
On the Employment of Machine Learning for Recommending
Refactorings: A Systematic Literature Review

Guisella Angulo
Armijo

DC-UFSCar
São Carlos, SP, Brazil
angulogc@gmail.com

Daniel San Martín
Santibañez
EIC-UCN

Coquimbo, Chile
daniel.sanmartin@ucn.cl

Rafael Durelli
DCC-UFLA

Lavras, MG, Brazil
rafael.durelli@ufla.br

Valter Vieira de
Camargo
DC-UFSCar

São Carlos, SP, Brazil
valtervcamargo@ufscar.br

ABSTRACT
Context and Motivation: Refactoring is a widely recognized
technique aimed at enhancing the comprehensibility and main-
tainability of source code while preserving its external behavior.
The widespread adoption of refactorings as a systematic practice
is still very dependent on individual expertise and inclination of
software engineers. To address this challenge, various approaches
have emerged with the objective of automatically suggesting re-
factorings, thereby alleviating engineers from the manual burden
of identifying such opportunities. Objective: This study aims to
analyze the current landscape of approaches utilizing Machine
Learning (ML) for recommending refactorings and discuss their
usage. Method: A Systematic Literature Review (SLR) was con-
ducted, spanning five scientific databases from 2015 to December
2023. Initially, 177 papers were identified, from which a final set
of 27 papers was reached. Results: The findings encompass: i) an
exploration of the most and least investigated refactorings and ML
techniques; ii) an analysis of the datasets used; iii) an examination
of the evaluation methodologies employed; and iv) an assessment
of recommendation completeness and quality. Conclusion: This
study has significant potential for further research, as numerous
refactorings remain unexplored by existing studies. Furthermore, it
highlights that many ML-based approaches fall short in delivering
comprehensive recommendations, thus emphasizing the imperative
for ongoing investigation and enhancement in this field. All arti-
facts produced from our research are available on the replication
package [1].

KEYWORDS
refactoring recommendation, machine learning

1 INTRODUCTION
Refactoring is the practice of modifying a system’s source code to
enhance its structure without altering its observable external behav-
ior [19]. The refactoring process encompasses four primary tasks: (i)
identifying refactoring opportunities. Example: code smells, archi-
tectural smells, software defects and anti-patterns; (ii) identifying
one or more refactorings to solve the opportunities; (iii) executing
the refactoring(s) by modifying the source code; and iv) ensuring
that the external behavior remains unchanged [29, 47].

Identifying refactoring opportunities and deciding which refac-
toring to apply constitutes the most time-consuming task of the
process. Developers must possess the ability to recognize situations
where a specific refactoring could be applied and also to choose the
adequate refactorings to apply.

In recent years research on machine learning (ML) in the con-
text of refactoring recommendations has grown [14] [8] [31] [15]
[54] [11], mostly concentrating on the support for identification
of refactoring opportunities. At the same way, many approaches
have used ML in the context of smells identification [16] [21] [3]
[12]. Although research on smells identification and refactoring
recommendations share similarities, they also exhibit significant
differences. Firstly, research on smell identification has a narrower
focus, concentrating solely on identifying code smells, without con-
sidering other potential refactoring opportunities. Secondly, the
datasets used for training are also specially tailored just for identi-
fying smells, not being applicable for refactoring recommendations.
Thirdly, the main emphasis of smells identification approaches [21]
[3] [12] lies in the accuracy of the classifier, usually a smaller atten-
tion is given to the refactorings that could be applied to solve the
smells.

Although the number of research on recommendation of refac-
torings based on ML has attacked attention in recent years, there is
still a noticeable lack of knowledge on how ML approaches have
been adopted for refactoring recommendation and whether there
are points of improvement to allow a better recommendation. Our
goal is to organize, analyze and explore the current state of the art in
this domain. Such a study would enable researchers to gain a clear
understanding of this field and identify new research opportunities.

In this paper we present a SLR on how ML has been applied for
recommending refactorings [23]. Initially, we extracted a total of 177
papers from the most typical online digital libraries, covering the
period from 2015 to December 2023. After applying the exclusion
and inclusion criteria and backward and forward snowballing, we
got a final set containing 27 papers.

Our SLR aims at providing a comprehensive investigation to elab-
orate: i) Identification of the most/least studied refactorings taken
into account by previous research; ii) the types of ML classifiers
exploited by researchers; iii) an analysis and a classification of the
datasets used by the approaches; iv) strategies used to evaluate the
machine learning models and the identification of the automation
level of the approaches; and iv) a discussion on the quality of the
recommendations considering their completeness based on W3B
(Which, Where, Why and Benefits), a criteria we have proposed.

Section 2 presents the research methodology and the SLR proto-
col. In Section 3, we present the obtained results. Section 4 discusses
the relevant findings. Section 5 addresses the potential threats to
validity. Section 6 shows the works related to this work. Finally, in
Section 7, we present our conclusions and future works.

SBES’24, September 30 – October 04, 2024, Curitiba, PR G. Angulo et al.

2 RESEARCH METHODOLOGY
The focus of this SLR is on studies that have investigated the use
of ML for recommending refactorings. Our focus is exclusively on
primary studies whose goal is to suggest or recommend refacto-
rings. Studies employing ML solely for aiding in the identification
of problematic situations are out of the scope of our investigation.
Our inclusion criteria encompass only those studies wherein the
ultimate outcome is a recommendation of refactoring. Our SLR fol-
lowed the guidelines proposed by Kitchenham et al. [22] as shown
in Figure 1.

Definition of

RQs

(2.1)

Identification of

Relevant Papers

(2.2)

Selection

Criteria (2.3)

Apply Quality

Assessment

(2.4)

Data Extraction

and Execution

(2.5)

Figure 1: Process defined for SLR

2.1 Research Questions
To guide our investigation, we have formulated three general re-
search questions and five specific ones [23].
RQ1Which relationships betweenMachine Learning and Refactorings
Recommendations are explicitly discussed in the literature?

RQ1.1Which refactorings have been investigated?
RQ1.2 Which ML algorithms have been used to recommend refac-

torings?
RQ1.3 How datasets and features can be classified?

RQ2 Do the way the approaches are evaluated depend on the automa-
tion level of them?

RQ2.1 How have the approaches been evaluated?
RQ2.2What is the automation level (fully automated, semi-automated,

or manual) of the approaches?
RQ3 Have the approaches concerned with the quality of the recom-
mendations?

2.2 Identification of Relevant Papers
Figure 2 shows the base string elaborated around three terms: (i)
Recommendation; (ii) Refactoring, and (iii) Machine Learning. This
base string was adapted considering alternative spellings and syn-
onyms for each of the 5 digital libraries: Scopus, IEEE Xplore, ACM,
Science Direct and Wiley. Therefore, we restricted the search to
the period between 2015 and 2023 and, to avoid missing impor-
tant/relevant articles, we conducted a backward snowball technique
using reference lists from the final set of articles.

Figure 2: Search string

("Recommendation" OR "Recommend" OR "Recommending" OR
"Identification" OR "Identify" OR "Identifying" OR

"Prediction" OR "Predict" OR "Predicting" OR "Prevision")
AND ("Refactoring" OR "Refactor") AND ("Machine Learning"

OR "Supervised Learning" OR "Unsupervised Learning")

2.3 Selection Criteria
We have established two inclusion criteria (IC) and six exclusion
criteria (EC):

• IC-1: The study elaborates on the use of ML for recommend-
ing refactoring.

• IC-2: The research is published in English.
• EC-1: The study does not address Machine Learning;
• EC-2: The study does not address Recommendation;
• EC-3: The study does not address Refactoring;
• EC-4: The study is a secondary study;
• EC-5: The study is not available;
• EC-6: The study is an Abstract, poster, technical report, the-
sis, book, conference review, or patent.

2.4 Quality assessment
The quality of publications was measured after the final selection
process. The following checklist was used to assess the credibility
and thoroughness of the selected publications.

(1) Does the paper have a well-defined approach?
(2) Is the refactoring(s) proposed by the approach clearly de-

fined?
(3) Is the machine learner classifier clearly defined?
(4) Does the paper include empirical or theoretical validation?
For each paper, the quality score was calculated by assigning [0,

0.5, 1] to each of the four questions and then adding them up. The
artifact result is available on the replication package [1].

2.5 Data Extraction and Execution
The following data we have extracted from the final set of papers:

• Papersmetadata: title, authors, publication venue, year, pages,
volume, abstract and document type;

• Refactoring researched in the approach;
• Machine Learning techniques employed;
• Dataset characteristics and feature details;
• Evaluation strategy of the approach;
• Automation level of the approach;
• Quality of the Recommendation.

The process for execution the research can be observed in Figure
3. Each stage displays the criteria used and the resulting quantity,
culminating in a final set of 27 papers.

