction. Interactions by time of day were studied and
passed to Al component based on historical data from the medical
clinic.

Based on the information provided by professionals and histor-
ical usage bases, we also established weights for when a compu-
tational resource should be used. Therefore, at times of greater
use of the environments, the chance of a computational resource
being available was greater than at other times. These weights
were passed on to AutoML training and helped predict whether a
resource should be available or unavailable.

The main objective of the implemented application was to ensure
that the necessary computational resources were adapted according
to the time of day and the characteristics of an intelligent environ-
ment. In addition, the application should guarantee that it would
be possible to address aspects of scalability, interoperability, and
adequate access to the database, which are challenges addressed
and resolved in other cycles.

One of the most significant challenges was the self-adaptation
of computational resources to use sensors in clinical medicine. To
make self-adaptation possible, we had to select and train a machine-
learning technique with historical data from sensors. This training
involved breaking down historical running data from sensors and
devices by time and day of the week.

When evaluating whether a computational resource should be
available or disabled, we found the challenge that the predicted
artificial intelligence did not always have assertiveness. At times
when the resource should be available, artificial intelligence predicts
that it should not. While mispredicting usage causes some data not
to be obtained, this has not impeded the testing of the intelligent
e-health environment. Even though evaluating possible artificial
intelligence or the one that would best fit was not the focus of our
work, it was necessary to choose a model. For it, data was generated
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on its effectiveness. As a result of our experiment, we obtained some
satisfactory data about the artificial intelligence model. We used
as metrics, precision, recall, and F1-Score. Precision was about
70.9%, the recall was 61.1%, and F1-Score was 65.6%. As a significant
benefit, this approach made it possible to guarantee support for
the clinic’s day-to-day activities. One of the ways to evaluate the
impacts of predicting the use of computational resources was by
talking to the workers who used our developed application. The
reports of these workers showed that when there was no data, and
data was necessary, the workers made themselves an inspection of
the environment.

Three employees from the corporate environment were inter-
viewed to evaluate the application developed. Two employees are
clinic coordinators, and one of the interviewees is a manager. The
interviews took place while the application was running in the
corporate environment. The users reported that the data neces-
sary for managing the intelligent environment, for the most part,
were available for decision-making. Users also reported that when
data was not available, manual verification of environments was re-
quired. Ultimately, the environment managers reported satisfactory
experience with the developed application.

As main findings and observations, through the proposed archi-
tecture for developing IoT applications in e-health environments,
we achieved the objective of improving the management of the use
of computational resources and allowing data collection from the
intelligent e-health environment and its management. This was
demonstrated through the discussion, implementation, and results
of the implementation of the artifact, as the results obtained are qual-
ified as satisfactory. The self-adaptation of computational resources
brought great benefits to the environment, allowing better manage-
ment of resources, and ensuring that they will only be used when
needed. This approach can allow the construction of applications
to be increasingly focused on the complex interactions of existing
environments and establish clear usage rules for computational re-
sources. The use of the application also allows financial savings and
even electrical consumption in case these computational resources
are not used when not necessary. Therefore, the Research Ques-
tion: "How have self-adaptive architectures been used to support
intelligent environments?" could be answered. However, additional
studies need to be conducted in similar environments with the aim
of enriching scientific knowledge.

5.7 Threats to Validity

In this subsection, we discuss threats to validity that may limit or
affect the results obtained.

Internal validation: During the case study, data was generated
by specific sensors in the corporate environment. Although the
initial results are valuable, a more detailed study in other intelligent
corporate intelligent environments is necessary to identify other
learnings and possible improvements. Adding new sensors and
devices and competition for network resources can affect the data
generated and obtained.

External validation: In a corporate scenario with an even more
significant number of sensors, new techniques to predict the need to
use computational resources will be necessary. The context, sensors,
devices, number of rooms, and shared spaces in which the work



SBES’24, September 30 — October 04, 2024, Curitiba, PR

was developed will directly influence how computational resources
should be used. New intelligent environments can generate different
results using computational resources and data generation, bringing
new learning and discoveries.

Construct validation: Different artificial intelligence models
were not tested for computational resource selection during the case
study. The use of other artificial intelligence can generate different
results. Given the construction of the architecture and the division
into modules, new artificial intelligence techniques can be used.
New studies can be carried out to improve the results obtained with
artificial intelligence, and researchers can compare results.

Validity of selection: During the study period, the selected
corporate environment had similar people dynamics and use of
computing resources. Using computational resources, people mov-
ing through the environment can generate new results on days
with different behaviors. Therefore, validating the architecture on
specific operating days may be necessary

6 FINAL REMARKS

The expansion of the Internet of Things and intelligent environ-
ments has led to new opportunities for Software Engineering. Intel-
ligent environments address different areas of society that seek to
automate or make life more accessible through technologies. Linked
to the use of new technologies and the opportunities, challenges,
and problems that have arisen for Software Engineering, the use of
machine learning techniques and the development of computing
resource technologies, such as cloud, edge, and fog, have allowed
the development of a new range of applications.

As discussed, computational resources, large-scale data process-
ing, quality attributes, and artificial intelligence could be used in IoT
architectures in intelligent environments. Based on the systematic
mapping and an exploratory study, the following research question
was presented: "How have self-adaptive architectures been used to
support intelligent environments?".

Considering the knowledge obtained in the systematic mapping
and exploratory study, the work focused on the development of a
solution to support intelligent environments. A self-adaptive ar-
chitecture, using IoT devices, for intelligent environments were
proposed to answer the research question and the established con-
jecture.

To evaluate the proposed architectures, using the DSR method-
ology, we used an intelligent corporate e-health environment. This
environment had interaction dynamics between sensors, devices,
people, and generated data. The exploration of this data generated
through architecture allowed the development of an application
made available to employees in an intelligent environment and
supported them in day-to-day tasks.

As contributions to this work, we can cite:

e Development of architectures for the development of IoT
applications. These architectures contribute to the scientific
community through the knowledge generated and providing
solutions that can be employed.

e Development of an artificial intelligence module to assist
the use of computational resources by application architec-
tures for IoT and intelligent environments. This contribution
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highlights this technology’s advantages, problems, and chal-
lenges.

In future works, evaluating the architecture in environments
other than e-health is essential to understanding adaptations that
may be necessary. The main focus of the work was not on which
artificial intelligence to choose but on validating the functioning
of the architecture with artificial intelligence. Evaluating other
artificial intelligence to predict situations with more scenarios and
ensuring that resources are available in the most crucial moments
is necessary.

Furthermore, other future work may address improving the ac-
curacy of the artificial intelligence model and adopting new model
training policies, exploration of other functional and non-functional
requirements, improvements in the way non-functional require-
ments were handled, evaluation in other e-health environments,
assessment in other intelligent environments.

7 DATA AVAILABILITY STATE

The datasets generated during and/or analyzed during the current
study are available on [12].
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