
Teaching Software Engineering with Project-Based Learning: A
Four Years Experience Report

Lina Garcés
Software Engineering Laboratory, Instituto de Ciências

Matemáticas e de Computação, Universidade de São Paulo
- LabES/ICMC/USP
São Carlos, SP, Brazil
linagarces@usp.br

Brauner Oliveira
Software Engineering Laboratory, Instituto de Ciências

Matemáticas e de Computação, Universidade de São Paulo
- LabES/ICMC/USP
São Carlos, SP, Brazil

brauner@usp.br

ABSTRACT
Project-Based Learning (PjBL) is an educational design method-
ology embraced by instructors within engineering programs and,
recently, in software engineering courses. PjBL enables students to
confront real-world scenarios and apply their knowledge to create
practical and meaningful software products, all while enhancing
essential soft skills required in the software industry. This study
draws upon the authors’ firsthand experiences implementing PjBL
across four software engineering courses. It outlines the challenges
encountered during each course iteration, emphasizing areas ripe
for improvement in future offerings. Insights gathered from four
years of teaching with PjBL are shared, detailing the positive and
negative outcomes of employing various strategies to address chal-
lenges identified in prior course runs. The experience reported
herein gives fellow software engineering educators valuable in-
sights, enabling them to avoid ineffective approaches and integrate
successful ones into their teaching endeavors.

CCS CONCEPTS
• Software and its engineering → Agile software development;
Software development techniques; • Social and professional
topics→ Computing education.

KEYWORDS
Software Engineering, Problem-Based Learning, PjBL, Agile

1 INTRODUCTION
Teaching and learning software engineering nowadays remains
challenging due to the relevant and pervasive role of software in
our society. The way we develop software has changed several
times over the last decades with the introduction of different ideas,
methods, paradigms, and technologies. Beyond the large set of
concepts required to understand software engineering, the develop-
ment, and improvement of students’ soft skills is a highly desired
outcome of educational experiences [4, 12]. Consequently, soft-
ware engineering programs and courses must continuously adapt
their content and learning strategies to keep on par with software
industry dynamics.

As a way to overcome these challenges, Project-Based Learn-
ing (PjBL) has been largely employed for software engineering
education [1, 14, 15, 17]. PjBL is considered a student-centered ed-
ucational method in which a project is developed as a main part
of a course [15]. Software engineering topics addressed in lectures

and classroom activities support groups of students while develop-
ing a software project that aims to solve real or realistic problems
[15], which may involve actual stakeholders. However, PjBL can
be configured and employed in different ways [1, 17], affecting
the experience of students [17] and possibly its learning outcomes.
Studies have demonstrated that PjBL contributes to long-term re-
tention, soft-skills development, and satisfaction of students and
teachers when compared with traditional approaches [16].

While several studies recognize the benefits of PjBL, implement-
ing it imposes different challenges on the instructor, who has to
encourage and keep students engaged throughout the project, pro-
vide feedback continuously, and evaluate students [7]. In this sense,
this paper describes a 4-year experience employing PjBL to teach
software engineering to students enrolled in two courses of the
Computer Engineering and Information System undergraduate pro-
grams. The way PjBL was applied changed over the years to address
issues identified during each course run. Pre- and post-course ques-
tionnaires were applied as part of the course design, the first to
support our decisions on topics to be addressed and the latter to
assess the students’ perspective on several aspects after the course.
The contribution of this paper lies in sharing the PjBL-oriented
course design, the rationale behind it, and the lessons learned from
applying PjBL. Moreover, this study’s findings are contrasted with
related experiences of conducting PjBL for software engineering
education.

The remainder of this paper is organized as follows. Section 2
presents an overview of related work and positions contributions
of this experience report. Section 3 provides the course design
offered over the four years. Section 4 describes each course run
and their relevant details such as their design and issues faced. The
results of students’ responses to questionnaires are discussed in
Section 5, while the lessons learned are described in Section 6.
Finally, Section 7 outlines the conclusions and future work.

