
An undergraduate Software Engineering practice course:
bridging the academia-industry gap

Sofia Larissa da Costa Paiva
Instituto de Informática, Universidade

Federal de Goiás – UFG
Goiânia, Brazil

sofialarissa@ufg.br

Adriana Silveira de Souza
Juliano Lopes de Oliveira
Instituto de Informática, UFG

Goiânia, Brazil
adriana.silveira@ufg.br
julianolopes@ufg.br

Mariana Soller Ramada
Murilo Lopes da Luz

Instituto de Informática, UFG
Goiânia, Brazil

marianaramada@ufg.br
muriloluz@ufg.br

ABSTRACT
Teaching problem: Software Engineering (SE) practice comprises
a set of activities that Software Engineers perform in their typical
professional work to produce solutions for needs arising from stake-
holders. To learn these activities, the undergraduate student must
leave the controlled academic environments that deal with isolated
and simplified problems using a single course point of view to reach
concrete world working environments, where complex issues must
be solved to address the conflicting interests of several stakeholders.
Research question: What approaches to undergraduate courses
would provide adequate conditions for students to learn SE practice?
Situating the case: This paper reports experiences from applying
an approach to teaching SE practice in an undergraduate course
using a typical industry scenario, where complex SE projects are
executed to meet the needs of actual stakeholders. How this case
was studied: The reported experience shows the evolution of the
proposed course approach after its application on three academic
semesters in an undergraduate SE Bachelor’s Degree program in
a public university in Brazil. The research material for this report
was informally collected over three years of teaching the course,
from 2021 to 2023, and indicates that the course approach promotes
students’ professional attitudes and technical competencies.

CCS CONCEPTS
• Social and professional topics→ Employment issues; Soft-
ware engineering education.

KEYWORDS
Software Engineering Education and Training, Teaching Software
Engineering Practice, Undergraduate Software Engineering Course
Practice

1 INTRODUCTION
Software Engineering (SE) practice involves performing typical soft-
ware development and sustainment activities to provide products
and services that address stakeholder’s requirements and expecta-
tions [25]. In the context of a SE higher education program, there
are two primary environments where these practical activities can
be carried out: academic laboratories and software production units.

Academic laboratories are controlled environments where practi-
cal SE learning activities are carried out based on treating simplified
problems and, generally, from the perspective of a single course. In
this context, practical activities focus on teaching/learning specific
course topics without generating products or services that could be

useful to any interested party. On the other hand, software produc-
tion units are industrial environments where SE projects are carried
out professionally to develop or sustain actual software products or
services that meet needs and expectations of project’s stakeholders.
Although academic laboratories attempt to prepare professionals
for software production units, there is a gap between industrial
needs and software practitioners’ education in terms of specialized
software tools, testing, security, and soft skills [3, 31, 32].

The SE undergraduate program that provides the context for
the experiences described in this paper includes students’ activities
within both environments. Practical SE activities are continuously
carried out from the beginning of the curriculum in the context of
traditional courses that compose the SE Bachelor’s Degree program,
such as software design and construction courses. These activities
are conducted in controlled academic laboratories and deal with
simplified problems, focusing on the specific course point of view.
For instance, laboratory activities for software construction course
assume that requirements and design issues are already resolved,
so the practice deals exclusively with code implementation and
integration. To improve their professional maturity, the students
complete their practical training with a one academic semester
immersion in a specific software-producing unit in the context of
a particular course called Software Engineering Practice (SEP),
which is taught in the last semester of the SE degree program. In
this course, students learn SE practice and professional attitudes
by acting in project roles in a genuine software-producing facility
that deals with actual SE problems to develop, deliver, and maintain
software that addresses external stakeholders’ requirements.

This article reports experiences on conducting this SEP course
during three academic semesters in a Brazilian public university.
We have applied the Action Research Methodology [45], based on
a dialogue space where the involved actors collaborate in solving
problems, proposing solutions, and learning in action. The principal
research question was:What approaches to undergraduate courses
would provide adequate conditions for students to learn SE practice?
The SEP course, described in the remainder of this paper, is a possi-
ble answer to this question. Section 2 discusses related work and
key concepts for the SEP course. Section 3 presents an overview of
the SEP course approach. Section 4 describes the evolution of the
course methodology. Section 5 analyses the SEP course from a SE
competencies perspective. Section 6 summarizes lessons learned
from the academic experiences of teaching SEP. Section 7 concludes
with a synthesis of SEP course contributions to improvement of
students’ professional maturity.

SBES’24, September 30 – October 04, 2024, Curitiba, PR Paiva et al.

2 BACKGROUND AND RELATEDWORK
Preparing individuals to be SE professionals in real-world condi-
tions is a well-known issue, and it still challenges the SE community
[22, 28, 32, 36]. An effective approach to teaching SE practice must
prepare individuals to be productive for companies as soon as pos-
sible and deliver graduates aligned with the industry’s expectations.
This is a great challenge involving the misalignment problem of
academia and industry SE competencies points of view and expec-
tations [8, 10, 11, 18, 35, 41]. One key question is whether univer-
sities have the resources to simulate a realistic SEP environment
or whether software companies should provide such conditions
themselves. The ideal situation combines university education and
company training to develop SE competencies [13] and is the ap-
proach followed in the present work.

2.1 SE curriculum and competency
Traditional education involves expository classes to transfer knowl-
edge and a few courses to learn how to apply the knowledge [14].
However, modern curriculum guidelines for SE undergraduate
courses emphasize the need to move beyond the theoretical class
towards a competency-based education [2, 4, 23, 40, 42]. The ACM
and IEEE Computing Curricula 2020 (CC2020) [2] sets out guide-
lines for the global definition of computing teaching in a wide range
of disciplines, such as computer science, information systems, and
software engineering, providing requirements for structuring the
curricula of these disciplines. CC2020 has shifted the vision from
learning knowledge to developing competencies. In this sense, a
better understanding of the SE competency construct enables the
advancement of SE education, speeding up the training of students
and professionals to meet software industry needs [6].

Among the elements contributing to competency, knowledge,
skill, and attitude are primarily consensual. Knowledge comprises
information, concepts, ideas, methods, and procedures that a per-
son has acquired through their education, training (learning), and
experience. Skill deals with how knowledge can be applied to a
given context. Attitude is related to action, manifested by the desire
to do, and establishes an individual’s relationship with a concept
or object, which can be positive or negative.

However, SE competency is a multidimensional construct with
many other elements and interpretations according to different
theoretical schools of thought on the concept of competency [17].
For instance, American schools associate competency with knowl-
edge and cognitive ability. On the other hand, for French schools,
competency must be demonstrated in the form of a product or ser-
vice that meets the needs and requirements of actual stakeholders.
The approach described in this paper complies with both schools.
Technical knowledge is essential for SE competency and is based
on SWEBOK knowledge areas [25]. At the same time, the cogni-
tive and emotional skills were taken from the mental abilities and
behavioral skills and attributes cited in SWECOM [26], from the
soft skills identified by Caieiro-Rodrígues et al. [9] and from self
and social competencies defined by Thurner and Böttcher [46]. The
assessment of competencies is based on observable results of the
student’s performance on SE projects.

2.2 Teaching SE practice
Active methodologies, such as problem-based learning (PBL) and
learning by doing (LBD), are the most used by instructors in SE
undergraduate courses to bring practical experience for students
[34]. These methodologies are simple to apply and do not require
advanced instructors’ capabilities. However, approaches involving
real projects and clients are challenging since they aremore complex
and demand significant effort from instructors, teaching assistants,
and sometimes clients and users [34]. Artificial problems are usually
adopted, which hinders the primary goal of applying students’
competencies to solve genuine software industry problems.

