Assisting Novice Developers Learning in Flutter Through
Cognitive-Driven Development

Ronivaldo Ferreira
Federal University of Para
Belém, Para, Brazil
ronivaldo.junior@icen.ufpa.br

Cleidson R. B. de Souza

Federal University of Para
Belém, Par4, Brazil
cleidson.desouza@acm.org

ABSTRACT

Cognitive-Driven Development (CDD) is a coding design technique
that helps developers focus on designing code within cognitive
limits. The imposed limit tends to enhance code readability and
maintainability. While early works on CDD focused mostly on Java,
its applicability extends beyond specific programming languages.
In this study, we explored the use of CDD in two new dimensions:
focusing on Flutter programming and targeting novice developers
unfamiliar with both Flutter and CDD. Our goal was to understand
to what extent CDD helps novice developers learn a new program-
ming technology. We conducted an in-person Flutter training camp
with 24 participants. After receiving CDD training, six remaining
students were tasked with developing a software management ap-
plication guided by CDD practices. Our findings indicate that CDD
helped participants keep code complexity low, measured using In-
trinsic Complexity Points (ICP), a CDD metric. Notably, stricter ICP
limits led to a 20% reduction in code size, improving code quality
and readability. This report could be valuable for professors and
instructors seeking effective methodologies for teaching design
practices that reduce code and cognitive complexity.

KEYWORDS

Cognitive-Driven Development, Software Design

1 INTRODUCTION

The need for better software design techniques is crucial to sup-
port the smooth evolution of a software project [13]. By providing
principled abstractions and controlling code complexity, these de-
sign techniques serve as valuable guides to developers during their
coding process. Consequently, previous studies have introduced
several techniques to ease the maintainability of a software code-
base [6, 8-10].

Despite the importance of these design techniques in reducing
software complexity, it is still common to find software products
suffering from design decay, a scenario in which “developers pro-
gressively introduce code with poor design structures into a sys-
tem” [3], making code coprehension, maintenance, and evolution
more difficult. Understanding design techniques is particularly rel-
evant for novice developers, as their lack of experience might lead
them to learn from both good and bad experiences directly from the

Victor Hugo Santiago C. Pinto
Federal University of Para
Belém, Para, Brazil
victor.santiago@ufpa.br

Gustavo Pinto
Federal University of Para & Zup Innovation
Belém, Par4, Brazil
gpinto@ufpa.br

codebase. Therefore, to help students understand and navigate soft-
ware complexities, professors and instructors should incorporate
design practices into the software engineering curriculum.

One reason these design approaches have not become dominant
tools in the programmer community is their subjectivity. Take, for
instance, the Single-Responsibility Principle, one of the SOLID prac-
tices. This principle suggests that a class should have one and only
one reason to change. Consider an application that calculates the
sum of areas for a collection of shapes (circles and squares). The
AreaCalculator class handles this logic, but it also includes the
responsibility of outputting the data. Thus, the mixing of responsi-
bilities can be subjective—some developers might prefer separating
these concerns.

Cognitive-Driven Development (CDD) is a design approach that
removes subjectiveness by introducing Intrinsic Complexity Points
(ICP), which are code elements that could affect developers’ un-
derstanding according to their usage frequency. By defining and
following a set of ICPs, developers can control the complexity in
a given code unit [15]. Early works on CDD observed that the
technique can be useful in designing modular and maintainable
code [4, 16]. However, these research efforts have focused on skilled
Java programmers. Consequently, little is known about the effec-
tiveness of CDD for either 1) less experienced developers or 2)
distinct programming languages.

This study aims to address these gaps by observing how novice
developers unfamiliar with CDD utilize it to build a management
system application using Flutter, a popular Dart web/mobile frame-
work. To achieve this goal, we conducted an in-person workshop,
attended by 24 students who learned about CDD code principles.
After the training, teams of six students were formed to build a
mobile application.

To guide our study, we designed the following research ques-
tions:

RQ1 How does CDD aid novice developers to understand and
manage software complexity?

RQ2 How do novice developers perceive the effectiveness of CDD?

RQ3 What were the challenges for new developers in understand-
ing and utilizing CDD effectively?

These questions aim to evaluate the use of CDD as a tool for
helping novice developers learn and understand software design.
Among the findings, we observed that the use of CDD helped novice
developers focus on the most challenging areas of learning, while

https://orcid.org/0000-0002-5812-8707
https://orcid.org/0000-0001-8562-6384
https://orcid.org/0000-0003-3240-3122
https://orcid.org/0000-0001-7598-2799

SBES’24, September 30 — October 04, 2024, Curitiba, PR

allowing them to assess their progress across different cycles of the
process. We also noticed that participants positively accepted the
use of CDD, resulting in better engagement and dynamics. Finally,
it was possible to measure the practical impact of CDD; in a CDD-
guided refactoring activity, the team achieved a 20% decrease in the
total number of lines of code. Our findings reinforce the usefulness
of CDD, not only as a design technique that helps developers design
less complex code units but also as a tool for learning and managing
code complexity. Our artifacts are publicly accessible at [7].

2 A BRIEF INTRODUCTION TO CDD

CDD (Cognitive-driven Development) is a software development
approach proposed by Souza and Pinto [5] that aims to reduce
effort in the software development process by limiting the number
of programming constructs that developers could incorporate into
their code units. This enables developers to map and control these
programming elements, identifying cognitive overloads.

CDD is primarily based on the research of George A. Miller [11]
and John Sweller [18, 19]. Miller discovered that individuals tend to
retain about seven units of information in their short-term memory,
with a variation of approximately two units. Sweller’s Cognitive
Load Theory (CLT) focuses on the amount of information we can
process simultaneously, highlighting the challenge of dealing with
cognitive overload in situations that require short-term memory
storage. He emphasizes that some materials are inherently complex,
making them difficult to comprehend.

Broadly, CDD proposes setting a complexity limit, establishing
complexity points in code to identify when refactoring is needed
due to cognitive overload. This involves designating metrics of
cognitive complexity for specific code components. Intrinsic Com-
plexity Points (ICPs) quantify the inherent complexity of elements
in the source code. These indicators represent the intrinsic com-
plexity of the analyzed code, helping to differentiate the impact of
each code structure among developers. Consequently, throughout
software evolution, code units tend to become more concise and
readable, reducing maintenance costs [15].

