
Contributing to open-source projects in refactoring code smells:
A practical experience in teaching Software Maintenance

Carla Bezerra
carlailane@ufc.br

Federal University of Ceará
Quixadá, Brazil

Victor Anthony Alves
victorpa@alu.ufc.br

Federal University of Ceará
Quixadá, Brazil

Antônio Hugo Lobo
hugorplobo@alu.ufc.br
Federal University of Ceará

Quixadá, Brazil

João Paulo Queiroz
Joaop3595@gmail.com
Federal University of Ceará

Quixadá, Brazil

Lara Lima
laragabriellysouzabatista@gmail.com

Federal University of Ceará
Quixadá, Brazil

Paulo Meirelles
paulormm@ime.usp.br
University of São Paulo

São Paulo, Brazil

ABSTRACT
Code smells are inadequate code structures that can harm quality
and maintainability. To remove these deficient structures, devel-
opers use refactoring techniques. Refactoring helps code be easier
to understand and modify by eliminating potential problems and
improving internal quality attributes. Most refactoring activities
are usually performed manually and undisciplined, which can cause
code degradation. Concepts, practices, software refactoring tools,
and code smells are rarely discussed in undergraduate comput-
ing courses. This problem is reflected in the software industry,
which generally does not use refactoring practices to improve code
readability and maintainability. In this context, we present in this
paper an experience report on teaching the practice of code smell
refactoring and the impact on internal quality attributes through
contribution to Open Source Software (OSS) projects. The study
was carried out in two undergraduate classes in Software Quality
and Software Maintenance courses, and our main results were that:
(i) students observed improvements in code quality after refactor-
ing smells; (ii) they noted connections between refactoring, testing,
and debugging; (iii) they felt less confident refactoring code spread
across multiple files; (iv) code complexity hindered their ability
to refactor; (v) the choice of refactoring techniques depended on
factors like project structure and personal preference, with tech-
niques often used in combination to address a single smell; (vi) most
refactorings decrease internal quality attributes; (vii) contributing
to OSS projects fostered a sense of programmer growth; and, (viii)
project clarity was linked to its potential for collaboration.

CCS CONCEPTS
• Software and its engineering→Maintaining software;Open
source model; • General and reference→ Empirical studies; •
Applied computing→ Education.

KEYWORDS
code smells, refactoring, software engineering education, open-
source software

1 INTRODUCTION
Code smells can indicate problems related to aspects of code quality,
such as readability and modifiability [18]. These anomalies can af-
fect any software system [38]. Unlike a bug or defect in the software

code, the presence of code smells does not mean the presence of
defects in the software. However, these anomalies can have other
negative consequences, impacting the software maintenance and
evolution [29]. Refactoring can remove code smells and can have a
direct impact on code quality [47]. Fowler [18] defines refactoring
as a set of small changes that are made to the internal structure
of the code without changing the external behavior. In practice,
the objectives of refactoring may vary. Some of these objectives
include combating software design degradation, reducing the effort
to perform maintenance activities, facilitating the implementation
of new features, fixing bugs present in the system, and removing
code smells [19, 21, 31].

Social coding and Open Source Software (OSS) have experienced
a surge in popularity, offering software developers diverse avenues
for community engagement and collaborative work [24]. This par-
adigm allows external contributors to suggest modifications to a
software project without necessitating access to the central repos-
itory held by the core team [48]. High-quality OSS projects rely
heavily on a large and sustainable community to develop quality
code, debug the code effectively, and create new features [1]. Recent
studies show that development in OSS projects can entail risks re-
lated to the quality and maintenance of the software [6, 20, 25]. One
of the main risk factors influencing the health of OSS projects is
directly linked to the maturity of the development processes, espe-
cially concerning the quality of the code submitted by contributors
[40]. Among these quality deficits, one most commonly identified
is code smells [36]. For OSS maintainers, it is both challenging and
time-consuming to find competent contributors within a potentially
large candidate pool [25].

In the educational context, software engineering instructors use
OSS projects as part of their assessment model, exposing many
perceived benefits in student knowledge [39]. The participation of
students in the collaboration of open source projects has been the
subject of several studies [11, 37], which pointed out that students’
skills and knowledge can make a significant and positive contribu-
tion to these projects. Among the most promising skills, refactoring
code smells and resolving issues are the most highlighted by the
students [7]. However, although students demonstrate these skills,
there is often a lack of motivation for them to take an active part
and get involved in improving the quality of real projects [42]. It
is, therefore, essential to involve students in contributing to OSS
projects, allowing them to apply their skills to improve the quality



SBES’24, September 30 – October 04, 2024, Curitiba, PR Bezerra, et al.

of these projects [39]. This approach not only directly benefits OSS
projects but also provides students with a valuable opportunity for
hands-on learning and the development of essential skills for their
careers in the field of information technology [11, 13, 22].

This paper presents an experience report of the teaching and
practice of code smell refactoring in Java and React OSS projects.
The experiment was carried out with two Software Quality and
Maintenance classes, analyzing the perceptions of 29 students. The
students identified and refactored 10 React code smells and 10 Java
code smells in 23 OSS projects. All 23 projects received refactoring
contributions and improved code quality, and most students made
their first contributions to OSS projects. We analyzed the following
aspects in our study: (i) students’ perception of refactoring prac-
tices; (ii) code smells that are harder to refactor and difficulties in
refactoring code smells; (iii) refactoring techniques most used to
remove code smells; (iv) impact of code smells refactoring on inter-
nal quality attributes; (v) benefits of collaboration in OSS projects;
and, (vi) students’ perception of the contribution process in OSS
projects. Our report and methodology can help software engineer-
ing instructors carry out practices with students to improve code
quality and contribute to OSS projects.

2 BACKGROUND
Code smells may indicate design problems at multiple granularity
levels, i.e., design problems at method and class levels. Software
developers often rely on code smells as indicators of code qual-
ity [18, 43]. For instance, developers have often used tools like Stack
Overflow to ask about code smells and anti-patterns and identify
these anomalies in their source code [45]. There are several tools
for detecting code smells [16]. In this study, two tools were used
to analyze code smells: PMD1, for detecting code smells in OSS Java
projects, and the React Sniffer2 extension of a tool also called
React Sniffer3, aimed at detecting code smells in React projects
that specifically use the Typescript language. Several studies have
used such tools in the literature [15, 17, 32, 33]. The Table 1 and
the Table 2 show, respectively, the code smells found by PMD and
React Sniffer that will be considered in this study.

Table 1: Code smells detected by PMD

Code Smells Description
Excessive Method Length A method with a high number of lines of codes [28]
Excessive Class Length A class with a high number of lines of codes [28]

Double Checked Locking An object is initialized but not all object fields are
necessarily written to the heap [14] .

Duplicated Code Identical or very similar pieces of code [18]

God Class Too many software features in a class. It tends to be very
large and hard to read and understand [18]

Data Class Classes that have fields, getting and setting methods
for the fields, and nothing else [18]

Collapsible If Statements A series of nested ’if’ statements [5]
Excessive Parameter List Function or method that have too many parameters [18]
Simplified Ternary Excessive or inappropriate use of the ternary operator

For Loop Variable Count When the control variable of a for loop is used for purposes
other than controlling the number of iterations of the loop

The OSS development model has attracted the attention of vari-
ous communities, including companies, professionals, and researchers
[1, 8]. This model allows developers to engage with communities,
1https://pmd.github.io/
2https://github.com/fabiosferreira/reactsniffer
3https://github.com/maykongsn/reactsniffer

Table 2: Code smells detected by ReactSniffer

Code Smells Description

Any Type The use of the ‘any‘ type in TypeScript disables the of types, compromises
security and can lead to errors at runtime

Many Non-Null
Assertions

The non-null assertion operator (’!’) in TypeScript ignores type checks and
can cause errors at runtime

Missing Union
Type Abstraction

Type aliases in TypeScript allow you to define reusable types and
accept union types, making code easier to maintain, read, and readability
of the code

Enum Implicit
Values

When enums are used without explicit values defined

Too Many Props When a component receives and uses many props [17]
Large File Files with a lot of lines and components [17]

Large Compo-
nent

Components that are difficult to read because they have a large number
of lines of code [17]

JSX Outside the
Render Method

When JSX code is outside the render method of the component may indicate
that the component has too much responsibility [17]

Force Update When a piece of code forces a component or page to reload[17]
Uncontrolled
Component

A component that does not use props/state to handle form’s data[17]

collaborate, and expand their knowledge [24]. The democratized
nature of contributions to OSS projects attracts many developers
who are not members of the core project team, who collaborate to
add value to various areas of the project architecture [25, 35].