2 RELATEDWORK
Currently, there are various experiences related to the utilization
of PjBL in software engineering courses. Most reports focus on
lessons from implementing PjBL in introductory [15] and advanced
[2, 13, 17, 18] software engineering courses. Additionally, there are
works discussing experiences gained from PjBL in courses spanning
project management [5, 8], continuous delivery [9], object-oriented
analysis and design [12], user experience (UX) [3], and recently,
open-source software engineering [6]. Despite most of the studies
highlight experiences in undergraduate level, notable instances of



SBES’24, September 30 – October 04, 2024, Curitiba, PR Garcés and Oliveira

PjBL in graduate courses [5, 6, 17] and industry training [8, 9] are
also documented.

Typically, PjBL-oriented courses have a duration of a full semes-
ter, lasting between 12 to 16 weeks or totaling 30 to 60 hours. There
are exceptions, with two studies reporting PjBL implementation
within shorter timeframes, such as 10 weeks (40 hours) [2], 8 weeks
(16 hours) [12], or even just 3 days (20 hours) for industry training
[8].

The majority of studies report experiences within face-to-face
courses, with the exception of Flach and Feitosa [6], Suciu et al.
[18], which present results on applying PjBL in fully online courses.
Regarding theory contents, all studies divide course time between
lessons and project development. Only two courses [9, 18] des-
tined full-time for project execution. All studies combined PjBL
with at least one additional activity, including workshops, flipped
classrooms, lab activities, exams (e.g., individual tests or quizzes),
recommended readings, invited talks, classroom discussions, and
traditional lectures.

Some studies have involved industry partners or practitioners
[2, 8, 9, 13, 17, 18]. Practitioners’ roles within team projects vary,
ranging from proposing project ideas to mentoring and acting as a
client or product owner. Few studies [8, 9, 13, 17] actively engaged
real end users or customers as part of the team. In other studies
[5, 6], the customer role was performed by senior undergraduate
or postgraduate students.

The experience time reported in the related studies varies be-
tween one and seven years of PjBL practice. An exception is the
study of Ståhl et al. [17], which presents a consolidated experience
dating back to 1977.

From this perspective, the experience reported in this work
shares a similar course design and application of PjBL to related
work. However, notable differences include the diversity of course
settings, e.g., course levels (introductory and advanced), implemen-
tation across two different universities, different project durations
(8 and 16 weeks), formats (online and face-to-face), team auton-
omy levels, and the presence or absence of real customers. In all
cases, ongoing feedback from students and customers served as
the foundation for subsequent course improvements. Additionally,
we discuss findings that corroborate some challenges and lessons
learned as identified in related studies.

3 COURSE DESIGN
The course design has evolved over the years as a consequence
of the lessons learned with each run and the restrictions imposed
by ERT (Emergency Remote Teaching) due to Covid-19 outbreak.
Additional factors, such as students’ background in software de-
velopment and knowledge of software engineering topics, also
impacted the design. The four-year experience described here took
place in the context of two different courses, one offered as part
of the Computer Engineering Program of University A and the
other offered by University B for students of the Information Sys-
tems program. Both courses are mandatory for such undergraduate
programs.

The first course, Software Engineering, is offered annually to 7th-
semester students by University A and consists of 120 hours of

classes and practice. This course has the following hard require-
ments: Programming fundamentals, object-oriented programming,
and object-oriented analysis and design. Web development and
Database II are optional requirements. The second course, Software
Development in Information Systems, is also offered annually to
7th-semester students by University B and consists of 128 hours of
classes and practice. In order to enroll, students have to complete
the courses Programming fundamentals, Software Engineering I,
Object-Oriented Programming, Object-Oriented Analysis and De-
sign, Web development, and Database I. Optional requirements
are Software Engineering II and Database II. In the first course,
students are fully dedicated, whereas, in the second course, part
of the students split their time between full-time jobs and their
undergraduate studies.