Team capstone projects are another popular way to provide stu-
dents with experience beyond theoretical classes [7]. Students can
be organized into teams to plan and develop a software product
from start to finish during an academic year, integrating concepts
learned in several different subjects [2]. Applying the development
of capstone projects as an educational tool is helpful because it en-
ables the knowledge and skills internalization in practice [43]. Since
such a project is usually right before students enter the industry,
some universities heavily emphasize demands from the industry
as capstone projects. Some demands typically not practiced in the-
oretical courses include [30]: focus on integrating technical skills
learned in isolation and gaining experience in soft skills such as
leadership. One method universities adopt is partnering with indus-
try to serve as clients for capstone projects [7, 24, 38, 39]. However,
integrating these experiences into the courses is a complex chal-
lenge for universities [34]. Significant effort is necessary regarding
time and human resources to support the instructional process,
which is challenging for most universities. Instructors with soft-
ware development expertise, who frequently require real clients
who act as counterparts, are necessary for these projects [47].

Serious games and simulation are proposed alternatives to reduce
the cost of teaching SE practice [20, 21]. However, such approaches
also face significant challenges, mainly from the educator’s point of
view [15]. For instance, games may enhance learning but also may
distract students from the actual learning goals. Moreover, design-
ing games is expensive and complex work, and poorly designed
games can hinder learning instead of improving it.

Maguire et al. [33] proposes a cooperative approach to software
engineering education for academia and industry to partner to de-
liver graduate professionals. This approach attempts to address the
isolation of theory and practice by integrating them in a single
program where students are exposed to theory at university and
practice it in the workplace. In particular, the academic and indus-
trial partners work together to form a program that balances theory
and practice. Sabariah et al. [39] also proposes an industry-academia
collaboration program as an opportunity for undergraduate stu-
dents to learn technologies, do an internship in an actual project
with real problems, and, in the end, present their work as a capstone
project. Ohlsson and Johansson [36] describes a two-year program
that complements four-and-a-half-year degree programs at tradi-
tional engineering schools. Since the target students have yet to
gain a background in SE, the program practice aims to learn the
foundations of this discipline to complement the student’s forma-
tion. Our proposal takes only one academic semester and focuses

An undergraduate Software Engineering practice course: bridging the academia-industry gap SBES’24, September 30 – October 04, 2024, Curitiba, PR

on developing competencies previously learned in a complete SE
undergraduate program.

Souza et al. [12] presents a systematic literature mapping that
identifies only nine primary studies on teaching approaches applied
to software factories in information technology higher education
programs. The primary teaching approach in these studies is PBL,
and the systematic review conclusions point out the need for pro-
cesses, techniques, and patterns to guide the adoption of a software
factory in SE educational programs. This paper reports experiences
that contribute to satisfying these needs.

Our approach differs from previous work mainly because in
the SEP course students work in an industrial context with exter-
nal clients’ demands. PBL and capstone projects are also student-
centered methodologies in which students seek a solution to a
certain problem, however, they are applied in the context of a spe-
cific course (for example, Software Design), focusing on a particular
aspect of software engineering, and having no interaction with
external clients. Moreover, there is no industrial environment in
which students need to demonstrate technical knowledge and in
addition follow processes and rules, work in a team, respect leader-
ship, and deal with real world constraints. Students on internship
can work in an industry environment, but the assigned tasks are
too simple, there is little interaction with the experienced staff,
and there is no educational feedback to guide on competencies
evolution. Our approach aims at authentic learning, as defined in
[37], situating students in a learning context with real world prob-
lems, which students are likely to face in their real professional
career. Students work closely with experienced technical leaders,
and exercise soft skills that would not be relevant in an academic
environment or in individual work.

3 SEP COURSE THEORETICAL FRAMEWORK
The SEP course deals with practical activities carried out by SE
students in the context of a software-producing organization, ac-
cording to the following syllabus:

Application of the SE body of knowledge in the con-
text of projects in a software-producing organization.
Use of SE processes in scope and depth. Selection and
use of SE standards, methods, techniques, and tools to
achieve objectives established in projects. Integration
and consolidation of knowledge and skills expected from
SE professionals. Exercise of professional practices and
attitudes based on the SE code of ethics and professional
posture. Practice in SE technical processes. Practice in
SE management processes. Practice in SE technologies.

To enroll in a SEP course, the student must have succeeded in all
other courses in the SE educational curriculum. This last stage of
the degree program is characterized by the concrete opportunity for
integrating theory and practice, involving problem situations gen-
erated by field experience that lead to periodic research activities,
consultancies, debates, and students’ adoption of new behaviors.

3.1 SEP Objectives
The SEP course aims to improve (a) students’ maturity in SE prac-
tical activities and (b) student’s professional practice and ethical
behavior. Three main categories of SE processes are addressed in a

SEP course: technical, managerial, and technological. All activities
must be fully committed to the SE code of ethics [1].

Practice within technical processes exercise and expand skills in
the technical SE processes group [27], in an environment as close
to the typical software workplace as possible, to provide conditions
for students to:

• Acquire a broad and integrated view of SE technical pro-
cesses, developing a solid perception of how to use technical
skills ethically and effectively.

• Review and use technical SE processes, integrating technical
knowledge acquired in the course and understanding the
relationship between them and their importance for building
and sustaining high-quality software.

• Carry out technical activities related to: systems and soft-
ware requirements engineering, configuration management,
architecture, modeling, design, verification and validation,
construction, integration, and maintenance; software read-
ing, understanding, and testing; software and information
security, usability, compatibility, performance efficiency, re-
liability, and protection; and data modeling and persistence.

Practice withinmanagement processes exercise and expand skills
in managerial and organizational SE activities to:

• Acquire a broad and integrated view of SE managerial and
organizational processes, developing a solid perception of
how to use management skills ethically and effectively.

• Review and use SE management processes, integrating man-
agerial knowledge acquired in the course and understand-
ing the relationship between them and their importance for
building and sustaining high-quality software.

• Carry out activities related to ethical and professional man-
agement principles of SE, such as: process and software prod-
uct quality; project management and measurement; software
contracting and economics; management of people and soft-
ware teams; governance and management of software ser-
vices; software and information security; software research
and experimentation methodologies.

Practice within SE Technologies exercise and expand skills in
applying SE tools and frameworks to:

• Acquire a broad and integrated view of SE tools’ technologies,
developing a solid perception of how to use these technolo-
gies ethically and effectively.

• Review and use SE tools, integrating technological knowl-
edge acquired in the course and understanding the relation-
ship between them and their importance for building and
sustaining high-quality software.

• Carry out activities related to CASE and IDE tools, such as:
database management systems; web application servers; pro-
gramming and scripting languages; tools for modeling and
generating user interfaces; code and document versioning;
environment and project repositories; scheduling and task
management; software debugging and testing; code building
and integration; code quality analysis.

After a successful accomplishment of SEP course, students are
expected to develop and improve the following broad SE competen-
cies while performing technical and managerial roles in projects:

SBES’24, September 30 – October 04, 2024, Curitiba, PR Paiva et al.

(1) Carrying out SE tasks according to project objectives, apply-
ing the SE body of knowledge to its fullest extent to generate
high-quality software products or services.

(2) Applying SE competencies, with scope and depth, appropri-
ately to various situations in software projects.

(3) Planning and executing software projects, reconciling stake-
holder needs, project objectives, and real-world constraints
in which the software operates.

(4) Planning, carrying out, and appropriately modifying prod-
ucts and services relevant to organizational SE processes.

(5) Acting, individually and in teams, according to the SE code
of ethics, exercising appropriate SE professional attitudes,
inside and outside the project environment.

(6) Modifying, evolving, verifying, and validating artifacts re-
sulting from SE processes created by third parties.

3.2 SEP environment: the Software Factory (SF)
The Software Factory (SF) is a software production unit within the
university. It provides and maintains, within an academic environ-
ment, a professional infrastructure for producing and sustaining
software, combining software industry’s best practices with theo-
ries and innovations generated by the university. The SF permanent
team comprises one director and five full-time SE professionals.

The main objective of SF is to provide efficient, innovative, and
high-quality solutions for needs involving research, development,
evaluation, or application of software processes and technologies,
promoting integration between teaching, research, and outreach
activities at the university. 1. SF plans, manages, operates, maintains,
and evolves a suitable technological environment for producing
and sustaining high-quality software to fulfill this objective. This
environment promotes the qualification of project participants,
which is also an objective of the SF: to contribute to the maturity
and improvement of software professionals.