In the context of Software Engineering Education (SEE), access
to the community, to the software source code and to information
about its development and evolution play key roles that drive the
use of OSS projects in academic activities [41]. These factors not
only enrich student learning, but also provide valuable opportuni-
ties to explore the practical principles and challenges of software
engineering in a real-world environment [44]. The contributions
made by students have played a significant and beneficial role in
OSS projects [37]. Among these contributions, adding new features
and fixing problems are the most common, highlighting students’
positive impact on the evolution and quality of these projects [39].

3 RELATEDWORK
The studies by Keuning et al. [26, 27] address the teaching of code
quality in software engineering education. In [26], the authors
investigated how teachers approach code quality, identifying prob-
lems and providing guidelines for improving students’ code quality.
Based on teachers’ guidance and code quality tools, they devel-
oped guidelines for refactoring, which, in this paper, we use as a
basis for students to evaluate the improvement of refactored code.
Then, Keuning et al. [27], they presented a tutoring system to al-
low students to practice improving code in small programs that
are already functional. Based on rules obtained from studies with
teachers and professional tools, this system defines how the code
should be rewritten without altering its functionality. Our work
used this system to teach students about refactoring practices.

Agrahari and Chimalakonda [2] introduced Refactor4Green, a
game developed to promote the teaching of code smells and refac-
toring. Such a game focuses on code smells related to energy ef-
ficiency and, in short, contains learning cards with the definition
of some code smells and their refactoring techniques, followed by
challenges in the form of objective quizzes. Similarly, dos Santos
[12] introduced the CleanGame, a gamified platform for practicing
code smell identification. This platform has two major modules,
one for students to review the main concepts about various code
smells and another for practical tasks of identifying code smells

https://pmd.github.io/
https://github.com/fabiosferreira/reactsniffer
https://github.com/maykongsn/reactsniffer


Contributing to open-source projects in refactoring code smells:
A practical experience in teaching Software Maintenance SBES’24, September 30 – October 04, 2024, Curitiba, PR

in the source code of Java systems. In both works, the evaluation
carried out with students shows that gamification can be helpful
for teaching code smells and refactoring. Our work relates to these
because we also report on a practical teaching activity and want to
understand if and how it contributes to the student’s experience.

Pinto et al. [39] explore software engineering students’ perspec-
tives on using OSS projects in undergraduate courses. The authors
conducted 21 semi-structured interviews with students to under-
stand their experiences, challenges, and perceptions when con-
tributing to OSS projects during the course. In addition, they dis-
cuss the importance of teacher involvement in influencing student
participation in OSS projects. The study reveals students’ positive
perceptions of using OSS projects, with the majority of them pos-
itively evaluating this practice as enriching their experience and
learning during their degree. The present work is directly related
to this because we used these perceptions as motivators to carry
out the contribution practice in OSS projects with the students.

AlOmar et al. [4] investigate aspects of the automation of source
code refactoring in the classroom; the objectives include demon-
strating how students apply the refactoring technique using a spe-
cific refactoring tool and investigating students’ perceptions of the
tool’s usefulness, usability, and functionality. The methodology
involved the analysis of refactoring submissions from students on
software engineering courses, with an empirical approach to as-
sess the quality of the refactored code and a qualitative approach
through a student survey. The results indicated that tool-assisted
refactoring positively impacted the correction of code antipatterns.
In this study, we used a similar refactoring analysis method to col-
lect the techniques and impacts of the refactoring carried out by
the students on the OSS projects.

4 STUDY SETTINGS
This study aims to report the experience of the teaching process
and practice of refactoring code smells in Java and React with
contributions to OSS projects. It aims to analyze how eliminating
these code smells affects internal quality attributes and contributes
to OSS projects by removing these code smells.

4.1 Research Questions
We have defined the following research questions (RQs) to guide
our research:

RQ1 – What is students’ perception about the practice of code
smells refactoring? RQ1 seeks to understand the students’ percep-
tion of the importance of the practice of code smell refactoring.
By answering RQ1, we can understand the students’ opinion of
employing code smell refactoring practices. Seeks to identify which
code smell refactoring technique was used the most. The literature
suggests refactoring techniques for some code smells [18]. However,
for most code smells, the refactoring techniques used to remove
them are free. We want to know if students are refactoring code
smells appropriately.

RQ2 – What are the code smells that are harder to refactor accord-
ing to students’ perceptions? RQ2 seeks to identify the types of code
smells that are harder to refactor from the perspective of each stu-
dent. To answerRQ2, we quantitatively analyzed which code smells

were identified by the students as the most difficult to refactor. Fur-
thermore, we identified that the code smell refactoring technique
was used the most. The literature suggests refactoring techniques
for some code smells [18]. However, for most code smells, the refac-
toring techniques used to remove them are free. We want to know
if students are refactoring code smells appropriately.

RQ3 –What are the difficulties of refactoring code smells according
to students’ perceptions? By answering RQ3, we can understand
students’ most common difficulties during refactoring practices.
In addition, we can analyze the impact of refactoring code smells
on internal quality attributes and understand if there is a relation-
ship between the difficulties encountered and the outcome of the
refactorings.

RQ4 – What are students’ perceptions of the benefits of collabora-
tion in OSS projects from the perspective of improving code quality?
After students submit refactorings as contributions to OSS projects,
RQ4 aims to identify the benefits of improving code quality from
the student’s perspective. This improvement is qualitatively identi-
fied in the questionnaires answered by students and in submitting
contributions to projects.

RQ5: What are students’ perceptions of the contribution of refac-
torings in OSS projects? At RQ5, we aim to investigate students’
perceptions of the contribution process in OSS projects. Contribu-
tions are made according to project standards by student teams and
may be accepted or rejected by the project maintainers.

4.2 Steps and Procedures
We conducted the following steps to perform code smell refactoring
practices with the students:

Step 1: Theoretical and Practical Content Training. In the
initial phase, we provided theoretical instruction in the Software
Quality and Software Maintenance courses, covering essential con-
cepts for code smell refactoring. This phase encompassed three
weeks of theoretical classes, totaling 12 hours, focusing on refac-
toring techniques and identifying code smells. Following this, two
weeks, comprising 8 hours, were dedicated to exploring metrics for
internal quality attributes (complexity, size, cohesion, coupling, and
inheritance, as described in Table 6), with practical sessions utilizing
the Understand tool. Additionally, students participated in a work-
shop session discussing contributions to OSS software, spanning 2
hours. Concluding the curriculum component, one week, involving
4 hours, was allocated to instructing students on effectively utiliz-
ing PMD and ReactSniffer tools. This comprehensive educational
program spans 26 hours, pivotal in enhancing the course’s academic
offerings.

The classes focused on Software Quality (C1) and Software Main-
tenance (C2) were held during the academic period of 2023.2, pri-
marily involving students from the undergraduate Software Engi-
neering program. Table 3 profiles students engaged in the practice
of code smells refactoring, detailing their participation across sev-
eral dimensions: ID identifies the student; Semester specifies the
academic term during which the student was enrolled in the course;
Programming Language - Indicates proficiency in the selected
project language (Java or React Typescript). Code Smells shows



SBES’24, September 30 – October 04, 2024, Curitiba, PR Bezerra, et al.

if the student already knew code smells before the course; Refac-
toring represents the student’s level of knowledge in refactoring
techniques; Open Source indicates whether the student had previ-
ously contributed to open source projects.

Table 3: Students profile

ID Semester Programming
Language

Code Smells Refactoring Open Source

P1 8º Minimum No None No
P2 6º Intermediate Yes Basic No
P3 6º Advanced Yes Intermediate No
P4 8º Advanced Yes Intermediate No
P5 6º Advanced No Intermediate No
P6 4º

Intermediate
No Intermediate No

P7 6º Advanced No Intermediate No
P8 8º Intermediate Yes Basic No
P9 6º Advanced Yes Intermediate No
P10 6º Minimum No Minimum No
P11 8º Intermediate No Minimum No
P12 6º Minimum Yes Minimum No
P13 8º Intermediate Yes Intermediate No
P14 8º Basic Yes Advanced No
P15 6º Basic Yes Intermediate No
P16 6º Intermediate Yes Basic No
P17 8º Intermediate Yes Basic No
P18 6º None No Minimum No
P19 8º Advanced Yes Intermediate No
P20 8º Intermediate No Basic Yes
P21 4º Intermediate No Minimum No
P22 7º Minimum No Basic No
P23 10º Advanced No Basic No
P24 6º Basic Yes Advanced No
P25 10º Intermediate Yes Intermediate No
P26 6º Basic Yes Basic No
P27 6º Intermediate No Minimum Yes
P28 7º Intermediate Yes Intermediate No
P29 8º Intermediate No Basic No

Step 2: Presentation of the code smells refactoring practice.
After passing the concepts and tools to the students, we presented
the code smell refactoring practice tasks the participants should
carry out, which consisted of the final work of the course. In teams
of two people or individually, students would have to select an OSS
project in Java or React that was available to choose from a list to
identify and refactor the code smells of the project. Table 4 shows
the division of students by class. Each team had to refactor at least
four different types of code smells, wherein at least 20 occurrences
of code smell of these four types would be refactored.