Since we employed PjBL, class students formed their own teams
to develop one software project. SCRUMwas selected as a model for
project development. Therefore, each course run consisted of a se-
ries of sprints and deliverables that would culminate in a minimum
viable software product (MVP) at the end of the project. The number
of sprints, the deliverables, and the schedule are determined at the
beginning of the project and are the same for all teams. Students
select at least one software engineering role (e.g., analyst, developer,
tester, architect, and manager), mimicking a real software devel-
opment team. Project meetings with the professor are also a core
activity of this course design, which intends to continuously assess
project progress and provide feedback whenever required. Groups
are evaluated regarding the accomplishment of deliveries, consid-
ering completeness, quality, estimated accomplishment, deadlines,
and customers’ satisfaction with the product’s final release. During
sprint review meetings, teams must present delivery results to the
whole class and, in some sprints, to end users.

To support the groups, different teachingmethods, such as flipped
classroom, laboratory activities, case-based learning, and industry
expert-invited talks, were employed in addition to lectures on sev-
eral topics related to software engineering. Moreover, individual
tests are defined to assess each student’s knowledge of core software
engineering topics and their practical application. The Figure 1
provides a detailed overview of the main components of each course
run. The topics covered as part of theory are listed and described
in Table 1.

During course runs, learning management systems (LMS) such
as Moodle and SIGAAwere used to organize academic material (e.g.,
slides, video courses, reading material, links, tasks, etc.), receive
project deliverables submissions, facilitate communication with
students, and record grades. Moreover, technologies such as Slack
or Discord were adopted to provide students with a collaborative
environment for project development and effective communication
channels with the teacher. Finally, tools such as Notion and spread-
sheets were used to register and share the teacher’s qualitative
assessment of teams or feedback to teams.

4 COURSE RUNS
This section describes our experience with each course run. The
number of students enrolled and their prior experience in certain ar-
eas is shown in Table 2. Overall, a considerable amount of students
had some experience in the software industry. The most popular

Page 2 of 11



Teaching SE with PjBL: A four years experience report SBES’24, September 30 – October 04, 2024, Curitiba, PR

Figure 1: Scheme of software engineering course evolution over four years

Table 1: Software Engineering Topics

ID Topic Description
T0 Course’s Introduction Intends to know the professor and students and present the course design. Groups are formed
T1 Design Thinking Presents the purpose, utility and iterative process of design thinking. A real application case of design thinking is presented to the students. Students’

groups are encouraged to execute the design thinking process to define the software product they will develop as a course project
T2 Software development process mod-

els
Exposes the prescriptive models of software development processes, such as waterfall, V, spiral, evolutive prototyping, and rational unified process models

T3 Agile software development process
models

Introduces the agile manifesto and agile models as SCRUM, XP and Crystal. A special focus is given to SCRUM, the pre-defined model to be used by
students teams in the course project.

T4 Software process improvement Presents the importance of continuous improvement in software development, studying the general SPI model and the CMMI and MPS-BR models.
T5 Agile project management Focuses on concepts of project management, presenting planning and estimation techniques as SLOC/KSLOC (Lines of Code), FPA (Function Points

Analysis), and USP (User Story Points). In particular, the Planning Poker technique and team velocity metrics are studied and applied in-class exercises.
Teams are requested to use USP, planning poker, and velocity metrics in their projects.

T6 Requirement Engineering Studies requirement concepts types, and requirements elicitation, specification, and validation techniques. Specifically, teams are asked to use User Stories
(US), behavioral scenarios, and quality attributes scenarios to specify functional and non-functional requirements for their software products.

T7 Interviews Presents the good practices for planning, executing and reporting interviews with final users. Also, techniques for extracting requirements from interviews
are taught. Teams must conduct interviews with real final users as elicitation technique in their projects.

T8 Product quality Familiarises the students with quality attributes concepts. The ISO/IEC 25010 quality model is presented as the definitions for each quality characteristic
and sub-characteristic of this model. Teams must identify the most relevant quality attributes requirements for their products, e.g., security, availability,
maintainability, integration, etc.

T9 Software architecture Introduces the main concepts of software architecture and the stages of the architectural process, i.e., analysis, design, and evaluation. The concepts of
reference architectures, architectural styles and patterns, and architectural tactics are also taugth.

T10 Software architecture for the web Brings a panorama of software architectures evolution for web systems, e.g., client-server, n-tier, SOA, microsservices, and clean and hexagonal architectures,
and their benefits and limitations

T11 Architecture representation Introduces the concepts of software architectures documentation, views, viewpoints, and diagraming. Specifically, it focus on the C4 model presenting
some application examples.