2.6 Results
The data analysis was conducted considering Approaches and not
the papers individually. This was done because some papers belong
to the same research group, being just evolution of a same approach.
In this case, we grouped them under a unique Approach (Referred
as A#) - see the first column of the table. Therefore, although there
are 27 papers in the final set, we have 22 approaches. The papers
[S04], [S12], and [S19] were grouped as the approach [A04], the
papers [S05] [S17] and [S20] were grouped as the approach [A05]
and papers [S18] and [S21], were grouped as [A16].

We classified the recommendations into two types: i) unique
refactoring recommendation (UniR) and ii) sequence of refactorings
recommendations (SeqR). The first type is recommendations that
suggest just one refactoring at a time. The second one offers a

On the Employment of Machine Learning for Recommending Refactorings SBES’24, September 30 – October 04, 2024, Curitiba, PR

Search Database

ACM (17)

IEEE (24)

Scopus (121)

Wiley (2)

Science Direct (13)

Duplicated papers

and 1st selection of

studies

Using selection

criteria (title,

abstract, keywords)

2nd selection of

studies

Using selection

criteria (Full Text)

177

Snowballing

(forward and

backward)

Total of

selected

studies
26 21 27

Figure 3: Filtering Process of the Papers

Table 1: The Final Set of Primary Studies

Approach Paper
ID

Paper Title Authors Year Type Venue

[A01] [S01] REMS: Recommending Extract Method Refactoring Opportunities via Multi-view Representation of Code Property
Graph

Cui Di et al. [14] 2023 UniR IEEE ICPC

[A02] [S02]† Automatic Refactoring Candidate Identification Leveraging Effective Code Representation Palit et al. [33] 2023 UniR ACM
[A03] [S03] Just-in-time code duplicates extraction AlOmar et al. [8] 2023 UniR Inf Softw Technol
[A04] [S04] Mining commit messages to enhance software refactorings recommendation: A machine learning approach Nyamawe [30] 2022 SeqR MLWA

[S12] Feature requests-based recommendation of software refactorings Nyamawe et al. [32] 2020 SeqR Empir. Softw.
Eng.

[S19] Automated recommendation of software refactorings based on feature requests Nyamawe et al. [31] 2019 SeqR RE
[A05] [S05] Enabling Decision and Objective Space Exploration for Interactive Multi-Objective Refactoring Rebai et al. [39] 2022 SeqR IEEE TSE

[S17] Less is more: From multi-objective to mono-objective refactoring via developer’s knowledge extraction Alizadeh et al. [5] 2019 SeqR SCAM
[S20] Reducing Interactive Refactoring Effort via Clustering-Based Multi-objective Search Alizadeh et al. [6] 2018 SeqR ASE

[A06] [S06] RMove: Recommending Move Method Refactoring Opportunities using Structural and Semantic Representations of
Code

Cui Di et al. [15] 2022 UniR ICSE

[A07] [S07] † Class-Level Refactoring Prediction by Ensemble Learning with Various Feature Selection Techniques Panigrahi et al. [35] 2022 Undef Applied Sciences
[A08] [S08] A Machine Learning Approach to Software Model Refactoring Brahmaleen et. al. [42] 2022 UniR IJCA
[A09] [S09] A probabilistic-based approach for automatic identification and refactoring of software code smells Saheb et al. [40] 2022 UniR Appl. Soft Com-

put.
[A10] [S10] Data-Driven Extract Method Recommendations: A Study at ING Van der Leij et al. [50] 2021 UniR ACM
[A11] [S11] The effectiveness of supervised machine learning algorithms in predicting software refactoring Aniche et al. [9] 2020 UniR IEEE
[A12] [S13] Recommendation of Move Method Refactoring Using Path Based Representation of Code Kurbatova et al. [27] 2020 UniR ICSEW
[A13] [S14] † Application of Naive Bayes classifiers for refactoring Prediction at the method level Panigrahi et al. [36] 2020 UniR ICCSEA
[A14] [S15] † Harnessing deep learning algorithms to predict software refactoring Alenezi et al. [4] 2020 Undef Telkomnika
[A15] [S16] † An Automatic Advisor for Refactoring Software Clones Based on Machine Learning Sheneame [41] 2020 UniR IEEE Access
[A16] [S18] Method Level Refactoring Prediction on Five Open Source Java Projects Using Machine Learning Techniques Kumar et al. [25] 2019 Undef ISEC

[S21] Application of SMOTE and LSSVM with various kernels for predicting refactoring at method level Kumar et al. [24] 2018 Undef ICONIP
[A17] [S22] Automatic Clone Recommendation for Refactoring Based on the Present and the Past Yue et al. [54] 2018 UniR ICSME
[A18] [S23] † Deep Learning Based Feature Envy Detection Liu et al. [28] 2018 UniR ASE
[A19] [S24] A log-linear probabilistic model for prioritizing extract method refactorings Xu et al. [52] 2017 UniR ICCC
[A20] [S25] GEMS: An Extract Method Refactoring Recommender Xu et al. [53] 2017 UniR ISSRE
[A21] [S26] Finding Extract Method Refactoring Opportunities by Analyzing Development History Imazato et al. [20] 2017 UniR COMPSAC
[A22] [S27] Application of LSSVM and SMOTE on Seven Open Source Projects for Predicting Refactoring at Class Level Kumar and Sureka

[26]
2017 Undef APSEC

† Papers added in the snowballing stage UniR:Unique refactoring recommendation SeqR: Sequence of refactorings recommendations Undef: Undefined by the authors

sequence of them, for example: Apply the following refactorings:
Extract Class, after Extract Method and after Move Method.

[A01] presents REMS, which recommends a unique refactor-
ing, the Extract Method, to improve the internal structure of the
method and avoid the introduction of code smells. [A02] which is
an approach that recommends a unique refactoring, is focused on
identifying the refactoring opportunity for applying the Extract
Method refactoring. [A03] introduces AntiCopyPaster, a tool that
recommends a unique refactoring, the Extract Method, to avoid the
introduction of duplicate code into the source code. The approach
[A04] can recommend different source-code structures to be refac-
tored following a sequence order. The goal is to prepare the source
code for the inclusion of new requirements. [A05] has the capacity
to recommend refactorings at attributes, methods, and classes in
a sequence order to improve quality attributes QMOOD (reusabil-
ity, flexibility, understandability, extendibility, and effectiveness).
[A06] presents RMove, which recommends a unique refactoring, the
Move Method refactoring, to remove the Feature Envy code smell.
[A07] identifies the refactoring opportunity, recommending classes
for refactoring, promoting cost-effective and consistent software
design before writing the source code.

[A08] recommends a unique refactoring, for correcting flaws at
UML classes. The goal of the approach is to improve the design
quality. [A09] recommends a unique refactoring: removing rela-
tions, classes and adding classes. To be applied in class diagram,
represented in a probabilistic Bayesian network, for correcting six
different code smells at a higher level of granularity. [A10] which
is an approach that recommends a unique refactoring to improve
the quality of the source code. The approach focuses on the rec-
ommendation of the extract Method in the context of ING, a large
financial organization. [A11] shows an approach that recommends
unique refactoring at class, method, and variable levels. The goal
is to investigate the effectiveness of machine learning algorithms
in predicting software refactorings. [A12] proposes an approach to
recommend a unique refactoring, the Move Method. The approach
relies on the path-based representation of code and aims at improv-
ing class cohesion. [A13] proposes an approach to recommend a
unique refactoring. The approach aims at solving duplicated code
and long method code smell for improving the source code qual-
ity. [A14] which is an approach that recommends classes to be
refactored. This is focused on exploring the effectiveness of deep

SBES’24, September 30 – October 04, 2024, Curitiba, PR G. Angulo et al.

learning algorithms in building refactoring prediction models at
the class level to improve software quality.

[A15] presents an approach to recommend unique refactoring
for solving code clone smells. The approach focuses on three types
of refactorings: Move method, Pull up Method, and Extract Method.
[A16], which is an approach that recommends Methods to be refac-
tored. This is focused on exploring the effectiveness of ten super-
vised machine learning models in building refactoring prediction
at the method-level to improve software quality. [A17] introduces a
ML-based approach called CREC, that recommends a unique refac-
toring for solving code clones. The approach is focused on the
recommendation of the Extract Method and it points out the clones
that need to be refactored, improving the software maintenance.
[A18] shows a deep learning-based approach that recommends
unique refactoring. This approach focuses on recommending the
MoveMethod to identify and remove feature envy code smell. [A19]
is an approach that recommends a unique refactoring, the Extract
Method. This approach is based on probabilistic techniques for
improving the software maintainability. [A20] introduces a tool
called GEMS that recommends a unique refactoring. This approach
provides a ranking of refactoring opportunities to apply the Extract
Method aiming at improving quality attributes of source code. [A21]
is an approach that recommends a unique refactoring and has as
goal the recommendation of the Extract Method for improving the
software maintainability. [A22] presents an approach that recom-
mends a unique refactoring. This approach based on the analysis
of 102 metrics aims at improving the structure of source code.