Table 4: Students divided by class

Class Students
Class 1 (C1) P1, P2, P3, P4, P6, P7, P9, P10, P11, P12, P16, P18, P21, P22, P23, P25,

P26, P27, P28, P29
Class 2 (C2) P8, P13, P14, P17, P19, P20
Both classes P5, P15, P24

The practice delivery was divided into the following tasks:

T1 - Choose a project and contribute to OSS projects. For project
selection, students adhered to the following criteria: (i) projects
must be implemented in Java or Typescript, (ii) contain a minimum
of 2,000 lines of code, and (iii) exhibit at least four types of code
smells with a total of 20 occurrences or more. In cases where a
project did not meet the specified criteria, students were required
to select an additional project to fulfill the quota. Students were
also encouraged to solve minor issues in these OSS projects. Table 7
provides an overview of the selected projects, including project ID,

Table 5: Frequency of Code Smells refactored

Code Smells Frequency Language
Any Type 63 React

Missing Union Type Abstraction 53 React
Excessive Method Length 37 Java

Large Component 35 React
Too Many Props 28 React

Excessive Class Length 28 Java
JSX Outside The Render Method 20 React

Many Non-Null Assertions 14 React
Double Checked Locking 12 Java
Enum Implicit Values 10 React

Large File 9 React
Duplicated Code 6 Java

Data Class 6 Java
God Class 5 Java

Collapsible If Statements 3 Java
Excessive Parameter List 3 Java

Force Update 3 React
Simplified Ternary 2 Java

For Loop Variable Count 1 Java
Uncontrolled Component 1 React

team composition, students involved in refactoring, programming
language, and total lines of code.

T2 - Identify and address code smells. Students were allowed to
choose four types of code freely smells if the analysis tool detected
more than four types. Using PMD or ReactSniffer, they identified
and addressed 20 instances of these code smells. This approach
empowered students to focus on the most prevalent or relevant
code quality areas, enhancing their understanding of refactoring
techniques and software design principles. Table 5 illustrates the
number of refactored code smells documented in students’ diaries
and the languages.

T3 - Measurement of Code Quality. Students employed the Un-
derstand tool to assess code quality before and after refactoring,
aiming to quantify internal quality attributes as outlined in Table 6:
Cyclomatic Complexity (CC), Sum Cyclomatic Complexity (SCC)
Average Cyclomatic Complexity (ACC), Nesting (MaxNest), Count-
DeclFunction, CountLine, Comment Lines of Code (CLOC), Lack of
Cohesion of Methods (LCOM2), Coupling Between Objects (CBO),
Depth of Inheritance Tree (DIT), Number Of Children (NOC), e
Bases Classes (IFANIN). By analyzing these metrics, students could
observe improvements in various aspects of code quality, providing
valuable insights into the effectiveness of the refactoring process.

T4 - Refactor one type of code smell at a time, documenting chal-
lenges and techniques. Following the initial analysis using Under-
stand, students proceeded to refactor the identified code smells
systematically, addressing one type at a time. Upon completing
the refactoring process for each type, students were required to
maintain a diary documenting the difficulties they encountered, the
refactoring methods employed, and any observed changes, includ-
ing the potential introduction of new code smells or improvements
in quality metrics.

T5 - Conduct a code review and submit contributions, specifying im-
provements made based on metrics. During the last phase, students
conducted code reviews of their refactored code and submitted con-
tributions to the project repository. Based on gathered metrics, they
specified improvements, addressed code quality enhancements, and
resolved any remaining code smells. After completing the code



Contributing to open-source projects in refactoring code smells:
A practical experience in teaching Software Maintenance SBES’24, September 30 – October 04, 2024, Curitiba, PR

Figure 1: Tasks from practice delivery

Table 6: Internal quality metrics analyzed

Quality attributes Metrics Description
McCabe Cyclo-
matic Complexity
(CC)

It is equal to the number of decision points contained
in that program plus one. The higher the value of
this metric, more complex is the code structure [34].

Sum Cyclomatic
Complexity (SCC)

Sum of cyclomatic complexity of all nested functions
or methods. The higher the value of this metric, more
complex is the code structure [34].

Average Cyclo-
matic Complexity
(ACC)

Average cyclomatic complexity for all nested func-
tions or methods. The higher the value of this metric,
more complex is the code structure [34].

Nesting (MaxNest) Maximum nesting level of control constructs (if,
while, for, switch, etc.) in the function. The higher
the value of this metric, more complex is the code
structure [30].

Complexity

CountDeclFunction Number of functions. The higher the value of this
metric, the larger the system size [23].

CountLine Number of physical lines. The higher the value of
this metric, the larger the system size [23].

Comment Lines of
Code (CLOC)

Number of lines containing comment. The higher
the value of this metric, the larger the system size
[30].

Size

Lack of Cohe-
sion of Methods
(LCOM2)

Calculates what percentage of class methods use a
given class instance variable. The higher the value
of this metric, less cohesive is the class [9].

Cohesion

Coupling Between
Objects (CBO)

Number of classes that a class is coupled. The higher
the value of this metric, more coupling is the classes
and methods [9].

Coupling

Depth of Inheri-
tance Tree (DIT)

Maximum depth of class in inheritance tree. The
higher the value of this metric greater is the degree
of inheritance of a system [9].

Number Of Chil-
dren (NOC)

Number of immediate subclasses. The higher the
value of this metric, the greater the degree of inheri-
tance of a system [9].

Bases Classes
(IFANIN)

Number of immediate base classes. The higher the
value of this metric, the greater the degree of inheri-
tance of a system [10].

Inheritance

smells refactoring task, students were asked to answer a ques-
tionnaire to analyze their experience. The questionnaire covered
various aspects, including the challenges faced when refactoring
the most complex code smells, the difficulties encountered during
the refactoring process and collaboration in OSS projects, and the
perceived benefits of these practices. We invited the students to
share their perceptions about the most challenging aspects of refac-
toring, their specific difficulties, and the benefits they identified
from collaborating on OSS projects.

Finally, Figure 1 explains the workflow of the tasks. Additionally,
we conducted a pre-questionnaire before the tasks’ commencement
and a post-questionnaire after completing the tasks.

5 RESULTS AND DISCUSSION
In the following sections, we show our findings and discuss our
results, explicitly answering the research questions of this study.

Table 7: Project characterization

System Teams Students Language LOC
S1 T1 P27 Java 43145
S2 T2 P6, P21 Java 73542
S3 T3 P11 Java 5571
S4 T4 P29 Java 6129
S5 T5 P25, P7 Java 14313
S6 T6 P26, P2 Java 5126
S7 T7 P17 Java 7560
S8 T8 P13, P8 Java 16989
S9 T9 P14 Java 96523
S10 T10 P28 Java 114600
S11 T11 P1 React 17490
S12 T12 P4 React 58937
S13 T13 P9, P3 React 24317
S14 T14 P12 React 32058

S15, S16, S17 T15 P22 React 3870, 4893, 134996
S18 T16 P15, P24 React 28549
S19 T17 P10, P16 React 334060
S20 T18 P18 React 29723
S21 T19 P19 React 51042
S22 T20 P20 React 104717
S23 T21 P5 React 264719

5.1 Students’ perception of refactoring practices
We addressed RQ1 by analyzing the data collected through a ques-
tionnaire answered by the students. We asked them about the main
benefits they identified in the practice of refactoring code smells
(See Table 8) and what soft and hard skills they acquired through
the execution of the work (See Tables 9 and 10).