T12 Architectural Decision Records Describes techniques to document architectural decisions making use of ADRs templates and tools
T13 Software testing Introduces the main concepts of software testing, such as, testing levels (i.e., unit, integration, and system), testing techniques (e.g., white-box, black-box,

dynamic, and static), purpose (i.e., functional and non-functional), and test automation
T14 Acceptance testing Presents techniques to plan, execute and analyse testing with final users. Teams are oriented to execute such techniques in their projects.
T15 Interface Testing Introduces tools to execute GUI testing for web systems, e.g., Selenium.
T16 Version controlling Trains students to understand and apply concepts of software version control through practical activities in classroom using Git. Teams are requested to

use GitHub for version control in their projects.
T17 Configuration management Familiarises students with main concepts of configuration management topics, i.e., configuration itens, traceability, version control, release, software

building. Change and release management concepts and processes also are studied;
T18 Data protection Introduces the Brazilian’s personal data protection regulation.

programming languages were JavaScript, Python, Java, and C. Al-
most all students have had experience using DBMS, mostly MySQL

and PostgreSQL. Knowledge and experience with git/GitHub and

Page 3 of 11



SBES’24, September 30 – October 04, 2024, Curitiba, PR Garcés and Oliveira

Table 2: Course runs numbers and pre-course students’ background

Year Program # Students # Groups Group
Size

Industry
Exp.

Top Language DBMS
Exp.

Unit Testing Git/Github Agile Methods

2020 Computer
Engineering

27 4 6-7 30% C (74%)
Java (74%) 74% Little or no experience (78%) Little or no experience (52%) Some experience (74%)

2021 Information
Systems

34 7 4-6 50% JavaScript (65%)
Java (56%) 100% Little or no experience (86%) Some or good experience

(70%)
Some experience (68%)

2022 31 6 5-7 58% JavaScript (74%)
Python (74%) 100% Little or no experience (75%) Some or good experience

(68%)
Some or good experience
(65%)

2023 34 6 5-7 47% JavaScript (62%)
Python (62%) 100% Little or no experience (53%) Some or good experience

(59%)
Some or good experience
(53%)

agile methods were somewhat present among most students, but
Unit testing was clearly a weak point in all classes.

4.1 First Course Run - 2020
The first run of the course Software Engineering took place at the
first semester of 2020, starting as a regular in-person course but
forced into ERT due to the Covid-19 outbreak. This course syllabus
corresponds to an introductory software engineering course.

Theory Content: Topics were lectured in the first two months
using video lessons prepared by the teacher. For this course, topics
related to end-user interaction were not covered (i.e., T1, T7, and
T14 in Table 1) since the practical project was planned to not
depend on external participants. Moreover, considering this was
a basic software engineering course, some advanced topics like
Software Architecture for the Web (T10), Interface Testing (T15),
Configuration Management (T17), and Data Protection (T18) were
not addressed. Figure 1 depicts the list of the 11 (out 18) topics
taught in this first course.

Activities: During the first two months, and as a complement
for lecturers, flipped classroom-based activities were used, aiming
for more autonomy for students learning the contents. An activity
based on a real case was prepared for the software architecture
topic, presenting the rationale behind the architectural decisions of
migrating a monolith to a microservices architecture. Practical lab-
oratory activities were proposed for version control and software
testing topics, i.e., using 𝑔𝑖𝑡 to practice version control commands
and 𝑗𝑢𝑛𝑖𝑡 to practice unit testing. Online sessions were held using
Google Meet to answer students’ questions. Additionally, asyn-
chronous communication between the teacher and students was
possible using Slack.

Project: The practical project involved developing a mobile
application. Students were divided into four teams with a size of six
to seven members. All teams worked on the same app, but each was
responsible for developing one module. At the end of the project,
all modules were integrated to construct the final app. The teacher
prepared a list of functional requirements and an initial version
of the architecture with modules description and database model.
Each team member performs one of the following roles: front-end
developer, back-end developer, software tester, project manager, or
integration engineer. The project was executed during the last two
months. Teams planned activities to develop the module in two
sprints, each lasting four weeks. Each team had one online meeting
with the teacher each week. The teacher and all teams met once
weekly to align their progress. At the end of each sprint, a sprint
review was made for each team.