3 ANSWERS FOR RESEARCH QUESTIONS
RQ1 -Which relationships between Machine Learning and Refacto-
rings Recommendations are explicitly discussed in the literature?
We divided RQ1 in three sub-questions RQ1.1, RQ1.2 and RQ1.3.
RQ1.1 - Which refactorings have been investigated?

Table 2 shows the 32 refactorings addressed in the final set of
papers; 22 were proposed by Fowler and 10 by other authors. Some
refactorings are known by different names, so they are grouped
and separated by a bar. As can be seen, Extract Function (aka Extract
Method) and the Move Function (aka Move Method) are the two
most investigated refactorings, researched by 13 and 8 approaches
respectively. According to the authors, Extract Method is widely
used in literature to solve different issues like reducing code dupli-
cation, removing the Long Method and Feature Envy code smell. In
this regart, Silva et al. [44] stated that Extract Method is the most
versatile refactoring that serves for 11 different purposes.

Besides the most investigated refactorings, it is also important to
be aware of the least investigated ones. Out of Fowler’s catalog of
67 refactorings, 45 did not appear in our final set, which accounts
for 67% of the catalog. If we expand this analysis by counting the
refactorings that do not appear plus the ones that appear just once
(nine ones), this percentage grows to 81%, corresponding to 54
refactorings from 67. Therefore, a lot of effort is concentrated on
just two or three refactorings, and around 54 are left out.

It is difficult to precise about why some refactorings are little
researched. Some reasons can be the unpopularity of such refactor-
ing or the lack of metrics/tools able to detect them. Regardless of
the reason, it is clear that some refactorings are more challenging

Table 2: Refactorings addressed by the selected papers

Fowler Refactorings
Refactorings #N Approaches (A#)

Extract Function/ Extract Method 13 [A01],[A02] [A03], [A04], [A05],
[A10], [A11], [A13], [A15], [A19],
[A17], [A20], [A21]

Move Function/ Move Method 8 [A04],[A05], [A06], [A08],[A11],
[A12], [A15], [A18]

Pull Up Method 6 [A04], [A05], [A08],[A11], [A13],
[A15]

Extract Superclass 4 [A04], [A05], [A08], [A11]
Push Down Method 4 [A04], [A05], [A08], [A11]
Rename Function /Rename Method 4 [A04], [A05], [A08], [A11]
Move Field 3 [A04], [A05], [A08]
Pull Up Field 3 [A04], [A05], [A08]
Push Down Field 3 [A04], [A05], [A08]
Extract Class 3 [A05], [A08], [A11]
Replace Type Code with Subclasses / Ex-
tract Subclass

3 [A05], [A08], [A11]

Encapsulate Variable /Encapsulate Field /
Self-Encapsulate Field

2 [A04], [A05]

Inline Function 2 [A04], [A11]
Rename Field 1 [A08]
Introduce Parameter Object 1 [A13]
Preserve Whole Object 1 [A13]
Replace Function with Command / Replace
Method with Method Object

1 [A13]

Replace Temp with Query 1 [A13]
Substitute Algorithm 1 [A13]
Extract Variable 1 [A11]
Inline Variable 1 [A11]
Rename Variable 1 [A11]

Refactorings proposed by other authors (non-Fowler Refactorings)

Refactorings #N Approaches (A#)

Rename Class 2 [A04], [A11]
Extract Interface 2 [A04], [A11]
Move Class 2 [A08], [A11]
Increase-Decrease Field Security 1 [A05]
Increase-Decrease Method Security 1 [A05]
Extract Associated Class 1 [A08]
Decomposition objects 1 [A07]
Removing Relations 1 [A09]
Removing Classes 1 [A09]
Adding Classes 1 [A09]

to recommend than others. For example, the refactorings Rename
Class and Introduce Parameter Object are very little investigated.
In the case of Introduce Parameter Object, the reason for being
little research may be the lack of low-level metrics (parameter level)
able to detect/characterize the problem. The analysis should reveal
that a set of method parameters should be encapsulated in a new
class. This requires a semantic analysis to discover which are the
parameters and whether they make sense or not by putting them
as fields of a new class; a challenging task.

The approaches [A07], [A14], [A16], and [A22] have been omit-
ted from Table 2 because they do not provide specific Fowler/
non-Fowler refactorings. These approaches identified components
(Classes or Methods) and recommended them to be refactored.

RQ1.2-Which ML algorithms have been used to recommend refac-
torings?

Table 3 presents the ML models and algorithms that appear in
the final set of papers. Remarkably, the most employed learning
process is Supervised Learning involving 28 algorithms. Answer-
ing the RQ1.2, the most used algorithms are: Random Forest (RF)
researched by 11 approaches; Logistic Regression (LR) researched
by 9 approaches; and Support Vector Machine (SVM) researched
by 8 approaches. Note that some approaches have employed more

On the Employment of Machine Learning for Recommending Refactorings SBES’24, September 30 – October 04, 2024, Curitiba, PR

than one algorithm. For example, the approach [A01] makes use of
9 different Supervised learning algorithms.

The motivation behind the election of some algorithms over
others is not clear. Some authors explain their choices, for [A01],
the authors selected the 9 algorithms because they considered that
these models are lightweight and efficient, which can further be
integrated into IDE for interactive refactoring by users.

In the case of [A04], the authors select the algorithms (SVM, RF,
LR, and DT) because of the classification problem addressed and the
effectiveness of the algorithms. For [A06], the authors employed the
SVM because of its effectiveness in code smell detection problems.

In the same way, the authors of [A13] use only Naive Bayes
because it over performance other supervised ML algorithms with
less training data. Finally, in the case of [A03], the authors claim that
the Convolutional Neural Network (CNN) proved to be overcome
at selecting useful features and building complex mapping from
input to output automatically.

Table 3: Algorithms used by the selected papers

L.P. Algorithm #A Approach

Su
pe
rv
ise

d

Random Forest (RF) 11 [A01], [A02], [A04], [A06],
[A10], [A11], [A15], [A16],
[A17], [A19], [A22]

Logistic Regression (LR) 9 [A01], [A04], [A16], [A06],
[A07],[A10], [A11], [A20],
[A22]

Support Vector Machine (SVM) 8 [A01], [A04], [A06], [A10],
[A11], [A12], [A20], [A22]

Naïve Bayes (NB) 7 [A01], [A16], [A06], [A10],
[A11], [A13], [A17]

Decision Tree (DT) 6 [A01], [A04], [A06], [A07],
[A10], [A11],

Least-squares support-vector machine
(LSSVM)

4 [A16], [A07], [A22], [A22]

K-nearest neighbors (KNN) 4 [A01], [A07], [A15], [A20]
Bayesian Network (BN) 4 [A09], [A16], [A22], [A22]
Gradient Descent (GD) 3 [A16], [A06], [A08]
Gradient boosting classifier 2 [A19], [A20]
AdaBoost 2 [A16], [A17]
Extreme Gradient Boosting 2 [A01], [A06]
Multinomial naive bayes (MNB) 1 [A04]
Bagging 1 [A15]
LogitBoost 1 [A16]
J48 1 [A22]
C4.5 1 [A17]
Sequential minimal optimization 1 [A17]
ForestPA 1 [A15]
Convolutional Neural Network 1 6 [A01], [A03], [A04], [A06],

[A11], [A18]
Artificial Neural Network (ANN)1 2 [A16], [A07]
Levenberg Marquardt Algorithm1 2 [A16], [A06]
Radial Basis Function Network 1 2 [A16], [A06]
Gated Recurrent Units Recurrent Neural
Network (GRU) 2

2 [A06], [A14]

Long Short Term Memory Recurrent
Neural Network (LSTM) 2

2 [A01], [A06]

Deep neural network model 2 1 [A08]
Extreme Learning Machine 2 1 [A07]
Multilayer Perceptron 1 1 [A16]

Un
-

su
pe
rv
ise

d Clustering Ensembles with Pareto-front 1 [A05]
Density-based algorithm 1 [A15]
Clustering + Algorithm NSGA-II 1 [A05]
Clustering + Genetic Algorithm 1 [A05]

1 Artificial Neural Network 2 Deep Learning Models

Regarding the most researched algorithms. There are many rea-
sons why Random Forest (RF) is one of the most-used algorithms

mainly due to its simplicity and diversity. In the context of refactor-
ing recommendations, where large volumes of information, char-
acteristics, and diversity of domains are necessary, RF has demon-
strated its robustness to deal with high dimensional data and correla-
tion between features, besides presenting further strong advantages
by its ability to deal with outliers.

RQ1.3 -How datasets and features can be classified?
To answer this RQwe performed two analyses. The first provided

a classification for the datasets and the second provided a classifi-
cation for the features of the datasets. In the first we classified the
datasets in two types:

1) Code Smell-based (CS): the instances/samples of the dataset
are methods/classes that have a code smell. These instances are
extracted from the current version of the project, so previous project
commits are not considered. This type makes the ML model able to
identify just code smell issues.