Table 8: Students’ perceptions about the benefits of code
smells refactoring

Benefits Students Total

Improve software quality

P2, P5, P6, P7, P8,
P10, P13, P15, P17, P20,
P21, P22, P23, P24, P26,
P27, P28, P29

18

Identification of code smells P1, P9, P11, P25 4
Understand the project P4, P6, P11, P14 4
Code cleanup P3, P26, P28 3
Improve programming skills P12, P16, P18 3
Removal of future problems P3 1
Code review P19 1

Observing Table 8, it is possible to notice that a considerable
number of the students considered that the practice of refactoring
code smells led to an improvement in the quality of the systems.
In addition, other benefits mentioned were improving their skills
in identifying code smells, understanding a project, performing
code cleaning, and preventing future problems. This suggests that
refactoring code smells tend to positively impact the quality of



SBES’24, September 30 – October 04, 2024, Curitiba, PR Bezerra, et al.

a system, according to the students’ perceptions. Some student
reports corroborate this statement:

P2:“Making the code more maintainable and improving understanding of
certain parts of the code.”

P22:“Improving code readability and maintainability.”

P26:“Code becomes more readable and clean.”

Table 9: Students’ perceptions about the soft skills acquired
with the code smells refactoring

Soft Skills Students Total
Creativity P3, P18, P21, P26, P29 5
Problem-solving P4, P6, P21, P26, P29 5
Teamwork P8, P22, P24, P26 4
Critical thinking P3, P6, P26 3
Adaptability P3, P26, P29 3
Proactive P2, P28 2
Communication P19, P25 2

Analyzing Table 9, we noticed that several students (13) did not
perceive any acquisition of soft skills after practicing code smell
refactoring. It is important to emphasize that this does not mean
that practicing refactoring does not lead to soft skill development,
as these students may consider themselves experienced in the soft
skills used during the work, such as creativity, problem-solving,
and teamwork, which other students mentioned.

Table 10: Students’ perceptions about the hard skills acquired
with the code smells refactoring

Hard Skills Students Total

Debugging P6, P9, P10, P16, P17,
P20, P21, P26 8

Testing P9, P10, P16, P17, P20,
P21, P26, P27 8

Refactoring techniques P2, P7, P12, P15, P28 5
None P1, P3, P11, P18, P23 5
TypeScript P4, P15, P22, P24 4
Algorithms P10, P13, P27, P29 4
Java P14, P25, P27 3
React P15, P19, P24 3
Clean code P4, P8 2
Code analysis P5, P12 2
Git P4 1
Github P4 1
Maintenance P27 1

Finally, Table 10 shows us that the primary hard skills developed
according to students’ perceptions were debugging, testing, and
refactoring techniques. This suggests an association between the
use of tests and debugging tools as aids in the refactoring process,
as proposed in the literature [18], and knowledge of refactoring
techniques. Some reports from students reinforce this statement:

P2:“Hard skills would be refactoring techniques, and in soft skills it was being
more proactive in problem-solving.”

P21:“Hard skills: testing and debugging. Soft skills: problem-solving and
creativity.”

Implications of RQ1. Our findings imply that most students
reported that code smell refactoring improved the system’s quality.
Furthermore, during the refactoring process, students perceived
the acquisition of hard skills such as testing and debugging, which
suggests a relationship between such skills and the refactoring

process, as already proposed in the literature. However, several
students also reported no acquisition from the soft skills standpoint.

5.2 Students’ perceptions of the code smells that
are harder to refactor

We address RQ2 by analyzing student responses after refactoring
code smells. Thus, we conducted a new qualitative analysis to iden-
tify which code smells were the most difficult to remove. Out of the
eight refactored code smells in the React projects, we highlight the
code smells Large Component and Too Many Props. In Java projects,
out of the fifteen refactored code smells, the code smells God Class,
Data Class, and Large Class were found to be the most cited by
students as the most difficult to refactor. Table 11 presents the most
challenging code smells to refactor and the refactoring techniques
students use.

Table 11: Code smells harder to refactor and the refactoring
techniques used

Code Smells Language Students Total
Refactoring
Techniques

God Class Java P2, P6, P7, P3, P14, P25,
P26, P28 8

Extract Class
Extract Method
Move Method

Large
Component React P4, P5, P10, P15, P19, P20,

P23, P24 8
Extract Component
Extract Method
Extract Class

Too Many
Props React P5, P10, P12, P15, P18, P24,

P25 7
Move Component
Move Method
Extract Interface

Large Class Java P14, P22, P25, P29 4
Extract Class
Extract Method
Move Method

Data Class Java P7, P25, P26, P29 4 Encapsulate Field

From Table 11, we could see that the code smells described by
students as the most difficult to refactor are related to highly ro-
bust and multifunctional classes (God Class, Large Class, Data Class,
Large Component and Too Many Props). Fowler [18] points out that
refactoring code smells require techniques to divide the code into
smaller, more manageable parts, each with a clear responsibility.
In addition, he notes that refactoring these code smells can sig-
nificantly impact various components of the code, highlighting
the need for a careful approach. These concepts may indicate that
students have faced difficulties removing code smells that perme-
ate multiple code files and often feel insecure about the impact
of refactoring on responsibility-overloaded pieces of code. This
observation suggests that refactoring these code smells required a
cautious and well-planned approach to ensure the effectiveness of
the improvements made by the students.

On the other hand, students demonstrated a good understand-
ing of refactoring practices and applied a multi-faceted approach
to solving complex code problems. An example is the recurring
use of techniques such as Extract Component, Extract Method and
Extract Class to deal with those more difficult code smells. These
techniques aim to break down the code into smaller, more man-
ageable parts, each with a clear responsibility [18]. This indicates
that the students could select the most appropriate techniques for
removing highly complex code smells since all the code smells
considered most difficult had the characteristic of a high burden
of responsibility. It is clear, therefore, that despite the diversity of
techniques available, many of them share similar goals and have



Contributing to open-source projects in refactoring code smells:
A practical experience in teaching Software Maintenance SBES’24, September 30 – October 04, 2024, Curitiba, PR

been applied in a complementary way to achieve more effective
results in improving project code quality.

Implications of RQ2. Our findings reinforce the assumption
that students consider code problems that affect several source code
files to be the most difficult to refactor. Students feel unconfident
about removing these problems, mainly because they do not un-
derstand how other files are affected after refactoring and because
they are large and often complex files to refactor. In this way, it can
be inferred that good programming practices and teaching focused
on refactoring techniques facilitate the students’ comprehension
process. Based on these results, it is possible to draw up a document
that will serve as a support to help students understand what each
code smell is related to and the possible activities to remove them.
In addition, it is interesting to see a correlation between the most
challenging code smells in React and Java. Students had more diffi-
culty with code smells related to size and a high level of coupling,
such as God Class, Large Class, Large Component and Too Many
Props. However, they were able to choose the best refactoring tech-
niques to reduce this coupling, such as Extract Class and Extract
Method.

5.3 Difficulties of refactoring code smells
To address RQ3, we conducted a qualitative analysis of student
responses gathered after refactoring code smells. This analysis
aimed to identify students’ main difficulties during the refactoring
process.

From the answers collected, we identified four categories of
difficulties that most occurred among the students: (i) difficulty
in understanding the source code; (ii) emergence of bugs after
refactoring a code smell; (iii) difficulty choosing the refactoring
techniques and (iv) lack of knowledge about technologies. Table
12 presents the categories identified after analyzing the students’
responses. The first column lists the categories found; the second
contains the number of students who had the respective difficulties
caused during refactoring the code smell.

Table 12: Difficulties identified by students in the practice of
refactoring

Categories Students
Difficulties understanding the source code P3, P6, P7, P8, P9, P10, P11,

P12, P14, P18, P19, P21, P23,
P24, P26, P27

Emergence of bugs after refactoring a code smell P5, P6, P16, P20, P21, P24, P26,
P28, P29

Difficulty choosing the refactoring technique P2, P6, P10, P13, P15, P25
Lack of knowledge about technologies P1, P17, P12, P22, P23

Examining Table 12, we noticed that eight students faced diffi-
culties when refactoring a code smell without this, resulting in the
emergence of bugs in the project. This suggests that the process of
refactoring code smells should be carried out with caution, applying
techniques that preserve the behavior of features after refactoring.
Some reports corroborate this statement, as shown below:

P5:“It was difficult to ensure that these changes did not cause side effects in
other parts of the project.”

P26:“It was hard not to impact the complexity and architecture of the
application in problematic ways”

We also identified through the information in Table 12 that some
students are in more than one category of difficulties in code smell
refactoring. As a result, we can see relationships between the cate-
gories of difficulties students encounter. The relationship we high-
light is that the more difficult the source code is to understand, the
more complicated it is to refactor the code smell. Some student
reports reinforce such a statement:

P8:“ I had difficulties understanding the code and the logic behind it, in order
to refactor it effectively.”