CDD was the focus of several research works. For instance, Pinto
etal. [16] analyzed the application of CDD in the refactoring process
using object-oriented metrics. Pinto and Souza [17] investigated the
impacts of implementing CDD in the initial coding stages compared
to traditional practices. Barbosa et al. [4] evaluated the use of CDD
to enhance code readability. Pinto and Souza [15] shared insights on
building an industry tool from scratch using CDD. Pereira et al. [14]
presented Cognitive Load Analyzer, a noteworthy tool supporting
the adoption of CDD.

These previous works on CDD focused on a very specific pop-
ulation of skilled Java developers [5, 14-17]. It is unclear though
how these benefits translate in a scenario where developers are
still learning programming while managing software complexity —
which is the goal of this work.

3 PROPOSAL OF ICPS FOR FLUTTER

This section presents a proposal for ICPs. We started from the
recommendations of previous studies [4, 5, 14-17] to formulate an
initial set of ICPs. These suggestions facilitated the construction of
the team’s ICPs (see section 4.4).

Ferreira, R.; Pinto, V. H. S.; C., R. B. de Souza and Pinto, G.

3.1 Why Other ICPs?

Dart is a programming language designed by Google in 2011. Flutter
is a Dart’s framework that focus on mobile and web development.
Given the design of Dart/Flutter, it becomes important for this study
to derive its own set of ICPs. This happens because Dart/Flutter have
different programming constructs than Java-like languages. For in-
stance, since Dart/Flutter were designed specifically for building
modern, high-performance user interfaces, the declarative approach
in Flutter enables developers to construct complex Uls with mini-
mal code, promoting reusability and maintainability. Additionally,
Dart’s language features, such as optional typing and async-await,
streamline development processes and improve code readability,
making it particularly suited for Ul-centric applications, and is less
verbose than Java’s concurrency model. As a consequence, ICPs
adopted in languages like Java cannot be easily reused, highlighting
the need of defining new ICPs for Dart/Flutter.

3.2 Suggested ICPs

Initially, we were inspired by the ICPs used in the work of Souza
and Pinto [5]. Then we added elements of Dart/Flutter. These el-
ements were chosen based on the instructors experience and the

observation of the students learning curve during the training camp.
Table 1 list the ICPs designed.

Table 1: Collection of suggested ICPs.

Category Description Weight
Branches and Loops Control structures such as if, else, 1
for, while, case, and ternary opera-
tors
Coupling Usage of functions as arguments and 1
dependencies on external compo-
nents or services
Nullable Handling of nullable widgets and 1
variables
Asynchronous Function = Implementation of asynchronous op- 2
erations using Future and Stream
Asynchronous Widget ~ Utilization of asynchronous widgets 2
like FutureBuilder and Stream-
Builder
State Management Management of state using libraries 2
like Provider and Flutter _bloc
Animated Widget Creation of animations, both implic- 2

it/explicit and low-level animations

As one can see, we have ICPs for both Dart and Flutter. We will
describe each one next.

Branches and Loops (Dart) The use of branches and loops is
common programming feature.

Coupling (Dart) Composition involves combining simpler compo-
nents to create complex ones, promoting reuse. Thus, composing
more complex and customized elements through coupling plays a
role in the modularity of the code.

Nullable (Dart) Managing null values can increase code complex-
ity, particularly in situations where nullability is not explicitly.

Assisting Novice Developers Learning in Flutter Through Cognitive-Driven Development

FutureBuilder (
future: someAsyncFunction,
builder: (context, snapshot) {
if (snapshot.connectionState == ConnectionState.waiting)
return CircularProgressIndicator ();
if (snapshot.hasData)
return _buildBodyComponet () ;
if (snapshot.hasError)
return _buildErrorComponent () ;
return ...;

Figure 1: Code example for the ICP in the “Asynchronous
Widget” category.

Determining when and how to incorporate nullability can present
an additional challenge for novice developers.

Asynchronous Function (Dart) Asynchronous functions are es-
sential for maintaining the responsiveness of the user interface
during long-running operations, such as network or background
processing. They allow the application to continue responding to
user events, enhancing user experience.

Asynchronous Widget (Flutter) When the application needs to
perform time-consuming operations, asynchronous widgets ensure
that the user interface remains responsive. However, the concept
of Future and asynchronous operations can be hard for novice
developers to understand and eventually manage errors that may
occur during Future execution.

State Management (Flutter) State management in Flutter is es-
sential but complex for beginners. The variety of concepts such
as streams and blocs, along with the different available libraries,
creates uncertainties in choosing the ideal approach.

Animated Widget (Flutter) Well-planned animations enhance the
user interface, adding sophistication to the application. Flutter offers
extensive support with various animation approaches, including
predefined motion effects that can be customized as needed, or even
creating animations by drawing widgets frame by frame.

3.3 Weights and Limits of ICPs

To establish the limit of ICPs, Souza and Pinto [5] recommend
restricting the number of ICPs per code unit to between 3 and 7 for
teams with different levels of experience, and between 10 and 12
for high performing teams.

In addition to the number of ICPs in a code unit, we also con-
sidered the weight of each ICP. For instance, we assumed that
ICPs related to mobile/web development are more challenging for
novice developers to understand compared to traditional ICPs like
branches and loops. Taking the “Asynchronous Widget” category
as an example, novice developers may face various concerns, for
example, understanding asynchronous operations through the Fu-
ture object, managing widget states, and error handling. Figure 1
illustrates an example of code adapted from the Flutter documenta-
tion, which uses the FutureBuilder to manage an asynchronous
operation.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

In the “builder” parameter, the user interface is dynamically con-
trolled based on the connection state of the Future. If the state
is ConnectionState.waiting, a progress indicator, such as a Cir-
cularProgressIndicator, is displayed, providing visual feedback
to the user while the asynchronous operation is running. Utiliz-
ing the AsyncSnapshot class, received data is manipulated to
construct the user interface responsively. When data is available
(snapshot.hasData), a set of corresponding custom widgets is ren-
dered. Conversely, error detection (snapshot.hasError) facilitates
proper management of error situations, ensuring the reliability of
the application.