2) Refactoring-based (RB): Themodel trainedwithmethods/classes
sample that underwent refactorings in the past commits. Thus, the
trained instances remain in the project history and are extracted
using mining tools. In this case, it is expected that the trained model
can identify a broader spectrum of refactoring opportunities; code
smells, and any other situation that a refactoring can be applied to.

Table 4 shows in the last column the Dataset type (DT). It is
noticeable that 15 approaches (representing more than 68%) use
RB-datasets. An interesting point is the pattern between the 15
approaches. Half of them explore the history of the projects for
Extract Method refactorings [A01], [A02], [A03], [A10], [A11],
[A17], [A19], [A20] and [A21]. On the other hand, the approaches
[A04], [A07], [A13], [A14], [A16], and [A22] choose as samples the
Methods/Classes that underwent any type of refactoring. These
approaches aim at building generic refactoring recommendations.

Table 4 also shows the column called "extraction tool" and "Label"
to shed light on the tools used and the additional efforts invested in
building the dataset. For the value "NA" (no apply), it means that the
authors did not utilize tools/ techniques for extracting the values
for the features, i.e, they have used a ready and already populated
dataset available in the literature. In the case of [A01], the authors
use the Silva dataset [44] and Xu dataset [53]. For [A09], the au-
thors use the Fontana dataset [10] and the Palomba dataset [34]. In
the case of [A10], the authors use part of the Aniche et al. dataset
[A11]. The approaches [A07], [A13], [A14], [A16] and [A22] use the
Dataset Tera-promise, which is a well-known repository in litera-
ture composed of source code metrics and refactorings extracted
from two successive releases of 7 open source Java projects.

The second analysis was focused on classifying the features
of the datasets. Thus, we have identified 5 type of features: C1 -
Model Metrics. It encompasses metrics extracted from UML dia-
grams and graph models like Probabilistic graphical model (PGM).
For example, for UML metric: number of generalizations, number
of associations, and number of classes; for PGM metric: Depth of
inheritance tree and number of relations between classes; C2 -
Source Code Metrics. It is about the well-known metrics of com-
plexity, coupling and cohesion. For example: Lines of code (LOC),
response for class (RFC), and coupling between objects (CBO); C3 -
Tool-based information. It encompasses information extracted
from the issue tracker like Jira framework as summary, description
and status; and Github information as quantity of commits, commit

SBES’24, September 30 – October 04, 2024, Curitiba, PR G. Angulo et al.

Table 4: Dataset features by the selected papers

App. C1 C2 C3 C4 C5 Metric Extraction Tool Lbl. D.T.
[A01] ! NA NA RB
[A02] ! Autoencoder technique A RB
[A03] ! Non-specified A RB
[A04] ! Python Natural Language Pro-

cessing Toolkit/Codacy tool
A RB

[A06] ! ! SRCML, ASTMiner and DE-
PENDS tools

A CS

[A07] ! NA NA RB
[A08] ! SDMetrics tool M CS
[A09] ! NA NA CS
[A10] ! NA NA RB
[A11] ! ! SourceMeter A RB
[A12] ! ! code2vec technique A CS
[A13] ! NA NA RB
[A14] ! NA NA RB
[A15] ! Java Development Tool (JDT) NS CS
[A16] ! NA NA RB
[A17] ! ! MCIDiff M RB
[A18] ! ! Distance Metric and Word2vector

Technique
A CS

[A19] ! Non-specified M RB
[A20] ! Proprietary Algorithm for Ex-

tracting code features
A RB

[A21] ! H. Murakami technique A RB
[A22] ! NA NA RB
Lbl→ A: Automated M: Manual NS: Non-Specified NA: Non-Applied
D.T.→ CS: Code Smell - based RB: Refactoring - based

message, and date; C4 - Semantic information Metrics. It com-
prises metrics related to the extraction of relationships between the
source code. For example: the relation between the method names
and class names; and finally C5 - Project HistoryMetrics. Metrics
that encompass project versions. The intuition is that a project’s
evolution history may imply its future evolution. For example: “a
percentage of change commits among all commits”.

Table 4 shows the type of features in the dataset (C1 to C5). It
is remarkable that C2 (Source Code Metrics) emerges as the most
prevalent category with 16 out of 22 approaches, representing more
than 72%. We claim this category is the most researched because
these metrics allow developers to identify code smells and to im-
prove the quality attributes, topics that have been widely investi-
gated in literature. Regarding the C5 group, only 1 approach use the
information about the history of the project. Thus, [A18] incorpo-
rated this type of metrics because the authors claim that a project
evolution history may imply its future evolution. The intuition is
that if a component suffers with refactorings repetitively, it may
imply this component is a strong candidate to be refactored again.

RQ2-Does the way the approaches are evaluated depend on the au-
tomation level of them?

This question is broken down in two sub-questions RQ2.1 and
RQ2.2 aiming at describing the two main concepts involved: the
evaluation method and the automation level of the approaches. So,
Table 5 was elaborated to understand how the approaches have
performed the evaluation. In the first column there is the Approach
ID; from the second to the fifth there are the evaluation types (I, II,
III or IV); in the sixth one the abstraction level of the evaluation;
the seventh one shows the result of the evaluation for the type of
evaluation II and III; the eighth one shows the limitation of the
evaluation and the last one shows the Automation level.

RQ2.1-How have the approaches been evaluated?
We identified 4 evaluation methods in the final set of papers:

(I) Comparison with others state-of-the-art approaches/tools.
The evaluation consists in comparing the performance of the ap-
proach with other similar approaches and/or tools;
(II) Evaluation of the classifiers. It is a kind of internal evaluation
where the goal is to identify the best classifier among the classifiers
used in the approach;
(III) Evaluation of one Classifier. Another kind of internal vali-
dation. In this case, the authors evaluated the performance of the
only one classifier used in the approach;
(IV) Controlled Experiment. This evaluation involves a group
of participants whose goal is to evaluate the usefulness of the ap-
proach/tool when compared with other approach/tools.

In Table 5, we can realize that 14 approaches, representing 73% of
the total, applied the evaluation type II and III. As was mentioned,
this type of evaluation attempts to identify the best classifier. In
this regard, the column "Evaluation Result" shows that among all
the evaluations the models with better performance are SVM, NB
and AdaBoost, despite presenting different evaluation conditions.

We believe that SVM outperforms other classifiers due to the
following reasons: i) handling high dimensional, SVM employs
overfitting protection and has the ability to learn which can be
independent from the dimensionality of the feature space and ii)
handling problems with sparse instances and dense concepts.

For type IV, controlled experiments, only five approaches [A01],
[A03], [A05], [A06] and [A10] conducted this evaluation method.
These experiments focused on evaluating the usability and effec-
tiveness of the proposed tool/approach. In the case of [A01], the
authors conducted a study with 10 experienced participants to
evaluate the usefulness of the tool called REMS. Thus, the refactor-
ing recommendations generated by different tools are shown for
the participants and they must evaluate the recommendations and
complete a questionnaire. In the case of [A03], the authors make
available the plugin of AntiCopyPaster tool and a video demonstrat-
ing how to use it. Then, they ask about the usefulness, usability, and
functionality of the proposed tool through a 21-question survey.

In the case of [A05], the evaluation measures the user’s percep-
tion of how meaningful the recommended refactorings are com-
pared to the other tools. Besides, it measures the time (T) that
developers spent to identify the best refactoring strategies and the
number of interactions. Finally, in [A06], the participants were pro-
vided with the source code of the FreeMind project and a list of
refactoring solutions generated by four different tools. Then, the
authors asked the participants to complete a questionnaire about
the refactoring tools and their solutions. For the case of [A10], the
authors elaborated a 30-question survey and ask 5 engineers seniors
to decide whether or not s/he would refactor that method.

On the Employment of Machine Learning for Recommending Refactorings SBES’24, September 30 – October 04, 2024, Curitiba, PR

Table 5: Evaluation and automation of approach in the selected papers

ID I II III IV Level Evaluation Result (II and III) Limitation Automation

[A01] ! ! ! Method The KNN outperformed the other 8 classifiers. The combination
with CodeBERT embedding technique shows a better performance

The small size of the dataset can compromise the result of the trained
model.

Semi-Aut

[A02] ! Method The comparison was against the state-of-the-art approach from
Aniche et al. [11], taking as baseline the random forest model.

Other existing approaches in the literature are not used for compar-
ison.

Semi-Aut

[A03] ! ! Method Convolutional Neural Network, Random Forest and Support Vector
Machine are the models with better performance

The authors only use Convolutional Neural Network (CNN) for
their propose approach.

Fully-Aut

[A04] ! ! Class/Method/
Attribute

For binary Classifier MNB outperformed the rest of the classifiers.
For Multilabel Classifiers, SVM had the best performing classifier.

The proposed approach is compared with its previous version Semi-Aut

[A05] ! ! Class/Method/
Attribute

The authors conduct a experiment where developers manually eval-
uate solutions to estimate the relevance of refactorings.

No measures or internal quality indicators for estimating the rele-
vance of refactorings were used.