P9:“Learning about the project I am starting the refactoring on was
complicated.”

Lastly, we analyzed the impact of refactoring code smells on the
following internal quality attributes: cohesion, coupling, complex-
ity, and inheritance for Java projects (see Table 14), and complexity
and size for React projects (see Table 13), their respective metrics,
and the percentage change in each metric’s value before and after
refactoring for each system. To analyze the impact of code smell
refactoring on attributes with more than one metric, we compared
the sum of the pre- and post-refactoring metrics using the data
collected from the Understand tool. The symbol ↑ represents an
increase in the metric’s value, the symbol ↓ represents a decrease
in the metric’s value, and the symbol – shows that the attribute
value has not changed after refactoring the code smells. It is impor-
tant to note that if the cohesion value increases, this attribute has
been improved due to the greater cohesion of a class or method,
thus improving the system’s quality. Attributes such as coupling,
inheritance, and complexity should have low values to indicate an
improvement in the system’s quality. The size attribute, in turn,
can show improvement or deterioration in quality, depending on
the context in which it is being evaluated.

For Java projects, we observed that cohesion was reduced for
three projects, improved for only one project, and remained un-
changed for another. Coupling had mixed results, while project
size and inheritance remained the same. However, complexity was
reduced in four projects and remained the same in one project, with
significant reductions in two projects (S8 with 25.13% and S3 with
10.90%). These two projects with the most significant complexity
reduction involved refactoring code smells related to large code
entities: Excessive Method Length and Excessive Class Length in
S3 and Excessive Method Length and God Class in S8, suggest-
ing a possible correlation between these code smells and system
complexity.

As seen in Table 13, the overall impact of refactoring on React
systems was minimal, with slight increases in complexity and size.
One explanation for these results could be the students’ selection
of code smells. Smells like Any Type and Missing Union Type
Abstraction represent changes that the metrics may not capture.
Therefore, it is evident that further research is needed to investigate
the impact of refactoring React code smells on software quality.

According to data from a systematic review [3], some studies
in the literature have identified that code smell refactoring does
not continually improve internal quality attributes, often having a
negative impact, as occurred in our study. Similarly, it is noteworthy
that the ineffectiveness of refactorings may result from students’
difficulties during the refactoring process.



SBES’24, September 30 – October 04, 2024, Curitiba, PR Bezerra, et al.

Table 13: Impact of refactoring on internal quality attributes of React projects

Complexity SizeSystem AvgCyclomatic SumCyclomatic Cyclomatic MaxNesting CountDeclFunction CountLine CountLineComment
S13 before refactoring 1.93 9594 3272 14 1933 57043 3413

Total: 12881,93 62389
S13 after refactoring 1.93 9595 3273 14 1932 57071 3413

Total: 12883,93 62416
Result: ↑ 0.02% ↑ 0.04%

S14 before refactoring 1.78 8145 2592 17 1310 65067 3773
Total: 10755,78 70150

S14 after refactoring 1.41 8141 2598 17 1316 65059 3752
Total: 10757,41 70127
Result: ↑ 0.02% ↓ 0.03%

S15 before refactoring 29 1108 407 110 230 7786 70
Total: 1654 8086

S15 after refactoring 33 1206 444 131 246 7843 70
Total: 1814 8159
Result: ↑ 9.67% ↑ 0.90%

S16 before refactoring 86 824 294 71 168 18175 2339
Total: 1275 20682

S16 after refactoring 90 829 302 80 170 18143 2348
Total: 1301 20661
Result: ↑ 2.04% ↓ 0.10%

S17 before refactoring 2227 22252 8550 1526 6061 184253 3795
Total: 34555 194109

S17 after refactoring 2226 22249 8547 1520 6060 184233 3797
Total: 34542 194090
Result: ↓ 0.04% ↓ 0.01%

S18 before refactoring 561 2572 69 242 1542 28549 2294
Total: 3444 32385

S18 after refactoring 551 2566 67 242 1551 28611 2294
Total: 3426 32456
Result: ↓ 0.52% ↑ 0.22%

S19 before refactoring 6778 70011 23085 6691 14874 728126 31418
Total: 106565 774418

S19 after refactoring 6870 69938 23101 6718 14892 727729 31385
Total: 106627 774006
Result: ↑ 0.06% ↓ 0.05%

S20 before refactoring 1.22 5234 1619 5 1220 29723 2722
Total: 6859,22 33665

S20 after refactoring 1.25 5234 1634 5 1220 29970 2722
Total: 6874,25 33912
Result: ↑ 0.22% ↑ 0.73%

S21 before refactoring 295 1448 31 101 817 17500 523
Total: 1875 18840

S21 after refactoring 301 1388 31 99 787 17266 523
Total: 1819 18576
Result: ↓ 2.99% ↓ 1.40%

S22 before refactoring 228 2204 84 54 1967 14338 312
Total: 2570 16617

S22 after refactoring 232 2214 84 59 1966 14322 293
Total: 2589 16581
Result: ↑ 0.74% ↑ 0.22%

S23 before refactoring 0 0 236407 397 13576 875 6568
Total: 236804 21019

S23 after refactoring 0 0 236420 397 13605 879 6590
Total: 236817 21074
Result: ↑ 0.01% ↑ 0.26%

Table 14: Impact of refactoring on internal quality attributes of Java projects

Cohesion Coupling Complexity InheritanceSystem PercentLack OfCohesion CountClass Coupled SumCyclomatic MaxNesting CountClass Derived CountClass Base MaxInhe ritanceTree
S1 before refactoring 6447 1848 12645 1012 289 463 573

Total: 6447 1848 13657 752 573
S1 after refactoring 6302 1834 12487 920 289 463 573

Total: 6302 1834 13407 752 573
Result: ↓ 2.25% ↓ 0.76% ↓ 1.83% – 0.00% – 0.00%

S2 before refactoring 21368 4605 34648 1457 205 732 1024
Total: 21368 4605 36105 937 1024

S2 after refactoring 21368 4605 34648 1456 205 732 1024
Total: 21368 4605 36104 937 1024
Result: – 0.00% – 0.00% – 0.00% – 0.00% – 0.00%

S3 before refactoring 1866 791 2664 88 12 81 109
Total: 1866 791 2752 93 109

S3 after refactoring 1438 791 2364 88 12 81 109
Total: 1438 791 2452 93 109
Result: ↓ 22.94% – 0.00% ↓ 10.90% – 0.00% – 0.00%

S8 before refactoring 5224 1590 12499 1048 34 192 185
Total: 5224 1590 13547 226 185

S8 after refactoring 5258 1622 9317 826 34 192 185
Total: 5258 1622 10143 226 185
Result: ↑ 0.65% ↑ 2.01% ↓ 25.13% – 0.00% – 0.00%

S9 before refactoring 18312 5483 59112 3751 328 999 1132
Total: 18312 5483 62863 1327 1132

S9 after refactoring 18219 5480 59089 3748 328 999 1132
Total: 18219 5480 62837 1327 1132
Result: ↓ 0.51% ↓ 0.05% ↓ 0.04% – 0.00% – 0.00%

Implications of RQ3.: Our findings indicate that even after
training, students still encountered various difficulties while refac-
toring code smells. Based on their responses, we emphasize that

refactoring code smells should be carried out cautiously, applying
techniques that preserve the behavior of features after refactoring.
Additionally, the more difficult the source code is to understand, the



Contributing to open-source projects in refactoring code smells:
A practical experience in teaching Software Maintenance SBES’24, September 30 – October 04, 2024, Curitiba, PR

more complex it becomes to refactor the code smell. Moreover, the
analysis of quality metrics before and after refactorings revealed
mixed results. There were mixed outcomes in Java projects, includ-
ing cohesion degradation in some cases. In React projects, there
were slight overall increases in complexity and size. This corrobo-
rates the idea that refactoring code smells may yield no results or
even lead to negative outcomes, which, in this case, we can theorize
is a product of the difficulties students encounter.

5.4 Benefits of collaboration in OSS projects
After contributing to OSS projects, we analyzed RQ4 through stu-
dent responses. Therefore, we performed a new qualitative analysis
to identify the main benefits of collaborating on OSS projects. From
the responses collected, we identified four categories of benefits
most cited by students: (i) code improvement, (ii) helping maintain
a more active community, (iii) improving students’ knowledge, and
(iv) providing faster and more innovative resolution of project prob-
lems. Table 15 presents the categories identified after analyzing the
student responses. The first column lists the categories found, the
second contains the number of students who felt the benefits caused
when contributing to OSS projects, and the third column contains
the total number of students who felt the respective benefit.