SF works with multidisciplinary technical teams guided by insti-
tutionalized software processes and policies. Despite being located
in an academic environment and having students in the composi-
tion of some teams, the work at the SF is guided by policies and
processes that govern how everyone involved works. One of SF’s
management processes involves monitoring project members to
ensure everyone, including students, follows the same processes.
The SF environment is a suitable setting for practical activities in
the professional training of Software Engineers because it is a rep-
resentative instance of the regional software industry. However,
it is located in an academic organization. SF receives demands for
software products and services from the academic community and
society. These demands involve different types of software and
require different SE competencies, such as software requirements,
architecture, design, construction, integration, testing, deployment,
migration, and maintenance.

The design and creation of SF were performed in conjunction
with the undergraduate course in SE since the SF was conceived as
one of the pillars for the SE curriculum pedagogical project, which
specifies that “the SE Practice course is completed with 320 hours of
activities related to SF projects”. The commitment is corroborated
by the internal regulations of SF, which establish the integration of

1https://fabrica.inf.ufg.br/

practical activities defined in the course as a responsibility of the SF
director. This commitment between the course and SF ensures that
the SF’s Portfolio Management process prioritizes the execution
of projects that present adequate conditions for the exercise of
practical SE activities by undergraduate students.

SEP professors and students are designated to work on SF’s
projects each academic semester. All SEP activities are carried out
in the context of SF’s projects under the direct supervision of the
professors responsible for the course. Thus, a SEP course requires
prior planning of projects at SF, taking into account the pedagogical
aspects inherent to the participation of students in these projects. In
this way, the planning of each SEP course section must be aligned
with the planning of SF’s project portfolio. The SF director, execut-
ing the Project Portfolio Management Process, decides, considering
the available resources, the most appropriate time to start each
project. Therefore, there may be projects being carried out at SF
without the participation of students or professors, as SF has its
collaborator staff. SEP students are extra human resources available
to SF during an academic semester. SF projects are not restricted
to the academic term; students only participate in projects during
this term, following the academic calendar. Thus, SF projects fol-
low their schedules and have no restrictions related to academic
calendar; however, there are human resources (SEP students and
professors) with this restriction available for some SF projects.

The project manager must be an SF collaborator to ensure that
every project follows SF’s policies and processes and has a full-time
manager, as recommended by best practices in project management.
When a project involves an SEP course instance, the project man-
agement team comprises professors and the project manager. This
team must support the project manager’s decisions in planning and
monitoring the project’s actions. In particular, the allocation of stu-
dents to project activities is decided by thewholemanagement team,
considering project’s needs and opportunities for each student to
exercise different professional practices. The project manager is
ultimately responsible for planning and executing project’s tasks
but has the support of SEP professors, who form the management
team, to plan and monitor the execution of students’ tasks in the
project.

As the duration of a project usually does not coincide with the
academic semester term in which a SEP course section is taught, stu-
dents can join an in progress project. In large projects, students may
participate in only some iterations. Students can also participate in
various projects to complement their practice hours throughout an
academic semester. Furthermore, several projects may be carried
out concurrently at SF so that students can participate in several
projects and do not necessarily participate in the same projects.

3.3 SEP General Rules
The duration of the SEP course is one academic semester (16 weeks),
and at least one SEP course instance is offered in every academic
semester. The total workload of each course is 320 hours, with
20 hours per week, and takes place exclusively in the context of
SF, which intends to integrate the practical activities developed by
students (supported by professors) into the routine of projects devel-
oped at SF. This implies professors’ direct and effective participation

An undergraduate Software Engineering practice course: bridging the academia-industry gap SBES’24, September 30 – October 04, 2024, Curitiba, PR

in the planning, controlling, and evaluating actions developed in
SF projects where SEP students participate.

SEP has all other courses from the SE undergraduate curriculum
as prerequisites; that is, only after completing all the courses from
the SE curriculum will students be able to enroll in a SEP course.
This constraint ensures that students know how to execute all tasks
demanded by the project since these tasks may involve practices in
all kinds of SE activities within projects carried out at SF.

As SF does not have a dedicated physical space capable of accom-
modating the number of students and professors planned for a SEP
course, they use the space of a university’s computing laboratories
and a meeting room (which is a conventional classroom reserved
for the SEP course) to carry out their activities in SF projects. The
maximum number of students in each class is limited by the class-
room and laboratory capacities so that all students can work in the
same space. Each professor of a SEP course is a preceptor to up to
eight students. The few students per preceptor are essential due to
the peculiarities of teaching activities carried out in the SF projects,
which differ profoundly from those in the traditional courses.

In summary, all these premises and restrictions aim to ensure
adequate conditions so that the software projects in which students
exercise their skills are realistic in the sense of presenting the typical
characteristics of software industry projects: the same set of people
working in the same physical (or virtual) space, during the same
hours, on consecutive days throughout each week, without context
switching and with full-time management assistance.

4 EXPERIENCES IN CONDUCTING SEP
COURSE INSTANCES

The execution of a SEP course instance follows a standardized
procedure consisting of three stages for an academic semester:
Preparation, Enactment, and Closure, as seen in Figure 1. These
stages follow the Action Research cycle [45]: problem identification,
solution planning, implementation, monitoring, and evaluation
of effectiveness, leading to reflection and adjustment. Given our
research question – what approaches to undergraduate courses would
provide adequate conditions for students to learn SE practice? –, an
initial planning was carried out in the Preparation Stage of each
course semester; during the Enactment Stage, the implementation
and monitoring were carried out, and in the Closure Stage the
results were evaluated and identified improvements were applied
in the next course instance.

The semester preparation stage begins approximately six weeks
before the first class day. Professors and students who will partic-
ipate in the course instance are identified, with the latter being
allocated to projects conducted by the SF.

A project to be carried out during the semester is selected based
on the number of enrolled students, considering the individual char-
acteristics of the project, such as scope, complexity, development
stage, and interdependencies between project activities. The selec-
tion of a project also considers the professors’ competencies and
the SF staff available, the project’s maturity in terms of scope defi-
nition and requirements stability, and the availability of external
stakeholders. The next step identifies SE knowledge areas involved
in the project for the formation of the respective teams. For in-
stance, a project in its initial phase may require a team focused on

Figure 1: SEP course methodology procedure

requirements and user experience, while an ongoing project might
demand implementation and testing teams. A series of meetings
between SF collaborators and the professors begin, aiming to famil-
iarize the latter with the SF processes and to contextualize them on
the projects to be executed. In this pre-semester stage, students fill
out a form to identify their profile. This allows a more appropriate
allocation of students to specific project teams. Table 1 illustrates
sample questions from the profile assessment form. Finally, an ini-
tial task backlog is created for each project team, covering at least
two project iterations (sprints) that range from one to two weeks.

The Semester enactment stage begins with two introductory
meetings. The first aims on integration, allowing everyone to intro-
duce themselves and get familiar with one another. It is held during
the first class with all SEP course participants: students, professors,
and the SF team. Important information is provided in this meeting,
such as the official communication channel for the project, and
a Non-Disclosure Agreement (NDA) is signed when the project
involves confidential data and intellectual property issues. In the
second meeting, the target project and the composition of the teams
are presented and discussed. In the remaining of the first week, the
focus is on familiarizing everyone with the SF’s policies, processes,
and technologies.

From the second week on, the project is executed following
an iterative process based on tasks controlled with the Git Flow
branching model: i) team leader allocates task to student; ii) student
creates local work branch; iii) student builds/changes artifacts; iv)
student opens a pull request; v) SF team member inspects the arti-
facts, provides feedback and may request modifications; vi) student
iteratively addresses the issues until the artifact is approved; vii)
upon approval, the work branch is merged into the project’s main
branch (develop).

Throughout the semester, task deliveries are monitored to en-
sure the quality of the work results and adherence to project re-
quirements. Examples of assigned tasks are: to design the context
layer of the software architecture; to build the front-end code, or
the test case, for a given use case; and to define an inspection
checklist for use cases. Teams may be reorganized according to

SBES’24, September 30 – October 04, 2024, Curitiba, PR Paiva et al.