Fully-Aut

[A06] ! ! ! Method The authors train classifiers with various embedding techniques.
The Code2Vec+SDNE (CV+SN) embedding technique with NB
(Naive Bayes) was the most effective combination.

Deep learning classifiers do not perform as well as the authors
expected in recommending move method refactorings. The authors
believe this is cause by type of the data.

Semi-Aut

[A07] ! Class The MVE (maximum voting ensemble) with upsampling shows a
better performance when compared with the other classifiers in the
proposed approach.

PROMISE is a well-known and widely used dataset in this context.
A comparative evaluation with other approaches/tools could be
conducted to demonstrate the performance.

Semi-Aut

[A08] ! Class (Model) The authors show that with the use of deep neural network it is
possible to detect models as flawed by functional decomposition
(FD) with a precision of 0.87.

The evaluation focused on the identification of the FD and does not
make it clear how to apply the recommended solution, what is the
order of application and where it should be applied.

Semi-Aut

[A09] ! Class The approach was compared with the work of Di Nucci et al. The authors only use Bayesian networks model. Semi-Aut
[A10] ! Method The survey consists of 30 questions. Additionally, the authors per-

formed a comparison between Datasets.
The paper is a case study within a single organization, ING, a large
financial organization.

Semi-Aut

[A11] ! class, method,
and variable-
levels

Random Forest has the highest overall accuracy among all the 6
models

The approach is only intended to compare the models, and not to
solve any problem or provide any recommendations.

Semi-Aut

[A12] ! Method Datasets: JMove’s dataset and MoveMethodDataset The authors only use SVM classifier. Semi-Aut
[A13] ! Method Three Naïve Bayes classifiers were used (GNB, MNB, BNB) and the

BNB presented the best performance in terms of AUC and Accuracy.
In this study, the author only use Naive Bayes and do not experiment
with other classifiers.

Semi-Aut

[A14] ! Class Compares the performance of GRU classifiers using balanced and
imbalanced datasets. The balanced one had the best performance.

In this study, the author only use GRU and do not experiment with
other classifiers.

Semi-Aut

[A15] ! ! Method ForestPA and RF achieved the best results among all the classifiers. The Dataset used for evaluation are small. Semi-Aut
[A16] ! Method AdaBoost and ANN+GD classifiers outperformed the other classi-

fiers. In addition, the authors show that using balance techniques
can produce statistically significant differences in performances.

PROMISE is a well-known and widely used dataset in this context.
A comparative evaluation with other approaches/tools could be
conducted.

Semi-Aut

[A17] ! ! Method AdaBoost suggests clones for refactoring with high accuracy. Comparison with an only one approach developed in 2014. Semi-Aut
[A18] ! Method The destination part of the recommendation was evaluated, i.e., the

correct identification of the target class.
The Dataset was generated artificially, i.e., all the Feature Envy smell
were made moving the methods manually.

Semi-Aut

[A19] ! Method Dataset: 5 open source software projects Dataset small, composed by only 267 Extract Method instances. Semi-Aut
[A20] ! ! Method GB classifier presents better performance of the others. The Dataset used for evaluation was small - only 267 instances. Semi-Aut
[A21] ! Method SVM has high Precision, but lower Recall. On the other hand, the

algorithms based on decision tree (J48 and RandomForest) record
over 89% for both of Precision and Recall.

There are other approaches/tools in the literature that recommend
the "Extract Method" and it would have been interesting to observe
the performance of the proposal compared to them.

Semi-Aut

[A22] ! Class The authors demonstrated that LS-LSM RBF kernel variant outper-
forms linear and polynomial kernel.

In this study, the author only one classifier Least Squares Support
Vector Machines (LSSVM).

Semi-Aut

Table 6: Tools used in evaluation type I

#P Approach

To
ol

N
am

e JDeodorant 7 [A01], [A05], [A06], [A12], [A19], [A18], [A20]
JMove 3 [A06], [A12], [A18]
JExtract 3 [A01], [A19], [A20]
SEMI 2 [A01], [A20]
PathMove 1 [A06]
GEMS 1 [A01]
Segmentation 1 [A01]

U
nk

no
w
n
to
ol

Wang and Godfrey 2 [A15][A17]
Charalampidou et al. 1 [A04]
Ouni et al. 1 [A05]
Mkaouer et al. 1 [A05]
Alizadeh et al. 1 [A05]
FR-Refactor (Nyamawe et al.) 1 [A04]
CREC (Yue et al.) 1 [A15]
Di Nucci et al. 1 [A09]
Aniche et al. 1 [A02]

Regarding Type I, comparison with others tools, the goal is iden-
tifying the tools used by the approaches. We elaborated the Table
6 that shows the distribution of some well-known tools and other
unknown tools (we have included the authors’ names for identifica-
tion). It is noteworthy that JDeodorant [18] is the most used tool. It
is able to identify five kinds of bad smells and resolve them, recom-
mending and applying refactorings. Other popular tools are JMove

[48] and Jextract [43] used by 3 approaches. Regarding unkwnon
tools, the approach of Wang and Godfrey [51], which focuses on
recommending code clones, serves as a baseline for comparison by
[A16] and [A18].

RQ2.2-What is the automation level of the approaches?
To classify our final set we took into consideration the works of

[7] and [46], but we have extended the classification given by them.
Therefore, our classification consider the following ones:

- Fully automated. The approach involves a tool which is able
to identify the refactoring opportunity, provides the recommenda-
tion to the developer and also allows the developer to apply the
refactoring.

-Partial/semi automated. The approach does not have a tool in-
tegrated in an IDE. The steps are usually performed in steps/phases
using trained classifiers.

Table 5 shows the automation level of the approaches, 20 of the
22 papers in the final set do not provide any support to guide the
developer in the refactoring process, which means than 90% of the
approaches are Semi-Automated. The only two approaches that
provide fully automated support are [A03] and [A05], providing
the support for identifying the refactoring opportunities. [A03]

SBES’24, September 30 – October 04, 2024, Curitiba, PR G. Angulo et al.

presents an AntiCopyPaster plugin that monitors the introduction
of potential duplicate code and recommends its refactoring using
the IDE’s Extract Method feature. [A05] presents DOIMR tool that
allows the interaction with developers. The tool shows a list of refac-
toring recommendations solution and the developer can evaluate
them based on their preferences.
RQ3-Have the approaches concerned with the quality of the recom-
mendations?

This RQ aimed to analyze to what extent the approaches have
concerned with the quality of the recommendation they provide
from the developer point of view. We consider a high-quality rec-
ommendation one that gives the developers all the information
they need to decide whether to accept the recommendation or not.
In this paper we prefer to use the term "complete" for classifying
the recommendations [38]. We have devised our own definition of
"complete" to enable a meaningful comparison of the approaches.
This was necessary because the approaches differ substantially in
terms of the recommendation quality. While some recommenda-
tions are quite complete, providing software engineers with detailed
information, others lack in details, suggesting just the name of a
refactoring or the place in the source code where the refactoring
must be applied.

From our perspective, if a refactoring recommendation satisfies
our criterion, we consider it as complete, meaning that the rec-
ommendation includes all necessary information to support the
user. Therefore, to facilitate the analysis of the completeness of rec-
ommendations, we introduce a classification criteria named W3B
(Which,Where,Why and Benefits), explained below:
WHICH: This involves a precise identification of which refactor-
ing(s) should be applied, specifying the name of the refactoring,
such as Extract Method or Inline Function. Some approaches rec-
ommend a single refactoring at a time, while others suggest an
ordered sequence of refactorings.
WHERE: This entails a clear identification of where the refactor-
ing must be applied, indicating the specific part(s) of the source
code (e.g., method, field, class, parameters) requiring modifications.
The where element is complex, involving sub parts dependent on
the recommended refactoring.
WHY: This involves a clear explanation of why a particular refac-
toring was recommended. The easiest way of thinking about this
is asking "WHY the refactoring R was recommended?". The an-
swer must elucidate the features that contribute the most to the
model decision. From a developer’s point of view, it is crucial to
clarify why such a refactoring was recommended. Consequently, a
recommendation should convey this information explicitly, such
as: ”This refactoring is being recommended because this piece of code
(method/class) has a cohesion around X and a coupling with n other
classes”. The provision of a transparent explanation is crucial for
users to comprehend and trust ML recommendations, and this
objective can be achieved through the application of Explainable
Artificial Intelligence (XAI) techniques [17].
BENEFITS: This involves a clear identification of the benefits re-
sulting from applying the refactoring. This element must anticipate
to the developer the advantages/benefits of the new state of the
source code, i.e., after the application of the refactoring.

We have used the criterion W3B for comparing the approaches
of our final set. Table 7 shows in the first column the ID of the

approach, in the second one the ID of the paper and from the third
column to the sixth the W3B elements - which, where, why and
benefits. The last column denotes whether the approach covers all
criteria points, marked accordingly. It is evident that approaches
[A01], [A03], [A05], [A06], [A09], [A12], [A17], [A18], [A19], and
[A20] have successfully identifiedWhich refactorings should be
recommended and provided comprehensive insights into the precise
Where these refactorings should be applied. This means that 45%
of the approaches minimally identified these two elements of the
criterion, with the majority of them offering recommendations that
involve only a single refactoring.