Project Assessment: The project grade was calculated as the
arithmetic mean of the two deliveries. Assessment criteria included
project team presentation and discussions during sprint review
meetings and quality of artifacts (i.e., database and architecture
conformance, requirements, architecture and code documentation,
code clearness, unit tests code, running module without errors,
project management, and version control). Moreover, as part of
the project grade, each student went through peer evaluation by
his/her team members to assess soft skills (e.g., communication,
pro-activity, commitment, ethics, etc.) during teamwork.

Students Assessment: Two individual tests were applied to stu-
dents. Tests assessed students’ knowledge of software engineering
topics and their application during software development projects.
The first test was designed to be an individual article written by
each study, containing a dissertation on software engineering top-
ics taught in the course. The second test was an online form with
multiple selection questions. The final grade was calculated as the
weighted average of project (45%), two tests (15% each), and exer-
cises (25% in total).

4.1.1 First instance issues.

Issue #1:Most students did not have expertise with the technol-
ogy stack chosen for the project. Since the project started in the
second part of the course, students did not have enough time to
overcome the technology learning curve. This caused some frustra-
tion in students because they wanted to learn the technologies in
depth. This challenge is also shared by Souza et al. [15], Suciu et al.
[18].

Issue #2: Teams had difficulties with internal work alignment,
which, in SCRUM, is made in a five-minute daily meeting. They
could not manage the scheduling of this activity outside of class
without the teacher’s intervention. These difficulties are more com-
mon in distance courses and were also reported by Flach and Feitosa
[6], Suciu et al. [18].

Issue #3: Working on the same application was demotivating
for the teams. From the students’ perspective, each team working
on one different module of the same app increased the difficulty of
the project, mainly due to the excess of communication required
to integrate all modules. Fioravanti et al. [5] also reported such
difficulties in integrating parts of the projects produced by each
team.

Issue #4: Twomonths for the project was not considered enough
time to apply all topics addressed in an introductory software engi-
neering course.

Page 4 of 11



Teaching SE with PjBL: A four years experience report SBES’24, September 30 – October 04, 2024, Curitiba, PR

Issue #5: Despite the students’ option for recorded lectures
instead of synchronous classes, at the end of the course, they felt
it was not a good idea because of the difficulty of scheduling time,
establishing a routine for watching classes, and maintaining focus.
All of this was a demotivating factor for their studies.

Issue #6: The two tests designed for this course were overwhelm-
ing, considering the online format and the high demand for time to
project development.

4.2 Second Course Run - 2021
The second run occurred in the first semester of 2021 under similar
conditions imposed by the pandemic and ERT. Unlike the first
run, this experience occurred during the advanced course Software
Development in Information Systems, offered at University B for
Information System students. However, based on experience from
the first run, some changes were proposed, i.e., teams started the
practical project in the first week of the semester, teams had direct
contact with the final users and clients, and no individual test was
planned. Moreover, executing two additional sprints during the
practical project was possible.

Theory Contents: Based on the class students’ characteriza-
tion, some changes were made to the syllabus. Theoretical con-
tent focused on eleven software engineering topics as presented
in Figure 1. Topics such as design thinking (T1), interviews to re-
quirements elicitation (T7), and user acceptance testing (T14), were
introduced as we expected students to interact with stakeholders
such as end users. Software architecture for the web (T10) and data
protection (T18) were also part of the syllabus to introduce students
to advanced topics. Additionally, students were presented with top-
ics such as agile software development models (T3), agile project
management (T5), requirements engineering (T6), software testing
(T13), and version control (T16), aiming to refresh their knowledge
and facilitate its application in the practical project. Finally, since
this is an advanced software engineering course, some topics (i.e.,
T2, T4, T8, T9, T12, T15, T17) were not considered because they
were taught in previous program courses.