Table 1: Examples of questions from the student profile assessment form

Questions Response options
On Java environment, mark the concepts you are familiar with JPA/Hibernate - SpringBoot - SpringData - Maven/Gradle - None - Others
On Angular framework, mark the concepts you are familiar with Javascript/Typescript - CSS/HTML - RXJS - NPM - None - Others
On User Interface, mark the concepts you are familiar with UX/UI - Style Guide - Design - Figma - Material Design - None - Others
On Software Quality, mark the concepts you are familiar with Cypress - Test Cases - Functional testing - Quality metrics - None - Others
On Software Design, mark the concepts you are familiar with UML - Design Patterns - PlantUML - C4Model - None - Others
In which SE areas do you have the most experience? Requirements - Architecture - Construction - Testing - Inspection - None
Tell us about yourself, your experiences, and expectations Open-ended

the project’s evolution and needs and considering the impacts that
teams (re)organization may have in SE projects [29].

The semester closure stage involves the last two weeks of a SEP
course and is dedicated to completing ongoing tasks and identifying
pending ones. Since the SF projects follow their schedules and are
not restricted to the academic calendar, they continue even after
the SEP course semester ends. On the last class day of a SEP course
instance, a closing meeting is held where all deliverables produced
during the SEP course semester are reviewed, along with lessons
learned throughout a retrospective of the executed SE processes. So
far, three SEP course instances have been completed. The following
sections report their specific experiences.

4.1 SEP course instances
The inaugural SEP course instance occurred from July to November
2021. Due to the COVID-19 pandemic, activities were conducted
remotely, with weekly meetings of the whole team aimed at moni-
toring and discussing tasks. The selected project had yet to begin
and held social significance for brazilian educational policy2. An
overview of the software solution was defined, identifying the tech-
nologies and components required for its execution and an initial
backlog was established. Completing these tasks played a crucial
role in defining the initial capability of the team and validating
the knowledge gathered during profile collection. Initially, the stu-
dents were introduced to the project, having the opportunity to
contribute and participate in discussions about the definitions made
by SF members and professors. This interaction proved to be impor-
tant in the students training process since professionals in the early
stages of their careers rarely have the chance to get involved in
activities of this nature. Three essential components of the project
were outlined and assigned to specific teams: a team (3 students)
was tasked with developing the dashboard component; a second
team (2 students) with developing the management component;
and, lastly, a data science team (3 students) was designated to pro-
vide the necessary data for the other two components. One student
created the system’s visual identity and user interface design.

The second SEP course instance occurred fromMay to September
2022, and all activities were carried out in a distance learning format
due to the COVID-19 pandemic. The students developed a new
component to integrate into software that had been created by
the students of the SEP course in the previous semester. Three
SE knowledge areas were applied: software implementation and

2https://tceduca.irbcontas.org.br/mapa

integration (8 students), software requirements (4 students), and
software testing (1 student).

The third SEP course instance occurred from April to August
2023. This course instance conducted its activities in a hybrid for-
mat, i.e., with remote and in-person activities. Beyond the projects’
specific activities, students could engage in other SF’s SE concerns,
including definition, documentation, or improvement of SE pro-
cesses. There were four teams: development, to finish a component
initiated in the first SEP course instance (3 students); quality; to
improve and document the Verification and Validation (V&V) SF
processes (4 students); test, focused on the evolution of the test
automation process (3 students); and architecture, to define and
document a new SF software architecture process (3 students).

Several typical SE project issues appeared in each SEP course
instance, such as difficulties with workstations’ configuration, lack
of precision of some requirements, or use of different criteria for
monitoring students’ soft skills. Our experience indicates that the
issues that appear in each SEP course instance contributes to the
experience of the students, helping them to learn how to solve
problems in an uncontrolled environment.

5 SEP AND SE COMPETENCIES
The SEP course aims to offer students a software development
experience in an environment close to the reality of the SE indus-
try. Thus, in addition to technical and technological (knowledge
and cognitive) skills, students need to experience their emotional
competencies (emotional skills and attitudes) in building software
in a team for an external client. The latest instance of the SEP
course aimed to honor not only the experience with technical and
technological skills but also to offer the opportunity to put into prac-
tice emotional and cognitive skills in teamwork. This experience
showed a valuable interaction between professors and students.
The professors played the role of preceptors, a term taken from
the health education area and used in this course to reference the
professor’s responsibility for managing and guiding students in
their professional activities. The students were divided into groups
of three to four components and allocated to one SE knowledge
area: Architecture/Design, Construction, Testing, and Verification
and Validation (V&V). Each preceptor was mentoring and assess-
ing students in one technical knowledge area, and all professors
observed the students’ ethical attitudes and professional postures
[5]. The cognitive skills practiced and assessed in the project were
reasoning, analytical skills, problem-solving, and innovation. The
emotional abilities practiced were aptitude, initiative, enthusiasm,

An undergraduate Software Engineering practice course: bridging the academia-industry gap SBES’24, September 30 – October 04, 2024, Curitiba, PR

work ethic, willingness, trustworthiness, team participation, techni-
cal leadership, and communication skills. These also included effort,
punctuality, attendance, collaboration, and respect. The third in-
stance of the course was carried out in the context of a competency
management process, comprising the activities of planning, moni-
toring, evaluation and feedback, and competency development.

5.1 Planning and monitoring competencies
The preceptors organized the course based on project’s needs and
student profiles. The knowledge areas to be worked on were es-
tablished, using the SWEBOK [25] as a reference. The students
were allocated to process areas with activities and technological
tools to support the process. The process was reviewed, improved,
and expanded weekly according to the student’s performance. The
preceptors defined final products for each team rather than inter-
mediate deliverables, as this would depend on the practices to be
carried out by the students. The respective products/deliverables
were incorporated into the team results as the process was executed.
While still planning, the tutors defined assessment criteria and re-
spective marks/weights for competencies that should be developed.

The evaluation criteria covered the quality of the products and
the expected results, compliance with defined processes and stan-
dards, and demonstration of developed competencies, cognitive
skills, technical skills, and emotional skills, as well as the attitude
represented by the student’s professional behavior and posture
throughout the construction of the product. Seven monitoring cy-
cles were defined for the activities, tasks, and products. In the SEP
course, the two perspectives of competency - American and French
schools - are combined, involving the capacity that the student
must demonstrate throughout the execution of the project and
the respective results and products. Table 2 shows the minimum
competencies that should be developed. The execution process de-
veloped by the students was improved and expanded within each
monitoring and evaluation (feedback) cycle.

Monitoring was carried out weekly by the preceptors with all
the teams. Each preceptor was responsible for the class on a specific
day of the week. The preceptors monitored the students’ activities
during the class period, including the technical activities of the
area in which they were responsible. At this stage, the preceptor
clarified doubts and provided guidance and suggestions regarding
activities and products developed during the period. Technical com-
petencies were monitored according to the preceptor’s expertise,
and all preceptors analyzed cognitive and emotional competencies
according to the outcomes of the student work, defined in Table 2.

5.2 Evaluation and Feedback of competencies
Initially, evaluation and feedback activities were carried out weekly,
along with monitoring, focusing on competencies development [16].
However, after the second week, it emerged that a more extended
timeframe was necessary for the students to implement corrective
and improvement actions and suggestions associated with personal
performance, the SE process, and the delivered products. Since then,
the preceptors have carried out feedback every fortnight, according
to the assessment criteria defined in the semester preparation stage,
involving analysis of the products built and the development of
technical, emotional, and cognitive skills [19].

The students received feedback on their work through both the
advising of professors and the SF review process. Students were
assigned supervisors who provide guidance, feedback, and help
them understand best practices for the competency of interest. Ex-
perienced SF team members reviewed student’s artifacts, offering
technical feedback and hints for potential improvements. Regular
team meetings provided opportunities for students to present their
progress to their supervisor and teammates, discuss challenges, and
receive feedback. Each student evaluated his/her own improvement
and his/her teammates’ evolution using a 360º survey. The profes-
sors shared a spreadsheet to register grades for each review and
to monitor progress in soft skills, using the same criteria. Besides
quantitative results, the shared spreadsheet records qualitative im-
pressions of each professor in relation to the evolution of each
student. In the term of the course, a survey was conducted, as seen
in Table 3, and the students gave feedback of their experience on
the course. In all three instances, the students’ opinion was of great
satisfaction. The course instruments and data are available in a SF
repository3.