Regarding the Where element, the term “Complete” or “Incom-
plete” depends on the type of refactoring recommended. In the case
of the approaches [A04] and [A08], they do not point out the source
code component where the refactoring must be applied, leaving
this tedious task to the developers. It is interesting to mention that
in the approach [A04] (papers [S04], [S12] and [S19]), the authors
recognize this weakness and suggest using another tool to complete
this part of the recommendation.

In the case of approaches [A07], [A14], [A16], and [A22] the
approaches do not identify theWhich element. So, the approaches
focus on the identification and recommendation of the component
(method or class) that must be refactored, providing a more general
and wide recommendation. On the other hand, the lack of identifi-
cation of theWhich element affects directly the completeness of
the Where part because as we said before, the sub elements inside
the where depends on the type of refactoring.

Regarding the Why, only approaches [A03] and [A05] show the
reasons behind the recommendation. The [A03] shows a pop-up
notification at the bottom of the screen, alerting the developer of
the opportunity to apply "Extract Method", explaining the reason
why this refactoring must be conducted. On the other hand, the
[A05] uses interactive tables and charts alongside extensive analysis
to explain the recommendation. As can be observed, almost 90% of
the papers do not explain the rationale behind a recommendation.

Finally, regarding the Benefits for applying the refactoring rec-
ommended, it is observable that 11% approaches [A01], [A03], [A06],
[A08], [A09], [A12], [A13], [A15], [A17], [A19] and [A18] aim at
solving a code smell. Refactoring and smells have been well re-
searched by the software-engineering research community these
past decades. Several secondary studies have been published about
the relationship between the code smell and the refactoring that can
resolve it. So it is expected to observe this relationship in our final
set of articles. Another benefit is "improve software maintainabil-
ity" researched by 6 approaches [A07], [A14], [A16], [A20], [A21],
[A22]. This goal is a generic and broad one because the authors
do not make it clear specifically which characteristics related to
maintenance they want to improve.

Importantly, based on the reviewed approaches, only the ap-
proaches [A03] and [A05] achieve the criterionW3B, which means
that more than 90% of the approaches do not have the elements to
be considered complete. Our results provide evidence that there
is a lack in the refactoring recommendation area and at the same
time it opens up new opportunities for future works.

On the Employment of Machine Learning for Recommending Refactorings SBES’24, September 30 – October 04, 2024, Curitiba, PR

Table 7: W3B Criterion - Rules for Complete Recommendations

ID Paper Which refactoring is recommended Where Why Benefits W3B

[A01] [S01] Extract Method Complete Undefined Solving Duplicated Code, Feature Envy and Long Method ✗

[A02] [S02] Extract Method Incomplete Undefined Undefined ✗

[A03] [S03] Extract Method Complete Pop-up notifica-
tion

Solving Code clone smell !

[A04] [S04]
[S12]
[S19]

Extract Interface, Extract Method, Extract Superclass, InlineMethod,
Move And Rename Class, Move Attribute, Move Class, Move
Method, Pull Up Attribute, Pull Up Method, Push Down Attribute,
Push Down Method, Rename Class, Rename Method,

Undefined Undefined Adapting the system for new requirements; improve code cohesion
and keep the conformity to OOP principles

✗

[A05] [S05]
[S17]
[S20]

Extract Class, Extract SubClass, Extract SuperClass, Extract Method,
Move Method/Field, PullUp Field, PullUp Method, PushDown
Field/Method, Encapsulate Field, Increase Field Security, Decrease
Field Security, Increase Method Security, Decrease Method Security

Complete Graphical charts
and tables

Improving quality attributes QMOOD, in terms of Reusability, Flexi-
bility, Understandability, Functionality, Extendibility, Effectiveness.

!

[A06] [S04] Move Method Complete Undefined Solving Feature Envy ✗

[A07] [S07] Undefined by the authors Incomplete Undefined Improve the software maintainability. ✗

[A08] [S08] Move Operation, Move Attribute, Extract Class, Extract Associated
Class, Extract Subclass, Extract Superclass, Pull Up Operation, Pull
Up Attribute, Push Down Operation, Push Down Attribute, Rename
Class, Rename Operation, Rename Attribute.

Undefined Undefined Identifying Functional decomposition in UML diagrams. ✗

[A09] [S09] Remove relations, Remove classes and Add classes Complete Undefined Solving God Class, Data Class, Feature Envy, Complex Class,
Spaghetti Class, and Speculative Generality.

✗

[A10] [S10] Extract Method Incomplete Undefined Undefined ✗

[A11] [S11] Extract Class, Extract Subclass, Extract Super-class, Extract Inter-
face, Move Class, Rename Class, Move and Rename Class, Extract
Method, Inline Method, Move Method, Pull Up, Push Down Method,
RenameMethod, Extract AndMove Method, Extract Variable, Inline
Variable, Rename Variable.

Incomplete Undefined Undefined ✗

[A12] [S13] Move Method Complete Undefined Solving Feature Envy smell; reducing the coupling between classes ✗

[A13] [S14] Extract Method, Pullup Method, substitution Algorithm, Replace
Temp with Query, Introduce parameter Object, Preserve the whole
object, Replace method with method object, decomposition objects

Incomplete Undefined Duplicate code and Long Method code smells ✗

[A14] [S15] Undefined by the authors Incomplete Undefined Improve the software maintainability; ✗

[A15] [S16] Move Method, Pull up Method, Extract Method Incomplete Undefined Solving code clone type I, II and III ✗

[A16] [S18]
[S21]

Undefined by the authors Incomplete Undefined Improve the software maintainability ✗

[A17] [S22] Extract Method Complete Undefined Solving Code clone smell ✗

[A18] [S23] Move Method Complete Undefined Solving Feature Envy code smell ✗

[A19] [S24] Extract Method Complete Undefined Long Method smell ✗

[A20] [S25] Extract Method Complete Undefined Improving the software maintainability and source code readability ✗

[A21] [S26] Extract Method Incomplete Undefined Improving the software maintainability ✗

[A22] [S27] Undefined by the authors Incomplete Undefined Improve the software maintainability ✗
1 Undefined = The authors do not explain this element for their recommendations.

4 DISCUSSION
Our results let emerge some topics worth further discussion:
Refactoring researched - Extract Method - Table 2 shows that the
three most researched refactorings are: Extract Method, Move
Method, and Pull-upMethod. The high interest in these refactorings
may indicate their importance in the industrial sector and suggest
that these activities are more frequently applied in practice than
other activities. In addition, we realized that most of the refactoring
proposed by Fowler (45 out of 67 refactoring) was not considered in
any of the papers in our final set. This result shows a gap between
the refactoring practice and the research in the area of identifying
refactoring opportunities.
Supervised learning techniques are favored over unsupervised learn-
ing techniques - This numerical superiority is due to the nature
of recommendations. To recommend refactorings it is necessary
to learn how to identify the refactoring opportunity. In literature,
extensive research has been conducted on this topic exploring dif-
ferent indicators such as code smell and software qualities. Thus,
there is a vast amount of information that can be used to set up a
data repository. Another important element is the apogee in mining
tools such as Rminer[49] and Rdiff [45] that allow the extraction of
past refactorings, helping to build a reliable and solid Dataset.
The nature of the datasets impact in the refactoring opportunities -
Regarding the type of Datasets (Refactoring-based (RB) and Code
smell-based (CS)), we believe an important difference between the

samples/instances of an RB over CS is the potential valuable infor-
mation that can be explored. Classifiers trained with refactoring-
based datasets have the advantage of identifying a wider range of
refactoring opportunities. However as the instances, and all feature
values for them, must reflect a snapshot before the application of
a refactoring, it is harder to do the data collection and processing
before populating the dataset. Features explorer in Datasets - The
results reported in Table 4 show that the most frequent group of
features used to comfort the Dataset are the source code metrics.
Clearly, the features used are concentrated on static analysis. This
observation indicates that there is a gap in the use of other kinds of
metrics. Researchers are encouraged to explore different sources of
features and to compare if the trained model with other non-classic
features improves their prediction.
Lack of mature tools - Over 80% of the reviewed articles indicate
manual evaluations as the prevailing method. Authors typically
employ a single dataset to train multiple ML, comparing their accu-
racy. The lack of consensus among authors on the best algorithm
is attributed to factors like problem specifics, data characteristics,
size, and additional techniques employed, such as data balancing
and embedding techniques. Conversely, just two papers propose an
automated approach with tool support, but the adoption of these
tools in the software engineering industry is hindered by the lack
of mature supporting tools, as shown in Table 5.

SBES’24, September 30 – October 04, 2024, Curitiba, PR G. Angulo et al.