A weight of 2 was assigned to the ICP of the “Asynchronous
Widget” category, due to developers’ concerns regarding the un-
derstanding of Future, with could impact on the maintenance and
usability of the system. Generally speaking, most Dart-related ICPs
were given a weight of “1” while most Flutter-related ICPs were
assigned a weight of “2” Therefore, the limit of ICPs was deter-
mined not just by the count of their occurrences in code units but
also by their weights, taking into account the complexities faced
by developers.

4 IN-PERSON WORKSHOP

For this work, we conducted an in-person workshop focused on
learning mobile development using the Flutter framework. Held
at the Faculty of Computing (FACOMP) of the Federal University
of Para (UFPA), the workshop was divided into three stages: 1)
participant selection, 2) developer traning, and 3) practical imple-
mentation. The workshop had 107 hours of workload for those
participants who completed all activities. It happened from July to
September 2023. The workshop served as a starting point to apply
the CDD approach and assess its impacts on novice developers.

Figure 2 provides an overview of the three stages of the work-
shop. In the first stage, participant selection took place, establishing
criteria for their inclusion. The second stage focused on developer
training, divided into two other phases: 1) for studying Dart and
Flutter and 2) for deepening the knowledge of the specific tech-
nologies of the framework. The third stage was focused on the
implementation of the practical project, guided by CDD. In this
phase, participants were guided through three different phases, cov-
ering initial preparation regarding the necessary methods and tools,
the development of application functionalities, and the introduction
to refactoring activities.

4.1 Participant Selection

For the participant selection stage, students from Computer Science,
Computer Engineering, Information Systems, or related fields were
sought, both at UFPA and other higher education institutions in the
region. Students had to have basic understanding in algorithms and
programming. Participation in the program required a commitment
of 2 to 8 weeks, with 15 hours per week dedicated to each stage.
Moreover, it was essential to be available for all activities in the
training and practical project implementation stages. Participant
registration was made available through online forms. To ensure
effective participation, candidates needed to meet all the previously
detailed requirements, which were extensively communicated dur-
ing the promotion and registration process.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Ferreira, R.; Pinto, V. H. S.; C., R. B. de Souza and Pinto, G.

1. Participant Selection 2. Developer Training

3. Practical Project Implementation

Phase 1 ‘ Phase 2

2 weeks
dedicated to
! studying Dart and !
Flutter ;

Definition of
participation criteria
and selection of
participants

framework’s
features

Deepening the

Preparation Phase Development Phase Refactoring Phase

Refactor code
I with stricter ICPs

Performing Code
dynamics before | implementation
implementations | guided by CDD

Figure 2: Workshop overview

4.2 Developer Training

The developers’ training stage aimed to provide both theoretical
and practical foundations for building cross-platform applications
using the Flutter framework. It was divided into two distinct phases.
In Phase 1, one week was dedicated to learning Dart, followed by
another week focused on learning Flutter. This phase had 20 par-
ticipants in theoretical and practical exercises over five classes,
totalling 30 hours. In the second phase, participants were divided
into two groups: one dedicated to web technology and the other to
mobile resources. The objective of this phase was to deepen par-
ticipants” knowledge of software development techniques specific
to their chosen platform. Phase 2 had 14 participants (six drop out)
who had 21 hours of workload, including in-class and asynchro-
nous tasks, culminating in individual evaluations. All material used
during this stage was based on Dart documentation [1], Flutter
documentation [2], and Marco L. Napoli’s book "Beginning Flutter:
A Hands-On Guide To App Development" [12]. To deepen the par-
ticipants’ understanding of the CDD approach, we gave a lecture
about CDD, proving links for blogs, interviews and research paper
as support material.

4.3 Practical Implementation

This stage was used to observe the results generated from using
CDD as a guide to control the complexity of the source code during
its evolution.

4.3.1 Application. The CITIAmazon laboratory aims to promote
research and development in the field of market-oriented technolo-
gies, establishing a connection between academic research and
societal demands. Given this scenario, it became necessary to cre-
ate management system for this laboratory. The application not
only aims to efficiently manage projects associated with the lab-
oratory but also seeks to track students, scholarship holders, and
other associates through actions aimed at the development of their
professional careers, as well as promoting community engagement
by connecting them with local companies.

4.3.2 Phases. This stage was sub-divided into three ones: Prepa-
ration Phase, Development Phase, and Refactoring Phase. During
Preparation Phase, developers dedicated themselves to method-
ological preparations for subsequent activities. Development Phase
corresponded to the period when coding tasks were performed.
Finally, in the Refactoring Phase, developers focused their efforts
on enhancing the previously developed code. Table 2 presents the
detailed schedule of this stage.

Table 2: Project Implementation schedule.

Date Phases Activities

Aug 28toSep1 Preparation Interview with client, requirements def-
inition, and backlog construction

Sep 4to Sep 30 Development Software Development, Scrum Cere-
monies and CDD Tasks

Oct 3to Oct 10 Refactoring Refactoring and CDD Tasks

The initial phase of the stage began with an exploration of the
application requirements. Subsequently, software implementation
unfolded across four sprints, encompassing development tasks,
Scrum ceremonies, and CDD activities. Later, the Refactoring phase
was dedicated to enhancing code quality through the application
of CDD principles for refactoring. This schedule highlights the
application of an agile and iterative approach. In addition, CDD
was used throughout the project.

4.3.3 Team Members. The practical project implementation stage
began with a development team of six participants — the other
participants decided not to participate in this phase. Each team
member is identified as TMX. Table 3 presents an overview of the
team’s demographic characteristics. As one can see, the majority
of team members are in the early stages of their careers, with expe-
rience ranging from 7 months to 3 years, averaging approximately
1 year and a half.

4.4 Team’s ICPs

As suggested by Pinto [5], the team’s ICPs should be defined for
each software development team to reflect the team’s experience.
Based on the collection of ICPs suggested in this work, the team’s
ICPs guided the team during the coding and refactoring process in
the implementation phase.

4.4.1 Defining Team ICPs. To define the Team’s ICPs, the members
collaboratively established categories and weights based on their
criteria, using the collection of ICPs suggested in Table 1 as a basis.
These discussions were facilitated by the first author, guiding the
team in selecting or electing new ICPs. In case of disagreement,
discussions were expanded to reach a consensus. Table 4 presents
the final result.