Table 15: Benefits of collaboration in OSS projects

Categories Students Total
Code improvement P1, P5, P8, P10, P12, P13, P15,

P20, P21, P22, P24, P27, P29 13
Help maintain a more active com-
munity

P2, P4, P9, P18, P21, P22, P28 7

Improve students knowledge P3, P4, P9, P18, P19, P28 6
Provide faster and more innovative
resolution of project issues

P1, P11, P12, P21 4

In Table 15, we can observe that thirteen students handled an
improvement in their code after contributing to the OSS project.
This data suggests that the process of refactoring code smells in
OSS projects was successful. Several reports support this assertion,
as follows:

P1:“The most notable benefit for me was the assistance of various perspectives
collaborating to identify and enhance codes.”

P5:“The benefit of being an OSS project is that people can make these small
refactorings, thus improving the code.”

We also identified through the information in Table 15 that some
students fall into more than one benefit category when contributing
to OSS projects. As a result, we can see relationships between the
categories of benefits that students encounter. The relationship we
highlight is that the more contact with the community, the more
students tend to see an increase in their knowledge. Some reports
from students reinforce this statement:

P18:“I believe this helps an entire community and also helps you develop as a
programmer.”

P28:“Very cool, because you can actively participate in a project that has
many people collaborating, engage the community more and learn more.”

Implications of RQ4. Our findings indicate that the more the
student sees the benefit of contributing to the community, the more
he realizes his evolution as a programmer. The correlation between

communication with other developers and a feeling of improvement
in students is noticeable. Therefore, it is important to highlight the
importance of establishing communicationwith other programmers
through OSS project communities. Furthermore, improving the
code of OSS projects should also be highlighted as a big step for
the students’ professional careers. As a result, encouraging student
contributions to OSS projects can be good for training professionals
who are increasingly accustomed to communicating in the software
development environment.

5.5 Students’ perception of the contribution
process in OSS projects

We investigated RQ5 by analyzing student feedback following their
involvement in OSS projects. Afterward, we conducted a new qual-
itative analysis to pinpoint the primary challenges encountered
by students in contributing to such projects. From the responses,
we identified four recurring categories of difficulties reported by
students: (i) comprehending the project, (ii) initiating a pull request,
(iii) grasping the contribution guidelines, and (iv) elucidating the
issue addressed by the student. Table 16 showcases these categories
based on our analysis of student responses. The first column enu-
merates the identified categories; the second column indicates the
number of students encountering difficulties contributing to OSS
projects within each category; the third column denotes the total
count of students facing the respective difficulty.

Table 16: Students’ perception of the contribution process in
OSS projects

Categories Students Total
Comprehending the project P3, P6, P7, P8, P9, P14, P20, P21, P25, P26 10
Initiating a pull request P1, P4, P5, P23, P27 5
Grasping the contribution guide-
lines

P15, P16, P18, P27 4

Elucidating the issue addressed by
the student

P2, P10, P24 3

Examining Table 16, we noticed that ten students had difficulty
understanding the project, which became an obstacle to contribut-
ing to the OSS project. This fact suggests the need for OSS projects
to provide a minimum of project documentation to facilitate con-
tributions from other developers. Some reports corroborate this
statement, as follows:

P26:“There was a lack of explanatory documentation and internal support.”

P21:“Code quality issues were often not simple and required in-depth analysis
to identify the root cause.”

Implications of RQ5: Our findings underscore the relationship
between the comprehensibility of a project and its collaborative po-
tential. Essentially, the more complex a project is to grasp, the more
challenging it becomes to foster effective collaboration and enact
meaningful changes. This correlation between project complexity
and collaborative difficulty is unmistakable. Therefore, it becomes
imperative to emphasize the necessity of enhancing project under-
standing through streamlined documentation. We enable smoother
collaboration and more informed contributions by providing devel-
opers with more precise insights into project intricacies. Moreover,
offering explicit guidance on how individuals can contribute to the



SBES’24, September 30 – October 04, 2024, Curitiba, PR Bezerra, et al.

project is vital. This ensures that newcomers can seamlessly inte-
grate into the development process. Consequently, to augment the
quantity and elevate the quality of contributions to OSS endeavors,
it is indispensable to establish minimum documentation outlining
the project structure alongside a comprehensive guide delineating
the contribution process.

6 THREATS TO VALIDITY
We discuss threats to the study validity [46] as follows.

Internal Validity. One of the threats to internal validity is the
student’s lack of experience with refactoring concepts and tools
and code smells. We provided them with a six-week training in
the Software Quality course to mitigate this threat. Another threat
is related to the quality of refactorings. It was impossible to code
review all projects to ensure that the refactorings applied to the
code smells were the most appropriate.

Construct Validity. A construct threat validity of the question-
naire due to some research questions in the study, the construct
threat validity of the questionnaire involved a qualitative analysis
of students perceptions of the practice of refactoring code smells
which may lead students to hesitate in giving a truthful answer
due to the apprehension of being evaluated. We tried to emphasize
that the ideal was to be as honest as possible with the answer to
mitigate this problem.

External Validity. The results apply solely to Java-based object-
oriented systems and those developed using the React library. A
limitation pertains to the system domains, where varying results
may arise from different domains. Another problem we identified
is that some students have little development experience or knowl-
edge of code smells, software refactoring, or quality metrics. We
provided all students with training and three weeks of theoretical
classes on code smells to overcome this obstacle.

7 CONCLUSION AND FUTUREWORK
Our study investigated teaching Software Engineering students
code smell refactoring practices through contributions toOSS projects
and the impact of code refactoring on internal quality attributes.
We consider Java and React projects, 20 types of code smell, and
five internal quality attributes: cohesion, complexity, inheritance,
coupling, and size. A total of 29 students, divided into 22 teams,
refactored code smells in OSS projects as part of software quality
and software maintenance courses.

Our main results were: (i) in the students’ perception, the refac-
toring of code smells improved the quality of the system; (ii) there
is a relationship between testing and debugging activities with
the refactoring process; (iii) students do not feel safe refactoring
code smells that involve multiple files; (iv) the harder it is to un-
derstand the code, the harder it is to refactor code smells; (v) the
choice of a refactoring technique can be guided by several factors,
from the project architecture to personal interests, and they can
be used in a complementary way to remove a code smell; (vi) most
of the refactorings worsened the internal quality attributes; (vii)
the contribution to OSS projects is related to the students’ vision
of evolution as a programmer; and, (viii) the comprehensibility of a
project correlates with its collaborative capacity.

As future work in the teaching of code smells refactoring practice,
we should consider (i) employing other tools to detect other code
smells that were not included in the study (especially for React), (ii)
using automatic refactoring tools to remove code smells and analyze
the impact on internal quality attributes; and (iii) comparing the
impact of refactoring each code smell on internal quality attributes
independently.

ARTIFACT AVAILABILITY
We provide our data and artifacts under open licenses at: https:
//zenodo.org/records/13010596

REFERENCES
[1] M. Aberdour. 2007. Achieving Quality in Open Source Software. IEEE Software

24, 01 (jan 2007), 58–64. https://doi.org/10.1109/MS.2007.2
[2] Vartika Agrahari and Sridhar Chimalakonda. 2020. Refactor4Green: a game for

novice programmers to learn code smells. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 324–325. https://doi.org/10.1145/3377812.3390792

[3] Jehad Al Dallal and Anas Abdin. 2018. Empirical Evaluation of the Impact of
Object-Oriented Code Refactoring on Quality Attributes: A Systematic Literature
Review. IEEE Transactions on Software Engineering 44, 1 (2018), 44–69. http:
//10.1109/TSE.2017.2658573

[4] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. 2024. Au-
tomating Source Code Refactoring in the Classroom. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1 (<conf-loc>,
<city>Portland</city>, <state>OR</state>, <country>USA</country>, </conf-
loc>) (SIGCSE 2024). Association for Computing Machinery, New York, NY, USA,
60–66. https://doi.org/10.1145/3626252.3630787

[5] J Anderson. 2020. Addressing novice coding patterns: Evaluating and improving
a tool for code analysis and feedback. Report UUCS-20-002, University of Utah,
Tech. Rep. (2020).