To overcome one of the issues identified in the previous run,
classes were given synchronously using Google Meet once a week.
All classes were recorded and made available to students.

Activities: Considering the virtual format, most activities were
proposed following the flipped classroom method, in which course
material was available as online materials, comprising short videos,
slides, notes, and links to supplementary reading. Students are re-
quired to cover this material before class. In addition to flipped
classes, two software industry professionals (a scrum master and a
software tester) were invited to present and discuss their experi-
ences on certain topics taught during the course. Considering the
students’ lack of knowledge of software testing, an individual lab
activity covering the planning, coding, and execution of unit and
integration test cases using automation tools was conducted.

Project: Unlike the first course, the students had to develop their
project from scratch from the beginning of the run. During the first
class, the teacher established deadlines and a series of deliverables
for each of the four planned sprints. Each sprint lasted four weeks.
To support the students, the professor had bi-weekly meetings since
the beginning with each group to assess their progress and provide

guidance/feedback. At the end of a sprint, all groups had to make a
presentation addressing the deliverables developed for the whole
class. Finally, a sprint retrospective is performed to discuss issues
and lessons learned. The backlog for the next sprint is planned as
well.

The requested deliverables for each sprint are related to the the-
oretical content addressed before during classes and activities, pro-
viding a basis for the groups to develop the project. The deliverables
requested for the first sprint were: (i) a document explaining the
project idea and stakeholders’ needs; (ii) mock-ups or some initial
prototype validated by a stakeholder; (iii) the planning and results
of interviews with end users; (iv) a requirements document con-
taining use cases or user stories; (v) a preliminary product backlog;
(vi) a project management tool configured for sprints with group
meeting schedules, time estimated and students assigned for each
project activity; (vii) the technology stack selected and its rationale.
For second sprint, teams had to present: (i) sprint backlog time
estimates and assign tasks to group members; (ii) implementation of
estimated user stories; (iii) a software architecture description; (iv) a
test cases plan; and (v) the code for test cases. Deliverables of third
and fourth sprints included (i) all documentation developed so far
and (ii) any new source code developed and versioned on GitHub.
Finally, the groups had to (i) deploy the product in production and
(ii) provide the planning and results of end-user acceptance tests for
the fourth and last sprint. Sprint review reports and the estimates
for the next sprint were also requested for the 2nd, 3rd, and 4th
sprints.

In the 2021 course, teams were asked to interact with end users
during the first and final sprints to validate the idea, elicit require-
ments, and validate the product increment in operation.

Students Assessment: No individual tests were designed for
this course instance; therefore, the course’s final grade was deter-
mined by the weighted average of the four project deliveries and lab
activities. The project weighed 95% of the final grade, and activities
weighed the remaining 5%. To assess the project, in each sprint
review, the teacher assessed teams regarding the quality of deliver-
ables, completeness and accuracy of the assets, accomplishment of
estimates, teamwork, and milestones achievement. Sprint reviews
had incremental weights, i.e., 15%, 20%, 30%, and 35%, respectively,
to deliveries in the first, second, third, and fourth sprints.

4.2.1 Second instance issues.

Issue #7: During the sprint review meetings, the teacher per-
ceived some students lacked a deep comprehension of theory con-
cepts taught in the course. It was noticed that, for some students,
studying the theoretical contents of the course was not a priority
because no individual test would be applied. This situation rein-
forces the challenge of managing a dual-focus software engineering
course to strengthen students’ theoretical knowledge and practical
skills, as previously reported in Soska et al. [14].

Issue #8: During the Covid-19 pandemic, as an exceptional mea-
sure, the university made it possible for students to enroll in more
courses than those possible in a face-to-face format. 56% of students
were enrolled in between 6 and 11 different courses motivated by
the idea they could graduate earlier. However, this scenario made
it difficult for students to organize their time and conciliate their

Page 5 of 11



SBES’24, September 30 – October 04, 2024, Curitiba, PR Garcés and Oliveira

studies with other activities such as internships (50% of students)
and capstone projects (27% of students). Nevertheless, all students
reported they felt motivated during this course’s project develop-
ment. Students’ time management has been a constant challenge in
PjBL-oriented software engineering courses, as reported by Flach
and Feitosa [6], Pérez and Rubio [12], Souza et al. [15].