When comparing the team’s ICPs in Table 4 with the suggested
ICPs collection in Table 1, it is evident that some ICPs were not
considered. For example, the “Nullable” and “Animated Widget”
categories are not present in Table 4. The team did not express

Assisting Novice Developers Learning in Flutter Through Cognitive-Driven Development

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Table 3: Team member demographics. CS, CE, and IS stand for Computer Science, Computer Engineering, and Information

Systems, respectively.

Data T™M1 TM2 TM3 TM4 TM5 TMe6

Age 17 23 27 23 18 28

Gender M M M M M F

Course Cs CS CE IS IS CE

Programming experience 1 year 1 year 2 years 7 months 2 years 3 years

Main prog. language Python Python Javascript Java Java Java

Technologies of interest Web, Mobile and Web, Mobile and Web and Mobile = Mobile and Desk- Web, Mobile and Web and Mobile
Desktop Al top Desktop

concerns regarding the use of nullable widgets and variables. On
the other hand, “Animated Widgets” were initially considered, but
they were removed in later versions (see Table 5), as the project
was not as focused on UI and UX aspects.

The team designated classes as code units, with a maximum limit
of 13 ICP weights per unit. Throughout the study, three versions of
the ICPs were developed, being Table 4 the final version adopted
during the Refactoring Phase.

4.4.2 Refinement. The refinement of the team’s ICPs table was con-
ducted through periodic analysis of the categories and weights of
the ICPs by the team. This procedure was essential for the continu-
ous evaluation and review of the items selected in the table, aligning
them with the criteria established by the team members. The goal
was to ensure a more accurate representation of the complexity
perceived by the developers.

4.4.3 ldentification and review of ICPs. The activities of identifica-
tion and review of ICPs in the code units were carried out manually
due to the lack of automatic tools for the Flutter. Team members
highlighted the identified ICPs through comments in the source
code, indicating the category of the ICPs and emphasizing the total
weight of each code unit.

Additionally, a pre-completion procedure was included for func-
tionalities, with a code review conducted by the author to ensure
the maintenance of CDD practices, ensuring the correct application

Table 4: Team ICPs table.

Category Description subitems Weight
Branches and if, else, for, while, case and - 1
Loops ternary
Coupling Function as an argument - 1
and dependency on com-
ponents or services
Asynchronous Future and Stream Create 1
Function
Handle 2
Asynchronous FutureBuilder and Stream- - 2
widget Builder
State Management Using the Provider library Notifier 1
Consumer 2
Other external libraries - 3
LIMIT 13

of categories and the calculation of ICP weights determined by the
team, aiming to mitigate the impacts of the lack of automated tools
and the inexperience of team members.

5 DATA COLLECTION AND ANALYSIS

For the data collection, we focused on the Practical Project Imple-
mentation stage of the workshop. We collected data from different
sources: team meetings, semi-structured interviews, and source
code analysis. The details of the process is described next.

5.1 Team meetings

In this study, we integrated CDD activities into Scrum ceremonies.
The workflow was structured to ensure continuous integration of
CDD principles throughout the week. For instance:

e On Mondays, refinement meetings were held to update the
team’s ICPs.

o From Tuesday to Friday, a 15-minute daily meeting addressed
CDD-related issues, ensuring that any challenges or ques-
tions could be promptly resolved.

e On Saturdays, review and retrospective meetings facilitated
in-depth discussions about the week’s CDD activities, allow-
ing the team to reflect on their progress and identify areas
for improvement.

Throughout the practical project, a total of 26 remote meetings
were held, with 91 minutes dedicated solely to CDD topics.

To promote reflection among team members during Scrum retro-
spective meetings, analysis of the use of CDD and the team’s ICPs
table throughout the current sprint was encouraged. To achieve
this, the following questions related to the ongoing sprint were
formulated: 1) How do you perceive the adoption of CDD in the
project?; 2) Do you perceive that the implementation of CDD is
effectively contributing to making your classes more readable and
less complex?; 3) Was there a need to refactor due to cognitive
overload of the classes in this Sprint?; 4) What suggestions do you
have to improve the team’s ICPs table or adjust the ICPs weight
limit that was previously established?; and 5) Do you have any
comments or suggestions about the use of CDD in the project?

These questions were formulated with the purpose of generating
critical insights among team members, and creating an environ-
ment conducive to identifying opportunities for improvement and
optimization in the development process. Subsequently, discussions
were conducted to implement the necessary changes to the team’s
ICPs, aligned with the team’s decisions. This approach ensured that

SBES’24, September 30 — October 04, 2024, Curitiba, PR

CDD principles were consistently applied and reviewed, enhancing
the team’s understanding and implementation of these practices.
Although most meetings were recorded for future reference and
analysis, some were not recorded due to the presence of sensitive
information or to ensure the comfort of participants. This approach
balanced the need for documentation with the importance of main-
taining a respectful and open environment for team members.

5.2 Semi-structured Interviews

Semi-structured interviews were conducted with team members to
explore the impacts of CDD throughout the development process
of the practical project, from the perspective of these members,
aiming to gain a deeper understanding.

5.2.1 Preparation. An interview script was developed with ques-
tions subdivided by themes. A pilot interview was also conducted
for necessary adjustments. Five interviews were carried out, cov-
ering all team members who actively participated in all stages of
the project. The recordings totaled 188 minutes, with an average
of 38 minutes per interview, ranging from 28 to 54 minutes. All
interviews were recorded and were conducted remotely via Google
Meet, from November 21st to 25th, 2023.

To enrich the details of the interviews, participants were asked to
download the three versions of the team’s ICPs table. Additionally,
they were recommended to revisit the tasks assigned to them and
analyze the commits made by themselves and other team members.
During the interviews, the team members responded to questions
related to the following topics:

e Introduction: Sharing information about the team’s over-
all activities in the project, including an overview of goals,
objectives, and the specific role of each team member in the
context of CDD.

e Preparation and Work: Discussing the creation of the
team’s ICPs table, detailing the process of identifying and
defining the ICPs, and explaining how the team prepared for
and executed their development tasks using CDD principles.

o Benefits: Addressing potential advantages, impacts, and suc-
cess evaluation criteria, such as improved code readability,
maintainability, and reduced cognitive load on developers.
Discuss how these benefits facilitate better learning and
understanding of software design principles for novice de-
velopers.

e Challenges: Dealing with gaps in understanding, execution
obstacles, and resistances faced by the team. Explore specific
difficulties encountered in grasping CDD concepts, imple-
menting them in the Flutter environment, and overcoming
initial resistance to adopting new methodologies.

o Lessons Learned: Helping identify possible improvements
in CDD activities. Reflect on the learning experiences, high-
light key takeaways, and suggest adjustments to the CDD ap-
proach that could enhance its effectiveness for future projects
and better support novice developers in mastering software
design.