Low alignment with the W3B criterion - Our analysis using the W3B
criterion showed that formulating a complete recommendation is a
complex task. So, 90% of the reviewed approaches do not provide a
complete recommendation. The quality of a recommendation has
a total impact on whether it will be accepted or not. Studies [37]
[5] indicate that users do not accept refactoring recommendations
because they do not explain why they should be applied or what
the benefits they will bring to the system. It may cause the rejection
of the recommendation and the loss of all the benefits it brings.

An interesting challenge is regarding the Benefits element. Al-
though all approaches have a broad goal defined, each recommenda-
tion should provide a clear identification of the benefit of applying
that refactoring. That is, the broad benefitmust be broken down into
specific benefits. For example, a recommender system’s overarching
objective might be to enhance method cohesion. However, the same
system could suggest the Extract Method refactoring to enhance
the testability of that method or recommend other improvements.
This poses a challenge, particularly in supervised learning, where
the training dataset should encompass features that differ from
conventional ones.

5 THREATS TO VALIDITY
Internal validity: All relevant papers were retrieved using the
search strings across major databases and through snowballing
techniques from reference lists. We covered seven key publication
venues, including general databases like Scopus and specific ones
like IEEE.
External validity: The collected papers are constrained primarily
to academic works, limiting generalizability to industry contexts
despite providing a solid foundation for academic insights.

6 RELATEDWORKS
In this section, we categorize the related works into two groups.
The first group encompasses a wide spectrum of secondary studies
related to refactorings [13] [2]. For example, Abid et al. [2] provided
an overview of the last 30 years of research on software refactorings.
They classified the approaches based on different criteria such as:
refactoring life-cycle (included recommendation and prediction);
refactoring objectives (included to improve internal or external
software quality); refactoring techniques (included ML algorithms);
and evaluation strategy. This study differs from ours since it is
broader and the focus is on the classification of various refactoring
techniques using a taxonomy proposed by the authors.

In the second group we consider studies that deal with the use
of ML for smells identification. These works stand out as the most
extensively researched in the literature [21] [3] [12]. Ahmed et al.
[3] performed a SLR on the use of ML to detect code smells from
different perspectives: i) the smells employed in the experiments;
ii) the types of ML techniques; iii) a comparison between these
models in terms of prediction accuracy and performance; iv) the
datasets and features used and v) the tool utilized to implement the
ML models. At the same way, Azeema et al. [12] also conducted a
SLR focused on: i) the code smells and the ML technique employed;
ii) the evaluation strategy applied; iii) the features used in dataset
and the iv) performance meta-analysis. Another interesting work
was done by Manpreet et al. [21]. They dedicated their SLR in the

use of ML in research related to code clones code smell. The studies
of the second group differ from ours as they are focused on code
smells or code anomalies (anti-patterns, bugs, etc), i.e., they are
concentrated on the problem space. Besides, the general focus of
these works are on the ML pipeline and on the accuracy analysis
of ML models. Our work is devoted to analyze the consequences of
using ML on the refactoring/solution space, including the quality
characteristics of the recommendations.

7 CONCLUSION AND FUTURE DIRECTIONS
This paper reports a SLR on the use of ML in the context of refac-
toring recommendations. A total of 177 potential articles were
identified in five scientific digital libraries in the period from 2015
and 2023. After screening the articles, our final set resulted in 27
papers, of which we grouped them in 22 approaches.

The results of the SLR reveal a significant interest in providing
complete refactoring recommendations for users, despite it being a
difficult task due to its subjective nature. Based on the 27 selected
papers, we identified a criterion called W3B focused on four key
aspects of Refactoring recommendationWhich,Where,Why and
Benefits. Using this criterion, we analyzed the final set of approaches.
As a result, the approaches [A03] and [A05] are the only ones that
provide a complete recommendation, achieving four elements of
criterion. Thus, 40% of the approaches (9 approaches) achieves only
3 element and the remaining approaches, more than 60%, complete
less than 3 elements of the criterion. This result is important as it
opens several possibilities for future work.

A critical area needing more attention is the data used to con-
struct datasets, categorized into refactoring-based and code smell-
based types. Emphasizing learning from past refactoring instances
is more insightful but often requires external mining tools and is
time-consuming. Future work should compare these dataset types
and identify optimal configurations for refactoring recommenda-
tions, including historical information volume, dataset size, feature
selection, balancing techniques, and data standardization methods.

This SLR also reveals an opportunity to explore the inclusion of
user feedback in the formulation of the recommendations. So, the
feedback is an important aspect to understand the preference of
the user and to improve the ML model, allowing better recommen-
dations over time. In the work of [37], they indicate that including
developer feedback in the automated generation of refactoring so-
lutions can help in reaching solutions that are (i) well-suited for
the specific developer, and (ii) further refined when needed.

8 ACKNOWLEDGEMENTS
We would like to thank the financial support provided by FAPESP,
SP, Brazil, process number (2024/13184-7) and by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
- Finance Code 001.

REFERENCES
[1] 2024. On the Employment of Machine Learning for Recommending Refactorings: A

Systematic Literature Review. Zenodo.
[2] Chaima Abid, Vahid Alizadeh, Marouane Kessentini, Thiago do Nascimento

Ferreira, and Danny Dig. 2020. 30 years of software refactoring research: a
systematic literature review. arXiv preprint arXiv:2007.02194 (2020).

On the Employment of Machine Learning for Recommending Refactorings SBES’24, September 30 – October 04, 2024, Curitiba, PR

[3] Ahmed Al-Shaaby, Hamoud Aljamaan, and Mohammad Alshayeb. 2020. Bad
smell detection using machine learning techniques: a systematic literature review.
Arabian Journal for Science and Engineering 45, 4 (2020), 2341–2369.

[4] Mamdouh Alenezi, Mohammed Akour, and Osama Al Qasem. 2020. Harnessing
deep learning algorithms to predict software refactoring. Telkomnika 18, 6 (2020),
2977–2982.

[5] Vahid Alizadeh, Houcem Fehri, and Marouane Kessentini. 2019. Less is More:
From Multi-objective to Mono-objective Refactoring via Developer’s Knowledge
Extraction. In 2019 19th International Working Conference on Source Code Analysis
and Manipulation (SCAM). IEEE, 181–192.

[6] Vahid Alizadeh and Marouane Kessentini. 2018. Reducing interactive refactoring
effort via clustering-based multi-objective search. In 2018 33rd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). IEEE, 464–474.

[7] Vahid Alizadeh, Mohamed Amine Ouali, Marouane Kessentini, and Meriem
Chater. 2019. RefBot: Intelligent software refactoring bot. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 823–834.

[8] Eman Abdullah AlOmar, Anton Ivanov, Zarina Kurbatova, Yaroslav Golubev,
Mohamed Wiem Mkaouer, Ali Ouni, Timofey Bryksin, Le Nguyen, Amit Kini,
and Aditya Thakur. 2023. Just-in-time code duplicates extraction. Information
and Software Technology 158 (2023), 107169.

[9] Mauricio Aniche, ErickMaziero, Rafael Durelli, and Vinicius HSDurelli. 2020. The
effectiveness of supervised machine learning algorithms in predicting software
refactoring. IEEE Transactions on Software Engineering 48, 4 (2020), 1432–1450.

[10] Francesca Arcelli Fontana, Mika V Mäntylä, Marco Zanoni, and Alessandro
Marino. 2016. Comparing and experimenting machine learning techniques for
code smell detection. Empirical Software Engineering 21 (2016), 1143–1191.

[11] Guisella A Armijo and Valter V de Camargo. 2022. Refactoring Recommenda-
tions with Machine Learning. In Anais Estendidos do XXI Simpósio Brasileiro de
Qualidade de Software. SBC, 15–22.

[12] Muhammad Ilyas Azeem, Fabio Palomba, Lin Shi, and Qing Wang. 2019. Machine
learning techniques for code smell detection: A systematic literature review and
meta-analysis. Information and Software Technology 108 (2019), 115–138.

[13] Abdulrahman Ahmed Bobakr Baqais and Mohammad Alshayeb. 2020. Automatic
software refactoring: a systematic literature review. Software Quality Journal 28,
2 (2020), 459–502.

[14] Di Cui, Qiangqiang Wang, Siqi Wang, Jianlei Chi, Jianan Li, Lu Wang, and Qing-
shan Li. 2023. REMS: Recommending Extract Method Refactoring Opportunities
via Multi-view Representation of Code Property Graph. In 2023 IEEE/ACM 31st
International Conference on Program Comprehension (ICPC). IEEE, 191–202.

[15] Di Cui, Siqi Wang, Yong Luo, Xingyu Li, Jie Dai, Lu Wang, and Qingshan Li.
2022. RMove: Recommending Move Method Refactoring Opportunities using
Structural and Semantic Representations of Code. In 2022 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 281–292.