Each preceptor had their evaluation style. Some did the assess-
ment and feedback only as a group; others did group and individual
assessments and provided both group and personal feedback. The
evaluations and feedback provided a lot of reflection for most stu-
dents and can be seen in the behavior change. There were four
categories of assessments:

• carried out by the preceptor for each student;
• carried out by the preceptor for the team as a whole;
• self-assessment by the students themselves;
• 360º assessment, in which the other team members assessed
a team member.

The competencies assessed in each feedback cycle, described in
Table 2, were inspired by, but not limited to, the SWECOM SE
competencies and skills [26].

5.3 Development of competencies
As a result of the assessments and feedback provided by the pre-
ceptors, the students in groups and individually improved their
attitudes and practices throughout the project. This can be seen in
the performance of product quality, attendance, and punctuality
of delivery of intermediate and final products. In all, each type of
evaluation was carried out six times by the preceptors, teammates,
and the student himself (self-assessment). This development was
evaluated regarding the observed behavior, the lessons learned from
the preceptors’ guidance and feedback, and the opportunities for
improvement that the students identified.

Figure 2 shows the students’ progress in developing technical
skills. The average results of the first assessment are shown in blue
and the last in orange. There was a significant improvement in com-
petencies between the first and last assessment cycles, and several
factors have contributed to this result. The first factor is students’
low seriousness towards SEP professional attitudes requirements
at the beginning of the course. Most students considered SEP as
a traditional course and, initially, they needed to meet attendance
and punctuality requirements. The initial evaluations clarified to
the students that this course enrollment was similar to working
3https://fabricadesoftwareinf.github.io/sbes2024/

SBES’24, September 30 – October 04, 2024, Curitiba, PR Paiva et al.

Knowledge Cognitive Skill Personal Emotional Skill Social Emotional Skill Outcomes

allocated SE knowledge
area practices

comprehension, analy-
sis, communication

initiative, enthusiasm, avail-
ability, ethical behavior

communication, team-
work, leadership

results of activities in
the knowledge area

SE tools comprehension, analy-
sis, communication

aptitude, initiative, availabil-
ity, ethical behavior

communication, team-
work, leadership, respect

adequate use of tools

process activities, and
respective products

abstraction, application,
reasoning, synthesis

initiative, availability, ethi-
cal behavior

communication, team-
work, leadership, respect

process definition and
compliance

Table 2: Minimum SEP Competencies

Table 3: Final evaluation questionnaire

Questions Response type
1 The course contributed to your education (i.e., learning) Likert Scale: Agree - Disagree
2 The course has helped you to practice techniques learned in other undergraduate courses Likert Scale: Agree - Disagree
3 You were familiar with methods, techniques, and tools needed for working in the project Likert Scale: Agree - Disagree
4 Working in a project team contributed to developing your teamwork skills Likert Scale: Agree - Disagree
5 The team organization is the best work format for a software development project Likert Scale: Agree - Disagree
6 The course has helped you to better understand the challenges of software development Likert Scale: Agree - Disagree
7 The course educational methodology helped you in your tasks in the project development Likert Scale: Agree - Disagree
8 The communication between students and instructors was improved by the course methodology Likert Scale: Agree - Disagree
9 What were the main challenges you faced on working in the project? Open-ended
10 Would you recommend this course, as it was held in this semester, to a classmate? Why? Yes or No – Open-ended
11 Final Comments: use this space for additional comments concerning the course. Open-ended

Figure 2: Technical competencies evolution

in a company and that a professional attitude was mandatory. An-
other critical factor was that, as the monitoring, evaluations, and
feedback took place, students realized that the team perceived the
weaknesses in their work, so they tried to correct mistakes, and the
level of cooperation increased.

The emotional skills and attitudes were divided into individual
and social. Figure 3 shows average results of the first (in blue) and
last (in orange) assessments. The little change in these values may
be related to multiple influencing factors on emotional skills, such
as the person’s personality, the environment in which they live,
their values, and beliefs. These aspects are challenging to change
and nevertheless strongly influence the application and exercise of

Figure 3: Emotional competencies evolution

technical skills. Another factor that justify this result is the difficulty
in perceiving changes in personal attitudes and soft skills.

6 RESULTS AND LESSONS LEARNED
This section synthesizes the main results of the experiences con-
ducting the SEP course in three academic semesters.

6.1 Role of the Professor in SEP
The circumstances in which activities are carried out in SE projects
are different from those that occur in isolated courses or academic
work. Therefore, SEP professors must primarily play the role of

An undergraduate Software Engineering practice course: bridging the academia-industry gap SBES’24, September 30 – October 04, 2024, Curitiba, PR

preceptor for their students. The preceptor is responsible for theory-
practice integration throughout the project, teaching, supervising,
guiding, and leading students in the effective practice of their future
profession. To act as a preceptor, the professor must have a small
number of students so that they can satisfactorily guide the practical
activities essential to the training of a Software Engineer.

A limited number of students per professor ensures that the
professional acts performed by students in SEP have measured
quality, with planning and constant monitoring of students’ ac-
tions, guaranteeing the security of information and contributing
to the formation of a well-prepared and capable professional, with
appropriately structured skills to act as a SE professional, valuable
and reliable to society. As a SEP course has 320 hours per semester,
each professor may have a workload of up to 20 hours per week
(320 hours / 16 weeks). Therefore, the professor should be dedicated
exclusively to this course, as in addition to being a preceptor for a
group of students, the professor is a member of the management
team of the projects in which SEP is involved. The professors must
focus on SEP’s projects to contribute to project management and
effectively monitor all their students’ activities.

6.2 Students’ Performance Assessment Method
SEP is based on formative assessment and emphasizes monitoring
students throughout the academic period to verify progress toward
the proposed objectives, using a humanistic approach [44]. Through
formative assessment, students become aware of their mistakes and
successes and find encouragement to continue their studies system-
atically. This formative assessment must be a quality control instru-
ment, including self-evaluation, peer evaluation within projects,
and evaluation by the course’s professors. This assessment form
aims to complement learning, guide students’ actions throughout
the process, and avoid tensions caused by traditional assessments.
Based on the educator’s sensitivity and technical perspective, this
assessment format provides more information that allows the teach-
ing process to be adapted to each person’s needs. To achieve this,
the professor must monitor a small number of students so that the
focus of assessment and training is on the individual.

Individual assessments of skills and attitudes, based on general
checklists on ethics and professional attitude, must be carried out
every two weeks by all professors of a SEP course instance on all
enrolled students. These assessments consider the student’s self-
assessment and the assessment made by project peers. Furthermore,
professors carry out a more specific and in-depth evaluation of the
individual competency of their students, observing the proper ap-
plication of specific knowledge and the contribution to the project
objectives. The student’s final grade is a weighted average of behav-
ioral (social and personal) and professional (managerial, technical,
and technological) assessments. The behavioral competencies con-
tribute to the final grade with a weight of four, and the professional
competencies with a weight of six.