5.2.2 Analysis. With participants’ consent, the interviews were
recorded, later transcribed, and integrated into the artifacts of this

Ferreira, R.; Pinto, V. H. S.; C., R. B. de Souza and Pinto, G.

work. This procedure allowed for a detailed analysis of the inter-
views, following these steps: Initially, the interviews were watched
and, when necessary, reviewed to draft a documented summary for
each participant. Each team member was anonymized, identified by
apreviously established unique designation, such as TM1, represent-
ing team member 1. Next, relevant fragments of the interviews were
identified, numbered, and categorized, documented in summaries
organized by themes addressed during the interviews. Finally, a
recurrence analysis of the fragments across the interviews was
conducted, seeking evidence to corroborate or challenge the points
discussed, contributing to a more comprehensive understanding of
the results.

5.3 Source Code Analysis

Source code analysis was a crucial process to (1) understand the
overall context via code units, (2) identify specific details through
commits in the repository, and (3) relate them to the tasks of the
practical project. This process allowed the collection and documen-
tation of data for a deeper code analysis, providing a comprehensive
understanding through the traceability of each context.

5.3.1 Collection and Documentation of Metadata. The project meta-
data was collected during the development and refactoring phases
in the implementation of the practical project. This collection in-
volved manual analysis of all project classes, where data such as
code unit count, lines of code, and class ICPs were extracted, consid-
ering their respective weights. A total of 139 checks were performed
among the project classes, with 62 at the end of the last Sprint and
77 at the end of the refactoring phase.

The obtained data was documented in a spreadsheet, organized
into two tabs: “Last Sprint,” conducted on Oct 3rd, and “Refactoring
Phase,” which lasted until Oct 10th. This spreadsheet provides de-
tails on the code units’ compliance with the ICP limits established
during these periods, offering a comprehensive view of the project’s
state on these specific dates.

5.3.2 Commit Analysis. Commit Analysis of the repository was
conducted to identify evidence of events occurring during the exe-
cution of the practical project. Each task was linked to its respective
commits in the repository, providing contextualization of the soft-
ware development process. This approach enabled the identification
of patterns, correlations, and the impacts of developers’ decisions
on code construction or refactoring, contributing to a deeper un-
derstanding of project progress.

Another spreadsheet was used to store these commits, orga-
nized according to the context of the features to be developed by
the involved team members, along with commit metadata. In to-
tal, 34 commits were examined throughout the implementation
of the practical project. This analysis was complemented by the
interviews conducted (see Section 5.2) with participants, further
enriching the understanding of dynamics and adjustments imple-
mented throughout the development cycle.

Assisting Novice Developers Learning in Flutter Through Cognitive-Driven Development

6 ROQ1: HOW DOES CDD AID NOVICE
DEVELOPERS TO UNDERSTAND AND
MANAGE SOFTWARE COMPLEXITY?

To answer this question, we analyzed the ICP table, the design prac-
tices adopted during the project development, and project metadata
collected. This approach allowed us to examine how CDD assisted
novice developers to understanding of software design.

Selection and Use of ICPs. The selection and use of ICPs is key
in helping novice developers identify the complexity within the
project’s source code. The development team, along with the in-
structors, prioritized ICPs featuring code elements that team mem-
bers found challenging or unfamiliar. For example, TM1 commented:
“[The ICPs] were mostly things that I didn’t really understand how
they worked.” This illustrates that, in an educational context, the
selection of ICPs can guide students toward areas they find difficult
to navigate, allowing them to focus on these aspects during the
learning process.

Additionally, the ICPs included code structures that could result
in excessive nesting, thereby limiting the readability of the classes.
One team member (TM3) mentioned: “Anything that could bunch
up a lot of code, nest a lot of code in one place. If it had the potential
for that, I would include it too, even if I understand the concept.”
This practice helps newcomers identify and avoid coding practices
that could lead to complex and difficult-to-maintain structures.
By emphasizing these ICPs, the team was able to enhance their
understanding of good coding practices and improve the overall
maintainability of the codebase.

We also defined subitems for few ICPs. For instance, we slippted
splitting the category “Asynchronous Functions” into “Create” and
"Handle’, reflecting the perspective that handling an asynchronous
function within the user interface requires more effort than creating
it. This allows students to understand the varying difficulties asso-
ciated with different aspects of the same functionality, facilitating
deeper learning. Despite the suggested collection of ICPs by this
work, it is essential for novice developers to have a clear under-
standing of which ICPs will be counted by the team, as indicated
by CDD [5]. This encourages active participation of students in the
learning and development process, enhancing their understanding
and engagement.

Finally, Table 5 presents the change history of the ICPs, across
three versions. This table illustrates the adjustments made to the
ICP categories and their respective weights to better align with
the project’s evolving complexity management needs. In Version
1, several ICP categories were introduced with specific weights:
"Branches and Loops" with a weight of 1, "Basic Widget" with a
weight of 1, "Coupling” with a weight of 2, "Asynchronous Func-
tion" with a weight of 3, "Asynchronous Widget" with a weight of
2, "State Management" with a weight of 3, and "Animated Widget"
with a weight of 1. "Nullable" was not considered in this version.
In Version 2, the "Basic Widget" category was removed, while the
other categories remained unchanged. By Version 3, "Coupling”
was adjusted to a weight of 1, and "Animated Widget" was removed,
while the other categories and their weights stayed the same. The

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Last Sprint Refactoring Phase
500 500

400 400 4

300 300 4

Loc
Loc

200 200 4

100 100

0 10 20 30 40 50 60 0 10 20 30 4 50 60 70 80
Classes Classes

Figure 3: Distribution of LOC among project classes.

overall limit of ICPs also evolved, starting at 32 in Version 1, de-
creasing to 30 in Version 2, and significantly dropping to 13 in
Version 3.