Issue #9: Despite the teams having used Discord and Google
Meet tools to enhance their communication at a distance, most
students reported difficulties interacting with their colleagues and
synchronizing their work. They felt face-to-face communication
would work better. Internal team communication is a challenging
soft skill when working with PjBL, as highlighted by Flach and
Feitosa [6], Suciu et al. [18].

4.3 Third and Fourth Course Runs - 2022 and
2023

Due to the improvement in the pandemic situation and the end
of ERT, both last runs took place in an in-person format. These
runs were also offered by University B during the first semester of
the corresponding year and shared a similar design as depicted in
Figure 1. Some slight changes compared with the 2021 run were
applied.

Theory Contents: The syllabus of the 2022 course included
a new topic, i.e., T8 - product quality, in which the ISO/IEC 25010
model’s quality attributes definitions were studied. Classes were
taught face-to-face once a week. This topic was not required in the
2023 instance since students already knew it from previous courses.
Instead of this, in 2023, two topics were added: T12—Architectural
Decision Records (ADRs) and T15—Interface Testing.

Activities: Most activities in 2022 and 2023 were practical labs
in the classroom. The labs were proposed for topics such as product
idea specification, quality attribute scenarios, user story estimates
using story points, architectural decision records (ADRs), software
architecture representation with C4, and unitary, structural, inter-
face, and acceptance testing. Specifically for the 2022 course, one
seminar was planned with an AWS architect and team leader. Dur-
ing the 2023 course, a real case-based activity was designed to teach
the main software architecture concepts. The case studied involved
a robot’s architecture and source code.

Project: The project design for the 2022 course was similar
to the one executed in 2021. Few changes were proposed. Three
sprints were planned instead of four so students could have more
time for each sprint. Teams also interacted with final users in the
first and last sprints. Meetings between the teacher and each team
happened twice monthly. The Discord application was used to
support meetings outside the normal class schedule.

To avoid overloading some students, the project design for the
2023 run was slightly different. The professor strongly suggested
that all teammembers act as developers or testers and also select one
of the roles of scrummaster, product owner, architect, or operations
engineer.

Course Assessment: In both years, one final test was proposed
to encourage each student to learn the theory so they could con-
tribute better to the project instead of relying on colleagues’ knowl-
edge. The course’s final grade was given by the weighted average of
the individual test (15%), lab activities (15%), and the three project

deliveries (70%), which had an incremental weight by sprint (i.e.,
20%, 30%, and 50%).

4.3.1 Third and fourth instance issues.

Issue #10: In the 2022 course instance, each student chooses
one software engineer profile to participate in the practical project.
Each team comprised one product owner, one scrum master, one
software architect, and various front-end and back-end developers
and testers. Depending on the size of each team, students executed
one or various roles. Some teams reported an overload of students
with developer roles. In that case, it was observed that students
with roles as product owner and scrum master did not help with
coding and testing activities. Few teams were more proactive and
divided development and testing work in a more balanced way.

Issue #11: Also, in 2022, some students had an initial idea of
the software product they desired to work on as the project course.
The professor allowed them to create teams to work on those ideas
during the course. However, it was observed the students who
“owned” the ideas limited the creative work of their colleagues, and
the other students did not feel confident in proposing changes or
making decisions during the project execution.

Issue #12: In the 2023 course, in some teams, during role se-
lection, students with industry experience in a certain role (e.g.,
back-end or front-end developer) tend to perform the same role
in the project. It was perceived that, by doing this, most of the
workload of such a role falls on the more experienced since, in that
way and from the teams’ perspective, they could produce more
code. This scenario leads to an overload for experienced students.
Moreover, the not-so-experienced students act as observers who
are afraid of messing up the code produced by their colleagues.

Those issues corroborate findings of Souza et al. [15], Suciu et al.
[18]. In both studies, teachers reported that some team members
lack commitment to the team and engagement with the project.
Therefore, work distribution between team members is unbalanced,
overwhelming the more proactive or experienced students.