[6] Amanda Berg, Simon Osnes, and Richard Glassey. 2022. If in Doubt, Try Three:
Developing Better Version Control Commit Behaviour with First Year Students. In
Proceedings of the 53rd ACM Technical Symposium on Computer Science Education
- Volume 1 (Providence, RI, USA) (SIGCSE 2022). Association for Computing Ma-
chinery, New York, NY, USA, 362–368. https://doi.org/10.1145/3478431.3499371

[7] Carla Bezerra, Humberto Damasceno, and João Teixeira. 2022. Perceptions and
Difficulties of Software Engineering Students in Code Smells Refactoring. In
Anais do X Workshop de Visualização, Evolução e Manutenção de Software (Online).
SBC, Porto Alegre, RS, Brasil, 41–45. https://doi.org/10.5753/vem.2022.226804

[8] A. Capiluppi, P. Lago, and M. Morisio. 2003. Characteristics of open source
projects. In Seventh European Conference onSoftware Maintenance and Reengineer-
ing, 2003. Proceedings. 317–327. https://doi.org/10.1109/CSMR.2003.1192440

[9] Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering 20, 6 (1994), 476–493.
https://doi.org/10.1109/32.295895

[10] Giuseppe Destefanis, Steve Counsell, Giulio Concas, and Roberto Tonelli. 2014.
Software metrics in agile software: An empirical study. In International Conference
on Agile Software Development. Springer, 157–170. https://doi.org/10.1007/978-3-
319-06862-6_11

[11] Guilherme C. Diniz, Marco A. Graciotto Silva, Marco A. Gerosa, and Igor
Steinmacher. 2017. Using Gamification to Orient and Motivate Students to
Contribute to OSS Projects. In 2017 IEEE/ACM 10th International Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE). 36–42.
https://doi.org/10.1109/CHASE.2017.7

[12] Hoyama Maria dos Santos, Vinicius H. S. Durelli, Maurício Souza, Eduardo
Figueiredo, Lucas Timoteo da Silva, and Rafael S. Durelli. 2019. CleanGame:
Gamifying the Identification of Code Smells. In Proceedings of the XXXIII Brazilian
Symposium on Software Engineering (Salvador, Brazil) (SBES 2019). Association
for Computing Machinery, New York, NY, USA, 437–446. https://doi.org/10.
1145/3350768.3352490

[13] Heidi J. C. Ellis, Gregory W. Hislop, Mel Chua, Clif Kussmaul, and Matthew M.
Burke. 2010. Panel — Teaching students to participate in Open Source Software
projects. In 2010 IEEE Frontiers in Education Conference (FIE). F2B–1–F2B–2.
https://doi.org/10.1109/FIE.2010.5673437

[14] E. Farchi, Y. Nir, and S. Ur. 2003. Concurrent bug patterns and how to test them.
In Proceedings International Parallel and Distributed Processing Symposium. 7 pp.–.
https://doi.org/10.1109/IPDPS.2003.1213511

[15] Eduardo Fernandes, Alexander Chávez, Alessandro Garcia, Isabella Ferreira,
Diego Cedrim, Leonardo Sousa, and Willian Oizumi. 2020. Refactoring effect
on internal quality attributes: What haven’t they told you yet? Information and

https://zenodo.org/records/13010596
https://zenodo.org/records/13010596
https://doi.org/10.1109/MS.2007.2
https://doi.org/10.1145/3377812.3390792
http://10.1109/TSE.2017.2658573
http://10.1109/TSE.2017.2658573
https://doi.org/10.1145/3626252.3630787
https://doi.org/10.1145/3478431.3499371
https://doi.org/10.5753/vem.2022.226804
https://doi.org/10.1109/CSMR.2003.1192440
https://doi.org/10.1109/32.295895
https://doi.org/10.1007/978-3-319-06862-6_11
https://doi.org/10.1007/978-3-319-06862-6_11
https://doi.org/10.1109/CHASE.2017.7
https://doi.org/10.1145/3350768.3352490
https://doi.org/10.1145/3350768.3352490
https://doi.org/10.1109/FIE.2010.5673437
https://doi.org/10.1109/IPDPS.2003.1213511


Contributing to open-source projects in refactoring code smells:
A practical experience in teaching Software Maintenance SBES’24, September 30 – October 04, 2024, Curitiba, PR

Software Technology 126 (2020), 106347. https://doi.org/10.1016/j.infsof.2020.
106347

[16] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and Ed-
uardo Figueiredo. 2016. A Review-Based Comparative Study of Bad Smell De-
tection Tools. In Proceedings of the 20th International Conference on Evaluation
and Assessment in Software Engineering (Limerick, Ireland) (EASE ’16). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 18, 12 pages.
https://doi.org/10.1145/2915970.2915984

[17] Fabio Ferreira and Marco Tulio Valente. 2023. Detecting code smells in React-
based Web apps. Information and Software Technology 155 (2023), 107111.

[18] Martin Fowler. 2018. Refactoring: improving the Design of Existing Code. Addison-
Wesley Professional.

[19] Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey Bryksin,
and Mohamed Wiem Mkaouer. 2021. One Thousand and One Stories: A Large-
Scale Survey of Software Refactoring. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Asso-
ciation for Computing Machinery, New York, NY, USA, 1303–1313. https:
//doi.org/10.1145/3468264.3473924

[20] Shehzad Haider, Wajeeha Khalil, Ahmad Sami Al-Shamayleh, Adnan Akhunzada,
and Abdullah Gani. 2023. Risk Factors and Practices for the Development of
Open Source Software From Developers’ Perspective. IEEE Access 11 (2023),
63333–63350. https://doi.org/10.1109/ACCESS.2023.3267048

[21] Rusen Halepmollasi and Ayse Tosun. 2024. Exploring the relationship between
refactoring and code debt indicators. Journal of Software: Evolution and Process
36, 1 (2024), e2447.

[22] Zhewei Hu, Yang Song, and Edward F. Gehringer. 2019. A Test-Driven Approach
to Improving Student Contributions to Open-Source Projects. In 2019 IEEE Fron-
tiers in Education Conference (FIE). 1–9. https://doi.org/10.1109/FIE43999.2019.
9028521

[23] Scientific Toolworks Inc. 2023. Understand Software Metrics. https://
documentation.scitools.com/pdf/metricsdoc.pdf

[24] Jyun-Yu Jiang, Pu-Jen Cheng, and Wei Wang. 2017. Open Source Repository
Recommendation in Social Coding. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval (Shinjuku,
Tokyo, Japan) (SIGIR ’17). Association for Computing Machinery, New York, NY,
USA, 1173–1176. https://doi.org/10.1145/3077136.3080753

[25] Yiqiao Jin, Yunsheng Bai, Yanqiao Zhu, Yizhou Sun, and Wei Wang. 2023. Code
Recommendation for Open Source Software Developers. In Proceedings of the
ACM Web Conference 2023 (<conf-loc>, <city>Austin</city>, <state>TX</state>,
<country>USA</country>, </conf-loc>) (WWW ’23). Association for Computing
Machinery, New York, NY, USA, 1324–1333. https://doi.org/10.1145/3543507.
3583503

[26] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2019. How Teachers Would
Help Students to Improve Their Code. In Proceedings of the 2019 ACM Conference
on Innovation and Technology in Computer Science Education (Aberdeen, Scotland
Uk) (ITiCSE ’19). Association for Computing Machinery, New York, NY, USA,
119–125. https://doi.org/10.1145/3304221.3319780

[27] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2021. A Tutoring System to
Learn Code Refactoring. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education (Virtual Event, USA) (SIGCSE ’21). Association for
Computing Machinery, New York, NY, USA, 562–568. https://doi.org/10.1145/
3408877.3432526

[28] Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc. 2009. An
Exploratory Study of the Impact of Code Smells on Software Change-proneness.
In 2009 16th Working Conference on Reverse Engineering. 75–84. https://doi.org/
10.1109/WCRE.2009.28

[29] Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaël Guéhéneuc.
2020. Code smells and refactoring: A tertiary systematic review of challenges
and observations. Journal of Systems and Software 167 (2020), 110610. https:
//doi.org/10.1016/j.jss.2020.110610

[30] Mark Lorenz and Jeff Kidd. 1994. Object-oriented software metrics: a practical
guide. Prentice-Hall, Inc.