Understanding and mitigating complexity. As part of the project
implementation, the novice developers undertook a refactoring
phase to align the existing project with CDD guidelines and reduce
code complexity. During this phase, the team established a stricter
limit on the number of ICPs allowed in project classes, as they found
that the previous limits were no longer significantly impacting code
complexity. This practice also helped assess the team’s learning
curve; the decreasing weight of ICPs demonstrated their progress
in development skills. This suggests that instructors could regularly
review and adjust code quality criteria to match students’ evolving
profiles.

During the Refactoring Phase, team members adopted strategies
such as class composition through componentization, focusing on
ICPs they had practiced extensively, which facilitated the refactor-
ing process. TM1 explained: “I would componentize any widget that
was too complex. I would divide it into parts. When it was a matter
of basic programming logic, like a for loop... I would try to put it
inside a separate function” This practice helps students understand
the importance of breaking down complex problems into smaller,
more manageable parts, a fundamental concept in software design.

For instance, we highlight the commit made by TM1 during this
phase. The ProjectDetails class initially accumulated a total of 27
ICPs, exceeding the established limit. To reduce this complexity, the
developer modularized the class, bringing the number of ICPs down
to 13 and creating four other classes in the process. This example
illustrates how strategic refactoring can significantly reduce code
complexity and improve overall code quality.

Mitigating software complexity. The results of the CDD-guided
refactoring, as evidenced in Figure 3, showed a 20% reduction in
the overall average number of lines of code across project classes.
Most of the refactorings involved componentization to foster reuse,
which also led to an increase in the number of classes. Specifically,
after the CDD-guided refactoring, there was a 24% increase in the
total number of classes. Regarding the size of the classes, during the
development phase, the average number of lines of code among the
top three largest classes was 347, while the overall project average
was 86 lines. After the CDD-guided refactoring, the average size
of the top three classes decreased to 226 lines, and the project’s
average reduced to 69 lines, indicating reductions of 35% and 20%,
respectively. These data highlight the effectiveness of CDD-guided

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Ferreira, R.; Pinto, V. H. S.; C., R. B. de Souza and Pinto, G.

Table 5: Evolution of the set of ICPs.

ICP Category Version 1 Version 2 Version 3

Branches and Loops Added with weight 1 - -

Basic Widget Added with weight 1 Removed -
Coupling Added with weight 2 - Changed to weight 1

Asynchronous Function Added with weight 3 - -

Asynchronous widget Added with weight 2 - -

Nullable Not considered - -

State Management Added with weight 3 - -

Animated Widget Added with weight 1 - Removed
LIMIT 32 30 13

refactoring in reducing the size and complexity of code units. Addi-
tionally, it helped novice developers identify and address points of
complexity that warranted refactoring.

7 RQ2: HOW DO NOVICE DEVELOPERS
PERCEIVE THE EFFECTIVENESS OF CDD?

The analysis of semi-structured interviews and the code submitted
to the repository revealed several ways in which CDD contributes
to improving code quality, readability, and maintainability, in par-
ticular for novice developers.

Project Architecture Assistance: The CDD was fundamental
in organizing the project, especially when the refactoring phase
was carried out. Even without a formal architecture, CDD allowed
novice developers to structure the project into more manageable
modules and components. This process can help in understanding
good software design practices. As TM1 mentioned, “Even though
we weren’t using any type of architecture for the project, CDD,
by limiting the complexity of the classes, ended up making it a
bit more organized and structured.” By imposing limits on cogni-
tive complexity, CDD helped novice developers to have a better
understanding of the importance of well-planned and modular ar-
chitecture, facilitating the assimilation of essential software design
concepts.

Code Attention Agent: The CDD acted as a code attention agent,
guiding novice developers to focus on software design aspects. Even
without a detailed understanding of other approaches, novices de-
velopers were encouraged to consider code readability and main-
tainability by other team members. As TM5 pointed out, “CDD
helps you stop and think if when you deliver the project, when
it’s finished, any other code reviewer or the person responsible
for future maintenance will be able to read it in an easier, more
effective way... It’s like an agent that keeps bothering you to want to
improve." This constant focus on code readability and maintenance
is an educational aspect that can help novices internalize coding
best practices right from the start of their training.

Improving Code Quality and Readability: The implementation
of CDD resulted in the creation of code of better quality and more
readable, as perceived by the students. As highlighted by TM5, "We
took care to ensure that people would understand our code [...] It’s
not enough for just the person programming the code to understand,
and another person to look at the code and not understand it." These

points are beneficial for the software’s sustainability and especially
advantageous for novice developers, who are able to learn and
practice creating structured and easily understandable code. The
focus on code readability and quality contributes to establishing a
foundation for future software development practices.

Constant Refinement of Team ICPs: Continuous optimization
of the team’s ICPs collection was essential to address the complexity
of the code. For novice developers, this process of regular assess-
ment and adjustment served as an educational practice, aiding in
the understanding and application of Clean Code principles, and
facilitating the evaluation of their learning curve. Weekly meet-
ings were essential for adjusting coding practices and reviewing
ICPs as Flutter understanding evolved. As highlighted by TM1, "I
think having this meeting every week to check the table was very
useful, since our level of understanding of Flutter was changing
every week!" This continuous process of review and learning helped
newcomers adapt quickly to best development practices, fostering
a dynamic and interactive learning environment.

Positive Acceptance by the Team: The CDD approach was well
received by the team of novice developers, who demonstrated a
positive and proactive attitude. Their acceptance of CDD and adap-
tation to additional tasks, even in the absence of some automation
tools, showed the newcomers’ willingness to learn and implement
new methodologies. This positive acceptance is an important in-
dicator of CDD’s potential as an effective teaching methodology,
facilitating the integration of new concepts and practices into the
developer training curriculum.

Assisting Novice Developers Learning in Flutter Through Cognitive-Driven Development

8 RQ3: CHALLENGES FOR NEW DEVELOPERS
IN UNDERSTANDING CDD EFFECTIVELY?

In our final RQ, we list some of the challenges that novice developers
faced when using CDD in an academic setting.