6.3 SEP as a University Outreach Activity
University Outreach in Brazilian higher education is a set of educa-
tional activities that promotes a transformative interaction between
higher education institutions and other sectors of society for pro-
duction and application of knowledge in articulation with teaching

and research. The Brazilian Ministry of Education requires that
university outreach activities accomplish ten percent of the total
workload of undergraduate education programs. In the SE bach-
elor’s degree program in which the SEP course is inserted, the
whole university outreach workload is accomplished within this
course. The SF project portfolio management imposes mandatory
interaction with external entities, and projects that involve SEP
students are exclusive to non-profit organizations unrelated to the
university structure. These organizations seek support from SF in
the face of difficulties afflicting them, which can be remedied by
applying SE to create software products and services. The SF’s
client organizations expect that the project results meet their needs
and are willing to expose their problems and difficulties so that, in
addition to acts inherent to SE, pedagogical actions may also be
executed in the form of practical analysis activities carried out by
students under the direct supervision of professors. This scenario
allows the professor to simultaneously perform didactic and uni-
versity outreach actions, which must be well understood both by
those interested in the project and by the professors and students
involved so that the ethical principles of SE are strictly observed
and followed. To achieve this, each professor must monitor a small
number of students to ensure that:

• professional acts carried out by students have their quality
assessed, aiming to satisfy project stakeholders’ objectives;

• pedagogical actions are practical, with planning and constant
monitoring of students’ actions within the project;

• information security and protection of users and project
sponsors’ rights are preserved.

Once these conditions are guaranteed, SEP becomes ideal for
university outreach activities. By participating in projects with ex-
ternal stakeholders and working in various types of SE activities,
students face highly complex professional situations within the
project, improving their use of SE principles and technologies with-
out losing sight of the fact that the object of their attention must
be the satisfaction of the needs of those interested in the project
who, in turn, represent the community in which the SF operates.
Therefore, the students’ activities include aspects of learning that
benefit the students and aspects of university outreach that bene-
fit external non-profit organizations. This strengthens the desired
inseparability between learning and outreach activities, which are
two fundamental academic objectives.

6.4 Benefits for SE Student Education
For the competencies maturation to be effective, students must ex-
perience different SE processes that are learned in several courses
within the SE bachelor’s Degree curriculum and can be organized
into technical and management processes. Both are supported by
numerous SE tools and mastering these tools’ technologies is a
mandatory SE competency. Thus, SE professionals must be able to
carry out activities involving technical, managerial, and technologi-
cal competencies. Real SE projects, like those at SF, typically exercise
all three competencies. It is essential to contrast this realistic project
scenario, where most types of competencies are exercised, with the
traditional courses practical activities scenario, where the focus is
directed to just one kind of activity in a controlled environment.

SBES’24, September 30 – October 04, 2024, Curitiba, PR Paiva et al.

Another advantage of the practical activities taught in SEP is that
SF projects aim to meet needs of real users and sponsors; that is,
projects not only have academic and pedagogical interests but are
mainly aimed at generating products and provisioning effective SE
services for the external community. In this way, projects meet qual-
ity requirements defined by (a) project’s stakeholders (users and
sponsors), (b) applicable SE technical standards and best practices
(which are professors’ concerns), and (c) organizational SF policies
and processes. Furthermore, projects consider cost, deadline, and
scope restrictions negotiated with those interested parties, provid-
ing students with an experience of the difficulties of reconciling
different expectations involved in a software project. The insertion
of the SEP course in SF projects also allows students to interact with
users, sponsors, and SE professionals who work at SF, dealing with
real problems and assuming increasing responsibilities as relevant
and active agents in their community.

Close monitoring by a professor with a reduced group of stu-
dents contributes to the quality of these students’ training, ensures
the quality of results produced by these students for the project
in which they work, and guarantees the necessary confidentiality
in real SE projects, since a restricted group of students, under the
supervision of a professor, will have access to confidential informa-
tion of each project. For this reason, professors and students sign
a confidentiality agreement with SF before starting their project
activities, reinforcing concepts of ethics in SE.

6.5 Benefits for Software Factory
The inclusion of students in the SF team not only enhances its
productivity but also reduces the costs associated with software de-
velopment. Additionally, when funding is available, these resources
are directed toward stimulating innovation and promoting human
resource development within the educational institution. This in-
cludes providing scholarships for undergraduate students, which
helps combat attrition in higher education courses.

Students can also bring new ideas and perspectives to projects,
fostering innovation and creativity within the Software Factory.
Moreover, by actively engaging in training professionals prepared
for the job market, the SF strengthens its reputation, attracting
more partnerships and investments from the industry. Supervising
and mentoring students with diverse backgrounds and skills allows
the SF team to develop its management and leadership capabilities.
This brings long-term benefits, particularly in fostering a culture
of continuous professional development.

7 CONCLUSIONS
This paper reports results and lessons learned from applying an
innovative approach to teaching SE practice in an undergraduate
course. The essence of our approach is practical learning in an
academic SF that represents for SE students what a university hos-
pital represents for medical students. There are other ways to learn
SE practice, but we believe that academic software factory-based
learning is the most effective. We hope that this article motivates
universities to create their own academic software factories, as
our experience shows that the investment is relatively small com-
pared to the benefits generated for students and society as a whole.

Including students in a real software production environment, de-
tached form a purely academic context, is the cornerstone of the
proposed educational process. It promotes students’ professional at-
titudes and competencies and leads students to consolidate learning
through doing and be active subjects in their learning process.

The SEP course aims to promote SE students’ competencies ma-
turity and develop their technical, social, and personal skills and
attitudes as future competent SE professionals and citizens com-
mitted to their community and the society they belong to. This
maturation takes place in the final course of the SE Bachelor’s De-
gree curriculum, reinforcing the practice of soft and hard skills
and consolidating knowledge students acquired throughout the
theoretical-practical coursework in an environment that realisti-
cally represents situations that will be experienced in their pro-
fessional career. In the SEP coursework, students participate in
complex activities, maintain commitments, and respond to absolute
obligations. It is an opportunity for students to be evaluated regard-
ing their ethical and professional attitude, respect for institutional
standards, and relationship with project stakeholders, including
users, sponsors, and SF’s staff. The course concept favors active
practice-based learning processes, focusing on ethics and attitudes
of the future SE professional towards challenges that occur when
working within a software-producing organization. This experi-
ence is essential to their future professional life since facing real
difficulties during training improves students’ understanding and
commitment to the society in which they operate. It stimulates and
values ethical and humanistic dimensions in the training, develop-
ing attitudes, principles, and values of citizenship oriented to the
society development.

SF projects are developed to serve the community and involve
multi-professional and interdisciplinary tasks that integrate differ-
ent competencies of SE. SEP course operates in these SF projects that
develop integrated activities between university and its community,
favoring practical learning based on scientific methodology and
integrated into the university service provision system. SF projects
involving SEP course also serves as a continuing education strategy
for SF staff, functioning as centers that generate resources, produce
knowledge, and bring together highly qualified human resources.
This approach can contribute to provide adequately trained profes-
sionals, since this is one of the biggest obstacles to the growth of
the software industry in Brazil and around the world.

REFERENCES
[1] ACM and IEEE. 2016. Software engineering Code of Ethics. https://www.

computer.org/education/code-of-ethics.
[2] ACM and IEEE. 2020. Software Engineering Curriculum. Guidelines for Un-

dergraduate Degree Programs in Software Engineering. https://www.acm.org/
education/curricula-recommendations.

[3] Deniz Akdur. 2022. Analysis of Software Engineering Skills Gap in the Industry.
ACM Trans. Comput. Educ. 23, 1, Article 16 (dec 2022), 28 pages. https://doi.org/
10.1145/3567837

[4] AndréAntunes, Daltro Nunes, Jair Leite, andMarcelo Yamaguti. 2017. Bacharelado
em Engenharia de Software. Sociedade Brasileira de Computação (SBC), Porto
Alegre, RS, Brazil, Chapter IV, 56–78.

[5] Renata Araújo, Alcides Calsavara, Alessandro Cerqueira, and Jair Leite. 2019.
Referenciais de Formação para os Cursos de Graduação em Computação no Brasil -
Competências Atitudinais. Technical Report. Sociedade Brasileira de Computação
(SBC). 11 pages.