[16] Warteruzannan Soyer Cunha, Guisella Angulo Armijo, and Valter Vieira de
Camargo. 2020. Investigating Non-Usually Employed Features in the Iden-
tification of Architectural Smells: A Machine Learning-Based Approach (SB-
CARS ’20). Association for Computing Machinery, New York, NY, USA, 21–30.
https://doi.org/10.1145/3425269.3425281

[17] Arun Das and Paul Rad. 2020. Opportunities and challenges in explainable
artificial intelligence (xai): A survey. arXiv preprint arXiv:2006.11371 (2020).

[18] Marios Fokaefs, Nikolaos Tsantalis, Eleni Stroulia, and Alexander Chatzigeorgiou.
2011. JDeodorant: identification and application of extract class refactorings. In
2011 33rd International Conference on Software Engineering (ICSE). IEEE.

[19] M. Fowler and K. Beck. 2019. Refactoring: Improving the Design of Existing Code.
Addison-Wesley.

[20] Ayaka Imazato, Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto. 2017. Finding
extract method refactoring opportunities by analyzing development history. In
2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC),
Vol. 1. IEEE, 190–195.

[21] Manpreet Kaur and Dhavleesh Rattan. 2023. A systematic literature review on
the use of machine learning in code clone research. Computer Science Review 47
(2023), 100528.

[22] Barbara Kitchenham, O Pearl Brereton, David Budgen, Mark Turner, John Bai-
ley, and Stephen Linkman. 2009. Systematic literature reviews in software
engineering–a systematic literature review. Information and software technology
51, 1 (2009), 7–15.

[23] Barbara Ann Kitchenham and Stuart Charters. 2007. Guidelines for performing
Systematic Literature Reviews in Software Engineering. Technical Report EBSE
2007-001.

[24] Lov Kumar, Shashank Mouli Satapathy, and Aneesh Krishna. 2018. Application of
smote and lssvm with various kernels for predicting refactoring at method level.
In International Conference on Neural Information Processing. Springer, 150–161.

[25] Lov Kumar, Shashank Mouli Satapathy, and Ashish Sureka. 2015. Method Level
Refactoring Prediction on Five Open Source Java Projects usingMachine Learning
Techniques.

[26] Lov Kumar and Ashish Sureka. 2017. Application of LSSVM and SMOTE on
seven open source projects for predicting refactoring at class level. In 2017 24th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 90–99.

[27] Zarina Kurbatova, Ivan Veselov, Yaroslav Golubev, and Timofey Bryksin. 2020.
Recommendation of Move Method Refactoring Using Path-Based Representation
of Code. In Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops. 315–322.

[28] Hui Liu, Zhifeng Xu, and Yanzhen Zou. 2018. Deep learning based feature
envy detection. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. 385–396.

[29] Tom Mens and Tom Tourwé. 2004. A survey of software refactoring. IEEE
Transactions on software engineering 30, 2 (2004), 126–139.

[30] Ally S Nyamawe. 2022. Mining commit messages to enhance software refacto-
rings recommendation: A machine learning approach. Machine Learning with
Applications (2022), 100316.

[31] Ally S Nyamawe, Hui Liu, Nan Niu, Qasim Umer, and Zhendong Niu. 2019.
Automated recommendation of software refactorings based on feature requests.
In 2019 IEEE 27th International Requirements Engineering Conference (RE). IEEE,
187–198.

[32] Ally S Nyamawe, Hui Liu, Nan Niu, Qasim Umer, and Zhendong Niu. 2020.
Feature requests-based recommendation of software refactorings. Empirical
Software Engineering 25, 5 (2020), 4315–4347.

[33] Indranil Palit, Gautam Shetty, Hera Arif, and Tushar Sharma. 2023. Automatic
refactoring candidate identification leveraging effective code representation. In
2023 IEEE International Conference on SoftwareMaintenance and Evolution (ICSME).
IEEE, 369–374.

[34] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the impact on
maintainability of code smells: a large scale empirical investigation. In Proceedings
of the 40th International Conference on Software Engineering. 482–482.

[35] Rasmita Panigrahi, Sanjay Kumar Kuanar, Sanjay Misra, and Lov Kumar. 2022.
Class-Level Refactoring Prediction by Ensemble Learning with Various Feature
Selection Techniques. Applied Sciences 12, 23 (2022), 12217.

[36] Rasmita Panigrahi, Lov Kumar, et al. 2020. Application of Naïve Bayes classifiers
for refactoring Prediction at the method level. In 2020 International Conference
on Computer Science, Engineering and Applications (ICCSEA). IEEE, 1–6.

[37] Jevgenija Pantiuchina, Bin Lin, Fiorella Zampetti, Massimiliano Di Penta, Michele
Lanza, and Gabriele Bavota. 2021. Why Do Developers Reject Refactorings in
Open-Source Projects? ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM) 31, 2 (2021), 1–23.

[38] Ivens Portugal, Paulo Alencar, and Donald Cowan. 2018. The use of machine
learning algorithms in recommender systems: A systematic review. Expert Sys-
tems with Applications 97 (2018), 205–227.

[39] Soumaya Rebai, Vahid Alizadeh, Marouane Kessentini, Houcem Fehri, and Rick
Kazman. 2020. Enabling decision and objective space exploration for interactive
multi-objective refactoring. IEEE Transactions on Software Engineering (2020).

[40] Raana Saheb-Nassagh, Mehrdad Ashtiani, and Behrouz Minaei-Bidgoli. 2022.
A probabilistic-based approach for automatic identification and refactoring of
software code smells. Applied Soft Computing 130 (2022), 109658.

[41] Abdullah M Sheneamer. 2020. An automatic advisor for refactoring software
clones based on machine learning. IEEE Access 8 (2020), 124978–124988.

[42] Brahmaleen Kaur Sidhu, Kawaljeet Singh, and Neeraj Sharma. 2022. A ma-
chine learning approach to software model refactoring. International Journal of
Computers and Applications 44, 2 (2022), 166–177.

[43] Danilo Silva, Ricardo Terra, and Marco Túlio Valente. 2015. Jextract: An eclipse
plug-in for recommending automated extract method refactorings. arXiv preprint
arXiv:1506.06086 (2015).

[44] Danilo Silva, Nikolaos Tsantalis, andMarco Tulio Valente. 2016. Whywe refactor?
confessions of github contributors. In Proceedings of the 2016 24th acm sigsoft
international symposium on foundations of software engineering. 858–870.

[45] Danilo Silva and Marco Tulio Valente. 2017. RefDiff: Detecting Refactorings in
Version Histories. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). 269–279.

[46] Jocelyn Simmonds and Tom Mens. 2002. A comparison of software refactoring
tools. Programming Technology Lab (2002).

[47] Cleiton Silva Tavares, Amanda Santana, Eduardo Figueiredo, and Mariza Bigonha.
2020. Revisiting the Bad Smell and Refactoring Relationship: A Systematic
Literature Review. In Conferencia Iberoamericana de Software Engineering.

[48] Ricardo Terra, Marco Tulio Valente, Sergio Miranda, and Vitor Sales. 2018. JMove:
A novel heuristic and tool to detect move method refactoring opportunities.
Journal of Systems and Software 138 (2018), 19–36.

[49] Nikolaos Tsantalis, Matin Mansouri, Laleh M. Eshkevari, Davood Mazinanian,
and Danny Dig. 2018. Accurate and Efficient Refactoring Detection in Commit
History. In Proceedings of the 40th International Conference on Software Engineering
(Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY, USA, 483–494.

[50] David van der Leij, Jasper Binda, Robbert van Dalen, Pieter Vallen, Yaping Luo,
and Maurício Aniche. 2021. Data-driven extract method recommendations: a
study at ING. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
1337–1347.

https://doi.org/10.1145/3425269.3425281

SBES’24, September 30 – October 04, 2024, Curitiba, PR G. Angulo et al.

[51] Wei Wang and Michael W Godfrey. 2014. Recommending clones for refactor-
ing using design, context, and history. In 2014 IEEE International Conference on
Software Maintenance and Evolution. IEEE, 331–340.

[52] Sihan Xu, Chenkai Guo, Lei Liu, and Jing Xu. 2017. A log-linear probabilistic
model for prioritizing extract method refactorings. In 2017 3rd IEEE International
Conference on Computer and Communications (ICCC). IEEE, 2503–2507.

[53] Sihan Xu, Aishwarya Sivaraman, Siau-Cheng Khoo, and Jing Xu. 2017. Gems:
An extract method refactoring recommender. In 2017 IEEE 28th International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 24–34.

[54] Ruru Yue, Zhe Gao, Na Meng, Yingfei Xiong, Xiaoyin Wang, and J David Mor-
genthaler. 2018. Automatic clone recommendation for refactoring based on the
present and the past. In 2018 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 115–126.

	Abstract
	1 Introduction
	2 Research Methodology
	2.1 Research Questions
	2.2 Identification of Relevant Papers
	2.3 Selection Criteria
	2.4 Quality assessment
	2.5 Data Extraction and Execution
	2.6 Results

	3 ANSWERS FOR RESEARCH QUESTIONS
	4 Discussion
	5 Threats to Validity
	6 Related Works
	7 Conclusion and Future Directions
	8 Acknowledgements
	References