Low Impact in Early Stages: At the beginning of the project, the
use of CDD had little impact due to difficulties in integrating CDD
activities along with code implementation tasks. Understanding
ICPs like “coupling” was confusing for new developers. TM1 high-
lighted that, "At the beginning, I had more difficulty understanding
what should and should not be considered. The complexity points of
each thing" Additionally, the influence of CDD was underestimated
due to the lack of complexity in the classes. Moreover, the absence
of clear references for the language resulted in less restrictive limits,
leading to few refactorings in the early sprints. As TM2 mentioned,
"It was more towards the end that we were able to apply CDD more
because during the project, we hardly ever exceeded it. So it was
more towards the end that the limit dropped a lot, and we had to
cut out a lot of things"

Complementary Approaches to Effective Refactoring: CDD
is an efficient tool for novice programmers, as it requires little prior
knowledge of code quality techniques. However, in learning con-
texts where novices do not yet have established design practices,
refactoring complex units can become a challenge since they lack a
robust technical repertoire to handle this complexity. An increase
in the number of classes and the total ICPs in the project is observed
after the refactoring period, due to the students’ strategy of modu-
larizing complex classes through class composition, dividing them
into smaller units. As TM3 highlighted, "Alone, it is not enough
to solve the problem." Therefore, it is important to complement
the use of CDD in teaching software design by gradually introduc-
ing additional strategies that provide a more comprehensive and
effective understanding in refactoring units with high complexity.

Manual Activities in CDD: All CDD activities were performed
manually due to the lack of supporting tools in the Flutter environ-
ment, which significantly increased the developers’ effort and may
have negatively impacted the project’s complexity and delivery
efficiency. TM1 noted, "Because it was an extra step in the work, so
sometimes people ended up forgetting or were still learning how to
do it. In fact, at the beginning, sometimes I didn’t count correctly,
but it was because I was getting used to this methodology" Ad-
ditionally, there was greater effort in project management, as the
responsibility for verifying project ICPs was assigned exclusively to
the code reviewer during the review phase, in an effort to minimize
errors. These challenges highlight the urgent need for more robust
tools and processes to support methodologies like CDD, aiming
to reduce manual effort and improve accuracy and efficiency in
project development.

9 LESSONS LEARNED

The implementation of CDD in an academic context has revealed
several practical lessons that can assist professors and instructors
when teaching software development methodologies. Integrating
CDD into educational curricula ensures that beginner developers

SBES’24, September 30 — October 04, 2024, Curitiba, PR

acquire essential practical and theoretical skills for high-quality
software development.

9.1 Definition of Boundaries

Initial Flexibility: Offering initial flexibility regarding the com-
plexity limits of classes can facilitate the application of CDD with
novice developers. However, it may compromise the effectiveness
of practices and create gaps in software design culture. Excessive
flexibility can lead to less rigorous practices, negatively impacting
code quality as the software evolves. Ensuring that this flexibility is
gradually reduced as students gain confidence helps them transition
smoothly from learning to applying stringent practices.

Importance of Restriction: Establishing strict boundaries from
the start encourages the adoption of good practices and helps create
less complex code, better aligning with CDD objectives and promot-
ing a more structured development culture. This strict approach
helps students internalize the importance of maintaining high stan-
dards in software design from the beginning of their education.

9.2 Enhancement and Management of ICPs

Customization of ICP Collection: Adapting the collection of
ICPs to the needs and knowledge level of students is crucial for
a more targeted and efficient teaching approach. Using specific
ICPs for the team or project can help balance time and resources,
allowing students to focus on the most relevant aspects. Tailoring
ICPs ensures that students engage with concepts that are directly
applicable to their current skill level and learning objectives.

Distribution of Responsibilities: Sharing the responsibility for
reviewing ICPs among all team members, rather than centralizing
it, promotes a deeper understanding of design practices and encour-
ages collaboration. Incorporating ICP review into the code review
process and distributing it among the team helps improve student
autonomy and understanding of best practices. This approach fos-
ters a collaborative learning environment where students learn
from each other’s insights and experiences.

Gradual Approach for Introducing ICPs: Gradually introducing
new ICPs to the team’s set facilitates the assimilation of complex
concepts. This method could allow students to absorb and integrate
concepts progressively, promoting more effective learning aligned
with the group’s experience level. A phased introduction helps
prevent overwhelming students and allows them to build a strong
foundational understanding before tackling more advanced topics.

9.3 Enhancing Student Learning and
Curriculum Development with CDD

Improvement in Self-Assessment of Learning Curve with
CDD: CDD allows students to monitor their progress and iden-
tify areas for improvement by providing clear metrics on code
complexity. This facilitates reflection on practices and enhances
understanding of design and maintenance concepts. Integrating
these self-assessment tools into the curriculum helps students take
ownership of their learning journey and continuously strive for
improvement.

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Integration of CDD into the software engineering curricu-
lum: Incorporating CDD into the software engineering curriculum
offers a structured approach to teaching software design. Alo, by
applying CDD in practical projects helps students face complexity
gradually, connecting theory and practice while improving code
quality. This structured approach aids students to systematically
develop the skills needed for effective software design and mainte-
nance.

Establishment of Regular Feedback Cycles Based on CDD:
Using CDD activities for regular feedback helps monitoring the
student progress, improving teaching practices, and promoting an
adaptive learning environment. Finally, regular feedback loops help
instructors identify and address learning gaps promptly, ensuring
that students stay on track and continuously improve their coding
skills.

10 THREATS TO VALIDITY

First, there was a high number of participants drop outs throught the
study. Out of 24 initial participants, only 6 completed the practical
project. The workshop took place from July to September, starting
during vacation and extending into the beginning of the academic
semester, which may have contributed to dropouts due to academic
and personal workload. Many participants chose to focus solely on
the basic Flutter training.

Second, this low participation may have introduced bias into the
results, as the final group may not fully represent the diversity of
skills and interests of the initial group. This could limit the general-
izability of the findings. It is important to note that the results of
this research reflect only the data from participants who completed
the entire workshop, as only they were exposed to the approach
in question. To increase participation, it is important to establish
clear expectations from the outset, emphasizing the commitment
required to complete the project. Additionally, adjusting the sched-
ule to avoid conflicts with the start of the academic semester may
be beneficial. Offering ongoing support to participants facing diffi-
culties is also essential for promoting greater engagement.

Third, while CDD practices were beneficial, their applicability
in different contexts or with participants of different skill levels
may result in variations in observed outcomes. Therefore, we do
not claim that our results generalize for other contexts with similar
settings. Finally, despite the limitations mentioned, the study pro-
vides insights on the usefulness of CDD in educational contexts.
The methodology was designed to maximize learning and practi-
cal application of concepts. Observations and participant feedback
provide qualitative evidence supporting the conclusions.