[6] Nana Assyne, Hadi Ghanbari, and Mirja Pulkkinen. 2022. The state of research
on software engineering competencies: A systematic mapping study. Journal of
Systems and Software 185 (March 2022), 111183.

https://www.computer.org/education/code-of-ethics
https://www.computer.org/education/code-of-ethics
https://www.acm.org/education/curricula-recommendations
https://www.acm.org/education/curricula-recommendations
https://doi.org/10.1145/3567837
https://doi.org/10.1145/3567837

An undergraduate Software Engineering practice course: bridging the academia-industry gap SBES’24, September 30 – October 04, 2024, Curitiba, PR

[7] Mirza Zaeem Baig, Muhammad Usman Ul Haq, Hafiz Muhammad Umer Surkhail,
Rabika Iqbal, and Muhammad Mohsin Sheikh. 2018. Bridging the industry-
academia collaboration gap a focus towards final year projects. In Proceedings of
the 2nd International Conference on High Performance Compilation, Computing and
Communications (Hong Kong, Hong Kong) (HP3C). Association for Computing
Machinery, New York, NY, USA, 40–44. https://doi.org/10.1145/3195612.3195620

[8] Renata Brasil-Silva and Fábio Levy Siqueira. 2022. Metrics to quantify soft-
ware developer experience: a systematic mapping. In Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing. ACM, Virtual Event, 1562––1569.
https://doi.org/10.1145/3477314.3507304

[9] Manuel Caeiro-Rodríguez, Mario Manso-Vázquez, Fernando A. Mikic-Fonte,
Martín Llamas-Nistal, Manuel J. Fernández-Iglesias, Hariklia Tsalapatas, Olivier
Heidmann, Carlos Vaz De Carvalho, Triinu Jesmin, Jaanus Terasmaa, and
Lene Tolstrup Sørensen. 2021. Teaching Soft Skills in Engineering Educa-
tion: An European Perspective. IEEE Access 9 (2021), 29222–29242. https:
//doi.org/10.1109/ACCESS.2021.3059516

[10] Jonathan Cazalas, Christian Roberson, and Zeeshan Furqan. 2024. From Degree
to Developer: the Creation and Evolution of a CS Course Designed to Bridge the
Academia-Industry Gap. In Technical Symposium on Computer Science Education
(SIGCSE). ACM, Portland, OR, USA, 186–192. https://doi.org/10.1145/3626252.
3630860

[11] Orges Cico, Letizia Jaccheri, Anh Nguyen-Duc, and He Zhang. 2021. Exploring
the intersection between software industry and Software Engineering education
- A systematic mapping of Software Engineering Trends. Journal of Systems and
Software 172 (2021), 110736.

[12] Marcela da C. de Souza, Sandro R. Oliveira, and Sílvio R. Meira. 2017. A Systematic
Review to Assist in Identifying Teaching Approaches to Guide the Application
of an Interdisciplinary Software Factory in IT Undergraduation. In Simpósio
Brasileiro de Engenharia de Software. SBC, Fortaleza, CE, Brazil, 384—-391.

[13] Ray Dawson and Ron Newsham. 1997. Introducing software engineers to the
real world. IEEE Software 14, 6 (1997), 37–43. https://doi.org/10.1109/52.636640

[14] Birgit Demuth, M. Fischer, and Heinrich Hussmann. 2002. Experience in early
and late software engineering project courses. In Proceedings 15th Conference on
Software Engineering Education and Training (ICSE-SEET). IEEE, Kentucky, USA,
241–248. https://doi.org/10.1109/CSEE.2002.995216

[15] Anastasia Dimitriadou, Naza Djafarova, Ozgur Turetken, Margaret Verkuyl, and
Alexander Ferworn. 2021. Challenges in serious game design and development:
Educators’ experiences. Simulation & Gaming 52, 2 (2021), 132–152.

[16] Joelle Ducrot and Venky Shankararaman. 2015. Measuring student perfor-
mance and providing feedback using Competency Framework. In International
Conference on Engineering Education - ICEED. IEEE, Kanazawa, Japan, 55–60.
https://doi.org/10.1109/ICEED.2014.7194688

[17] Thomas Durand. 2015. L’alchimie de la compétence. Revue Francaise de Gestion
253, 8 (2015), 267–295. https://doi.org/10.3166/RFG.160.261-292

[18] Sigrid Eldh and Sasikumar Punnekkat. 2012. Synergizing industrial needs and
academic research for better software education. In International Workshop on
Software Engineering Education Based on Real-World Experiences, EduRex. IEEE,
Zurich, Switzerland, 33–36. https://doi.org/10.1109/EduRex.2012.6225703

[19] Reza Fauzan, Daniel Siahaan, Mirotus Solekhah, VrizaWahyu Saputra, Aditya Eka
Bagaskara, and Muhammad Ihsan Karimi. 2023. A Systematic Literature Review
of Student Assessment Framework in Software Engineering Courses. Journal of
Information Systems Engineering and Business Intelligence 9, 2 (2023), 264–275.
https://doi.org/10.20473/jisebi.9.2.264-275

[20] Nuno Flores, Ana CR Paiva, and Nuno Cruz. 2020. Teaching software engineering
topics through pedagogical game design patterns: An empirical study. Information
11, 3 (2020), 21.

[21] Ivan Garcia, Carla Pacheco, Andrés León, and Jose A Calvo-Manzano. 2020. A
serious game for teaching the fundamentals of ISO/IEC/IEEE 29148 systems
and software engineering–Lifecycle processes–Requirements engineering at
undergraduate level. Computer Standards & Interfaces 67 (2020), 103377.

[22] Vahid Garousi, Gorkem Giray, Eray Tuzun, Cagatay Catal, and Michael Felderer.
2019. Aligning software engineering education with industrial needs: A meta-
analysis. Journal of Systems and Software 156 (Oct. 2019), 65–83.

[23] Eiji Hayashiguchi, Hironori Washizaki, Katsutoshi Shintani, and Daisuke Yosh-
ioka. 2022. The Competency-based Computing Curricula 2020 and SFIA V7
comparison focusing on Digital Transformation Age. InWorld Engineering Edu-
cation Conf. IEEE, Santos, Brazil, 1–6. Issue V.

[24] Nicole Herbert. 2018. Reflections on 17 Years of ICT Capstone Project Coor-
dination: Effective Strategies for Managing Clients, Teams and Assessment. In
Proceedings of the 49th ACM Technical Symposium on Computer Science Education
(Baltimore, Maryland, USA) (SIGCSE ’18). Association for Computing Machinery,
New York, NY, USA, 215–220. https://doi.org/10.1145/3159450.3159584

[25] IEEE Computer Society. 2014. Guide to the Software Engineering body of knowledge
(SWEBOK) V3. IEEE Computer Society Press, Washington, DC, United States.
https://ieeecs-media.computer.org/media/education/swebok/swebok-v3.pdf

[26] IEEE Computer Society. 2014. Software Engineering Competency Model) V1.
IEEE Computer Society Press, Washington, DC, United States. https://https:
//www.computer.org/volunteering/boards-and-committees/professional-

educational-activities/software-engineering-competency-model
[27] ISO, IEC, and IEEE. 2017. International Standard 12207 - Systems and software

engineering — Software life cycle processes. ISO/IEC/IEEE, Geneva, CH.
[28] Letizia Jaccheri and Patricia Lago. 1998. How project-based courses face the

challenge of educating software engineers. In Proc. of the joint World Multiconfer-
ence on Systemics, Cybernetics and Informatics (SCI’98) and the 4th International
Conference on Information Systems Analysis and Synthesis (ISAS’98), Lecture Notes
in Computer Science, Vol. 750. International Institute of Informatics and Systemics,
Orlando, USA, 377–385.

[29] Julio Juárez, Cipriano Santos, and Carlos Brizuela. 2021. A comprehensive review
and a taxonomy proposal of team formation problems. Comput. Surveys 54 (2021),
153–186.