[31] Thainá Mariani and Silvia Regina Vergilio. 2017. A systematic review on search-
based refactoring. Information and Software Technology 83 (2017), 14–34. https:
//doi.org/10.1016/j.infsof.2016.11.009

[32] Júlio Martins, Carla Bezerra, Anderson Uchôa, and Alessandro Garcia. 2020. Are
Code Smell Co-Occurrences Harmful to Internal Quality Attributes? A Mixed-
Method Study. In Proceedings of the 34th Brazilian Symposium on Software Engi-
neering (Natal, Brazil) (SBES ’20). Association for Computing Machinery, New
York, NY, USA, 52–61. https://doi.org/10.1145/3422392.3422419

[33] Júlio Martins, Carla Bezerra, Anderson Uchôa, and Alessandro Garcia. 2021. How
Do Code Smell Co-Occurrences Removal Impact Internal Quality Attributes? A
Developers’ Perspective. Association for Computing Machinery, New York, NY,
USA, 54–63. https://doi.org/10.1145/3474624.3474642

[34] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on Software
Engineering 4 (1976), 308–320. http://10.1109/TSE.1976.233837

[35] Nora McDonald and Sean Goggins. 2013. Performance and participation in open
source software on GitHub. In CHI ’13 Extended Abstracts on Human Factors in
Computing Systems (Paris, France) (CHI EA ’13). Association for Computing Ma-
chinery, New York, NY, USA, 139–144. https://doi.org/10.1145/2468356.2468382

[36] Aziz Nanthaamornphong and Ekkarat Boonchieng. 2023. An Exploratory Study
on Code Smells during Code Review in OSS Projects: A Case Study on OpenStack
and WikiMedia. Recent Advances in Computer Science and Communications
(Formerly: Recent Patents on Computer Science) 16, 7 (2023), 20–33. https://doi.
org/doi:10.2174/2666255816666230222112313

[37] Debora Maria Nascimento, Kenia Cox, Thiago Almeida, Wendell Sampaio,
Roberto Almeida Bittencourt, Rodrigo Souza, and Christina Chavez. 2013. Using
Open Source Projects in software engineering education: A systematic map-
ping study. In 2013 IEEE Frontiers in Education Conference (FIE). 1837–1843.
https://doi.org/10.1109/FIE.2013.6685155

[38] Willian Oizumi, Alessandro Garcia, Leonardo da Silva Sousa, Bruno Cafeo, and
Yixue Zhao. 2016. Code Anomalies Flock Together: Exploring Code Anom-
aly Agglomerations for Locating Design Problems. In Proceedings of the 38th
International Conference on Software Engineering (Austin, Texas) (ICSE ’16). As-
sociation for Computing Machinery, New York, NY, USA, 440–451. https:
//doi.org/10.1145/2884781.2884868

[39] Gustavo Pinto, Clarice Ferreira, Cleice Souza, Igor Steinmacher, and Paulo
Meirelles. 2019. Training Software Engineers Using Open-Source Software:
The Students’ Perspective. In 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering Education and Training (ICSE-SEET).
147–157. https://doi.org/10.1109/ICSE-SEET.2019.00024

[40] Huilian Sophie Qiu, Anna Lieb, Jennifer Chou, Megan Carneal, Jasmine Mok,
Emily Amspoker, Bogdan Vasilescu, and Laura Dabbish. 2023. Climate Coach:
A Dashboard for Open-Source Maintainers to Overview Community Dynam-
ics. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems (<conf-loc>, <city>Hamburg</city>, <country>Germany</country>,
</conf-loc>) (CHI ’23). Association for Computing Machinery, New York, NY,
USA, Article 552, 18 pages. https://doi.org/10.1145/3544548.3581317

[41] Fernanda Gomes Silva, Paulo Ezequiel D. Santos, and Christina von Flach. 2023.
OSS in Software Engineering Education: Mapping Characteristics of Brazilian
Instructors. Journal of Software Engineering Research and Development 11, 1 (Jan.
2023), 2:1 – 2:14. https://doi.org/10.5753/jserd.2023.1977

[42] Jefferson O. Silva, Igor Wiese, Daniel M. German, Christoph Treude, Marco A.
Gerosa, and Igor Steinmacher. 2020. Google summer of code: Student motivations
and contributions. Journal of Systems and Software 162 (2020), 110487. https:
//doi.org/10.1016/j.jss.2019.110487

[43] Leonardo Sousa, Anderson Oliveira, Willian Oizumi, Simone Barbosa, Alessandro
Garcia, Jaejoon Lee, Marcos Kalinowski, Rafael de Mello, Baldoino Fonseca,
Roberto Oliveira, Carlos Lucena, and Rodrigo Paes. 2018. Identifying Design
Problems in the Source Code: A Grounded Theory. In Proceedings of the 40th
International Conference on Software Engineering (Gothenburg, Sweden) (ICSE
’18). Association for Computing Machinery, New York, NY, USA, 921–931. https:
//doi.org/10.1145/3180155.3180239

[44] Diomidis Spinellis. 2021. Why computing students should contribute to open
source software projects. Commun. ACM 64, 7 (jun 2021), 36–38. https://doi.
org/10.1145/3437254

[45] Amjed Tahir, Aiko Yamashita, Sherlock Licorish, Jens Dietrich, and Steve Coun-
sell. 2018. Can You Tell Me If It Smells? A Study on How Developers Discuss
Code Smells and Anti-Patterns in Stack Overflow. In Proceedings of the 22nd In-
ternational Conference on Evaluation and Assessment in Software Engineering 2018
(Christchurch, New Zealand) (EASE’18). Association for Computing Machinery,
New York, NY, USA, 68–78. https://doi.org/10.1145/3210459.3210466

[46] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[47] Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells?
An exploratory survey. In 2013 20th Working Conference on Reverse Engineering
(WCRE). 242–251. https://doi.org/10.1109/WCRE.2013.6671299

[48] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer recom-
mendation for pull-requests in GitHub: What can we learn from code review
and bug assignment? Information and Software Technology 74 (2016), 204–218.
https://doi.org/10.1016/j.infsof.2016.01.004

https://doi.org/10.1016/j.infsof.2020.106347
https://doi.org/10.1016/j.infsof.2020.106347
https://doi.org/10.1145/2915970.2915984
https://doi.org/10.1145/3468264.3473924
https://doi.org/10.1145/3468264.3473924
https://doi.org/10.1109/ACCESS.2023.3267048
https://doi.org/10.1109/FIE43999.2019.9028521
https://doi.org/10.1109/FIE43999.2019.9028521
https://documentation.scitools.com/pdf/metricsdoc.pdf
https://documentation.scitools.com/pdf/metricsdoc.pdf
https://doi.org/10.1145/3077136.3080753
https://doi.org/10.1145/3543507.3583503
https://doi.org/10.1145/3543507.3583503
https://doi.org/10.1145/3304221.3319780
https://doi.org/10.1145/3408877.3432526
https://doi.org/10.1145/3408877.3432526
https://doi.org/10.1109/WCRE.2009.28
https://doi.org/10.1109/WCRE.2009.28
https://doi.org/10.1016/j.jss.2020.110610
https://doi.org/10.1016/j.jss.2020.110610
https://doi.org/10.1016/j.infsof.2016.11.009
https://doi.org/10.1016/j.infsof.2016.11.009
https://doi.org/10.1145/3422392.3422419
https://doi.org/10.1145/3474624.3474642
http://10.1109/TSE.1976.233837
https://doi.org/10.1145/2468356.2468382
https://doi.org/doi:10.2174/2666255816666230222112313
https://doi.org/doi:10.2174/2666255816666230222112313
https://doi.org/10.1109/FIE.2013.6685155
https://doi.org/10.1145/2884781.2884868
https://doi.org/10.1145/2884781.2884868
https://doi.org/10.1109/ICSE-SEET.2019.00024
https://doi.org/10.1145/3544548.3581317
https://doi.org/10.5753/jserd.2023.1977
https://doi.org/10.1016/j.jss.2019.110487
https://doi.org/10.1016/j.jss.2019.110487
https://doi.org/10.1145/3180155.3180239
https://doi.org/10.1145/3180155.3180239
https://doi.org/10.1145/3437254
https://doi.org/10.1145/3437254
https://doi.org/10.1145/3210459.3210466
https://doi.org/10.1109/WCRE.2013.6671299
https://doi.org/10.1016/j.infsof.2016.01.004

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Study Settings
	4.1 Research Questions
	4.2 Steps and Procedures

	5 Results and Discussion
	5.1 Students' perception of refactoring practices
	5.2 Students' perceptions of the code smells that are harder to refactor
	5.3 Difficulties of refactoring code smells
	5.4 Benefits of collaboration in OSS projects
	5.5 Students' perception of the contribution process in OSS projects

	6 Threats to Validity
	7 Conclusion and Future Work
	References