11 CONCLUSIONS

This study investigated the effectiveness of CDD in helping novice
developers to design and implement an academic project in Dart and
Flutter. We observed the dynamics among team members during
the development and refactoring process, identifying the benefits
and challenges they faced. There was a continuous adaptation of
the team’s ICPs, resulting in a 20% reduction in the number of lines
of code. However, we also noted a 24% increase in the number of
project classes. Developers highlighted improvements in code read-
ability and quality but also mentioned the challenge of relatively

Ferreira, R.; Pinto, V. H. S.; C., R. B. de Souza and Pinto, G.

low impact in the initial stages of the project, as well as the need
for complementary approaches to assist in the refactoring process.

For future work, we plan to experiment with larger samples to
validate and expand upon the findings. We also plan to survey pro-
fessors and instructors to understand their software design teaching
practices; and then how could CDD be better incorporated in these
practices.

12 ACKNOWLEDGEMENTS

We thank the reviewers for their helpful comments. This work is
partially supported by CNPq (308623/2022-3).

REFERENCES

[1] 2023. Dart documentation. Retrieved Dec 20, 2023 from https://dart.dev/guides

[2] 2023. Flutter documentation. Retrieved Dec 20, 2023 from https://docs.flutter.dev/

[3] Caio Barbosa, Anderson Uchoa, Daniel Coutinho, Filipe Falcdo, Hyago Brito,

Guilherme Amaral, Vinicius Soares, Alessandro Garcia, Baldoino Fonseca, Marcio

Ribeiro, et al. 2020. Revealing the social aspects of design decay: A retrospective

study of pull requests. In Proceedings of the XXXIV Brazilian Symposium on

Software Engineering. 364-373.

Leonardo Ferreira Barbosa, Victor Hugo Pinto, Alberto Luiz Oliveira Tavares de

Souza, and Gustavo Pinto. 2022. To what extent cognitive-driven development

improves code readability?. In Proceedings of the 16th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement. 238-248.

[5] Alberto Luiz Oliveira Tavares de Souza and Victor Hugo Santiago Costa Pinto.
2020. Toward a definition of cognitive-driven development. In 2020 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME). IEEE,
776-1778.

[6] Eric Evans. 2004. Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional.

[7] Ronivaldo Ferreira. 2024. Artifacts. https://drive.google.com/drive/folders/
1Mv14lzTk6CqNjCwjhBn1hlQ0jcwsR_--

[8] Steven Fraser, Kent Beck, Bill Caputo, Tim Mackinnon, James Newkirk, and
Charlie Poole. 2003. Test driven development (TDD). In International Conference
on Extreme Programming and Agile Processes in Software Engineering. Springer,
459-462.

[9] DM Hutton. 2009. Clean code: a handbook of agile software craftsmanship.

Kybernetes 38, 6 (2009), 1035-1035.

Robert C Martin. 2000. Design principles and design patterns. Object Mentor 1,

34 (2000), 597.

George A Miller. 1956. The magical number seven, plus or minus two: Some

limits on our capacity for processing information. Psychological review 63, 2

(1956), 81.

Marco L Napoli. 2019. Beginning flutter: a hands on guide to app development.

John Wiley & Sons.

David Lorge Parnas. 1994. Software aging. In Proceedings of 16th International

Conference on Software Engineering. IEEE, 279-287.

Jherson Haryson A Pereira, Alberto Luiz Oliveira Tavares de Souza, and Victor

Hugo Santiago C Pinto. 2021. Cognitive Load Analyzer: A Support Tool for

Cognitive-Driven Development. In Proceedings of the XXXV Brazilian Symposium

on Software Engineering. 468-473.

[15] Gustavo Pinto and Alberto de Souza. 2023. Cognitive-Driven Development Helps

Software Teams to Keep Code Units Under the Limit! arXiv:2210.07342 [cs.SE]

Victor Hugo Santiago C Pinto, Alberto Luiz Oliveira Tavares de Souza, Yuri

Matheus Barboza de Oliveira, and Danilo Monteiro Ribeiro. 2021. Cognitive-

Driven Development: Preliminary Results on Software Refactorings.. In ENASE.

92-102.

Victor Hugo Santiago C. Pinto. and Alberto Luiz Oliveira Tavares De Souza. 2022.

Effects of Cognitive-driven Development in the Early Stages of the Software

Development Life Cycle. In Proceedings of the 24th International Conference on

Enterprise Information Systems - Volume 2: ICEIS. INSTICC, SciTePress, 40-51.

https://doi.org/10.5220/0011009000003179

[18] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.

Cognitive science 12, 2 (1988), 257-285.
[19] John Sweller. 2010. Element interactivity and intrinsic, extraneous, and germane
cognitive load. Educational psychology review 22 (2010), 123-138.

4

[10

[11

[12

[13

[14

[16

(17

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://dart.dev/guides
https://docs.flutter.dev/
https://drive.google.com/drive/folders/1Mv14lzTk6CqNjCwjhBn1hlQ0jcwsR_--
https://drive.google.com/drive/folders/1Mv14lzTk6CqNjCwjhBn1hlQ0jcwsR_--
https://arxiv.org/abs/2210.07342
https://doi.org/10.5220/0011009000003179

	Abstract
	1 Introduction
	2 A brief introduction to CDD
	3 PROPOSAL OF ICPs FOR FLUTTER
	3.1 Why Other ICPs?
	3.2 Suggested ICPs
	3.3 Weights and Limits of ICPs

	4 In-Person Workshop
	4.1 Participant Selection
	4.2 Developer Training
	4.3 Practical Implementation
	4.4 Team's ICPs

	5 Data Collection and Analysis
	5.1 Team meetings
	5.2 Semi-structured Interviews
	5.3 Source Code Analysis

	6 RQ1: How does CDD aid novice developers to understand and manage software complexity?
	7 RQ2: How do novice developers perceive the effectiveness of CDD?
	8 RQ3: Challenges for new developers in understanding CDD effectively?
	9 Lessons Learned
	9.1 Definition of Boundaries
	9.2 Enhancement and Management of ICPs
	9.3 Enhancing Student Learning and Curriculum Development with CDD

	10 THREATS To VALIDITY
	11 Conclusions
	12 Acknowledgements
	References