[30] Ze Shi Li, Nowshin Nawar Arony, Kezia Devathasan, and Daniela Damian.
2023. “Software is the easy part of Software Engineering” - Lessons and Ex-
periences from A Large-Scale, Multi-Team Capstone Course. In 2023 IEEE/ACM
45th International Conference on Software Engineering: Software Engineering Ed-
ucation and Training (ICSE-SEET). ACM/IEEE, Melbourne, Australia, 223–234.
https://doi.org/10.1109/ICSE-SEET58685.2023.00027

[31] Georgios Liargkovas, Angeliki Papadopoulou, Zoe Kotti, and Diomidis Spinellis.
2022. Software Engineering Education Knowledge Versus Industrial Needs. IEEE
Transactions on Education 65, 3 (2022), 419–427. https://doi.org/10.1109/TE.2021.
3123889

[32] Stephanie Ludi and James Collofello. 2001. An analysis of the gap between the
knowledge and skills learned in academic software engineering course projects
and those required in real: projects. In 31st Annual Frontiers in Education Confer-
ence. Impact on Engineering and Science Education. IEEE, Reno, NV, USA, T2D–8.
https://doi.org/10.1109/FIE.2001.963881

[33] Joseph Maguire, Steve Draper, and Quintin Cutts. 2019. What Do We Do When
We Teach Software Engineering?. In Proceedings of the 2019 Conference on United
Kingdom & Ireland Computing Education Research. ACM, Canterbury United
Kingdom, 1–7.

[34] Maíra R. Marques, Alcides Quispe, and Sergio F. Ochoa. 2014. A systematic
mapping study on practical approaches to teaching software engineering. In 2014
IEEE Frontiers in Education Conference (FIE) Proceedings. IEEE, Madrid, Spain, 1–8.
https://doi.org/10.1109/FIE.2014.7044277

[35] José Metrôlho, Fernando Ribeiro, Paula Graça, Ana Mourato, David Figueiredo,
and Hugo Vilarinho. 2022. Aligning software engineering teaching strategies
and practices with industrial needs. Computation 10, 8 (2022), 129.

[36] Lennart Ohlsson and Conny Johansson. 1995. A practice driven approach to
software engineering education. IEEE Transactions on Education 38, 3 (1995),
291–295. https://doi.org/10.1109/13.406508

[37] Kai Qian, Dan Lo, Reza Parizi, Fan Wu, Emmanuel Agu, and Bei-Tseng Chu.
2018. Authentic Learning Secure Software Development (SSD) in Computing
Education. In 2018 IEEE Frontiers in Education Conference (FIE). IEEE, San Jose,
California, USA, 1–9. https://doi.org/10.1109/FIE.2018.8659217

[38] Eric Ras, Ralf Carbon, BjÖrn Decker, and JÖrg Rech. 2007. Experience Manage-
ment Wikis for Reflective Practice in Software Capstone Projects. IEEE Transac-
tions on Education 50, 4 (2007), 312–320. https://doi.org/10.1109/TE.2007.904580

[39] Mira Kania Sabariah, Veronikha Effendy, Jati H. Husen, Daffa Hilmy Fadhlur-
rohman, and Rony Setyawansyah. 2023. ExperiencesWith Gap-Bridging Software
Engineering Industry-Academia Collaborative Education Program. In 2023 IEEE
35th International Conference on Software Engineering Education and Training
(ICSE-SEET). IEEE, Tokyo, Japan, 168–172. https://doi.org/10.1109/CSEET58097.
2023.00035

[40] Mihaela Sabin, John Impagliazzo, Hala Alrumaih, Cara Tang, and Ming Zhang.
2018. IT2017 report: Implementing a competency-based information technology
program. SIGCSE 2018 - Proceedings of the 49th ACM Technical Symposium on
Computer Science Education 2018-Janua (2018), 1045–1046. https://doi.org/10.
1145/3159450.3159636

[41] Javier Saldaña-Ramos, Ana Sanz-Esteban, Javier García, and Antonio Amescua.
2014. Skills and abilities for working in a global software development team: a
competence model. Journal of Software: Evolution and Process 26, 3 (Feb. 2014),
329–338. https://doi.org/10.1002/smr.1588

[42] Venky Shankararaman, Paul M. Leidig, Greg Anderson, and Mark Thouin.
2021. IS2020:Competency-Based Information Systems Curriculum Guidelines.
Proceedings - Frontiers in Education Conference, FIE 2021-Octob (2021), 1–4.
https://doi.org/10.1109/FIE49875.2021.9637150

[43] Simone S. R. Souza, Bruno H. Oliveira, Filipe Grillo, and Christian de Cico. 2016.
Construção de Plataformas Digitais durante o Ensino de Engenharia de Software:
um relato de Experiência. In Anais do IX Fórum de Educação em Engenharia de
Software. SBC, Maringá, Brasil, 13–22.

[44] Marcus Vinicius Alencar Terra, Vanessa Tavares De Oliveira Barros, and Rodolfo
Miranda De Barros. 2022. Performance Management of IT Professionals: A
Humanistic Model. In Conference on Computer Science and Intelligence Systems,
FedCSIS. IEEE, Sofia, Bulgaria, 721–729. https://doi.org/10.15439/2022F220

[45] Michel Thiollent. 2005. Insertion of action-research in the context of continued
university education. International Journal of Action Research 1, 1 (2005), 87–98.

https://doi.org/10.1145/3195612.3195620
https://doi.org/10.1145/3477314.3507304
https://doi.org/10.1109/ACCESS.2021.3059516
https://doi.org/10.1109/ACCESS.2021.3059516
https://doi.org/10.1145/3626252.3630860
https://doi.org/10.1145/3626252.3630860
https://doi.org/10.1109/52.636640
https://doi.org/10.1109/CSEE.2002.995216
https://doi.org/10.1109/ICEED.2014.7194688
https://doi.org/10.3166/RFG.160.261-292
https://doi.org/10.1109/EduRex.2012.6225703
https://doi.org/10.20473/jisebi.9.2.264-275
https://doi.org/10.1145/3159450.3159584
https://ieeecs-media.computer.org/media/education/swebok/swebok-v3.pdf
https://https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://https://www.computer.org/volunteering/boards-and-committees/professional-educational-activities/software-engineering-competency-model
https://doi.org/10.1109/ICSE-SEET58685.2023.00027
https://doi.org/10.1109/TE.2021.3123889
https://doi.org/10.1109/TE.2021.3123889
https://doi.org/10.1109/FIE.2001.963881
https://doi.org/10.1109/FIE.2014.7044277
https://doi.org/10.1109/13.406508
https://doi.org/10.1109/FIE.2018.8659217
https://doi.org/10.1109/TE.2007.904580
https://doi.org/10.1109/CSEET58097.2023.00035
https://doi.org/10.1109/CSEET58097.2023.00035
https://doi.org/10.1145/3159450.3159636
https://doi.org/10.1145/3159450.3159636
https://doi.org/10.1002/smr.1588
https://doi.org/10.1109/FIE49875.2021.9637150
https://doi.org/10.15439/2022F220

SBES’24, September 30 – October 04, 2024, Curitiba, PR Paiva et al.

[46] Veronika Thurner and Axel Böttcher. 2012. Expectations and deficiencies in soft
skills. In Global Engineering Education Conference (EDUCON). IEEE, Marrakech,
Morocco, 1–7. https://doi.org/10.1109/EDUCON.2012.6201197

[47] Denis O. Zmeev and Oleg A. Zmeev. 2020. Project-Oriented Course of Software
Engineering Based on Essence. In Conference on Software Engineering Education
and Training (ICSE-SEET). IEEE, Munich, Germany, 296–298. https://doi.org/10.
1109/CSEET49119.2020.9206240

https://doi.org/10.1109/EDUCON.2012.6201197
https://doi.org/10.1109/CSEET49119.2020.9206240
https://doi.org/10.1109/CSEET49119.2020.9206240

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 SE curriculum and competency
	2.2 Teaching SE practice

	3 SEP course theoretical framework
	3.1 SEP Objectives
	3.2 SEP environment: the Software Factory (SF)
	3.3 SEP General Rules

	4 Experiences in conducting SEP course instances
	4.1 SEP course instances

	5 SEP and SE competencies
	5.1 Planning and monitoring competencies
	5.2 Evaluation and Feedback of competencies
	5.3 Development of competencies

	6 Results and Lessons Learned
	6.1 Role of the Professor in SEP
	6.2 Students' Performance Assessment Method
	6.3 SEP as a University Outreach Activity
	6.4 Benefits for SE Student Education
	6.5 Benefits for Software Factory

	7 Conclusions
	References