5 RESULTS
Asmentioned in Section 3, two forms were used to capture students’
opinions about the course: A pre-course form aimed to understand
students’ expectations, previous knowledge and experience with
software development in practice. The post-course form intended to
obtain, from students’ perspective, information about how well the
course was conducted and whether it was helpful for their learning
paths. No personal information was collected in both forms, and
students accepted all data treatment terms. Students’ participation
in filling out the forms was voluntary and did not affect their grades
or assessments. The remainder of this section presents the analysis
results of students’ answers and the teams’ project grades.

5.1 Students’ expectations and suggestions
Students were asked about their expectations of the course. 77.8%
(98/126) of students answered this question. As a result, 25.3% (32/98)
looked to develop a product using currentmethods and technologies
used in the software industry; 15,1% (19/98) desired to gain practical
experience with technologies for front-end, back-end, and DevOps;
12% (15/98) desired to learn more about software engineering to

Page 6 of 11



Teaching SE with PjBL: A four years experience report SBES’24, September 30 – October 04, 2024, Curitiba, PR

help their insertion in the job market; 10,3% (13/98) wanted to
improve soft-skills such as teamwork and time organization; 8,7%
(11/98) awaited to gain practice with agile projects; and 3,2% (4/98)
hoped to discover new technologies, methods, and concepts in
software engineering. An unexpected finding was that 3,17% (4/98)
of students did not have any expectations about the course because
they did not intend to act professionally in the software industry.
No significant difference was found between students’ expectations
in online and in-person courses.

Moreover, students were requested to provide suggestions about
strategies they prefer to follow in the course. Some differences
in suggestions between online and in-person class students were
found. Suggestions from 28 out of 61 students in online courses
who answered this question were related to (i) have more autonomy
to form work teams (7/28); (ii) estimate feasible delivery deadlines
considering the division of their time with other activities (e.g.,
scientific initiation projects, internships, full-time work in software
companies, other courses, and other academic activities) (6/28); (iii)
provide video lessons (3/28); (iv) have individual assessments in
addition to the practical project (2/28); and (iv) encourage groups
working in a synchronous way supervised by the teacher (2/28).
From the 39 out of 63 students on in-person courses, the hints were
concerned with (i) encouraging groups to work in a synchronous
way supervised by the teacher (8/39), (ii) planning a project that
does not overload students (8/39); (iii) providing practical exercises
in addition to the practical project (6/39); (iv) estimating feasible
delivery deadlines (4/39); (v) synchronously lecturing theory classes;
and (vi) following by close the teams projects evolution (3/39).

5.2 Project grades
For the first course run in 2020, the project had two deliveries, each
with the same weight. Student groups achieve an average project
grade of 8.2 (median = 8.3, std = 0.5, min = 7.6, and max = 8.8). As
depicted in the top-left hand of Figure 2, all groups in the 2020 class
improved their project grades in the second delivery. The green
bars show how much a group’s grade improved between deliveries.

The project grade average for the 2021 class was 8.3 (median
= 8.4, std = 0.4, min = 7.6, and max = 8.6), a result that was quite
similar to last year’s run. It is possible to notice in the top-right
hand of Figure 2 that five out of seven groups had at least one
grade drop in deliveries 2 to 4, highlighted as a red color bar. Only
two groups (i.e., G2 and G3) continuously improved their deliveries,
increasing grades.

For the 2022 course, the project grade average was 8.6 (median
= 8.7, std = 1.2, min = 7.5, and max = 9.8). A slight improvement in
final project grades was noticed compared to the two previous runs.
As illustrated at the bottom left hand of Figure 2, five out of six
groups had a grade decline in at least one of the project deliveries.
Only one group (i.e., G1) had continuous improvement in delivery
grades.

During the last course run, in 2023, the project grade average
for this class was 8.4 (median = 8.4, std = 1.1, min = 6.5, and max =
9.6). The amount and weight of project deliveries were the same
as in the 2022 course. Similarly to the previous course run, in 2023,
only one group (i.e., G5) did not have a grade drop in the second
and third project deliveries.

Overall, no relevant difference was found between the groups’
project grades considering the course modality, i.e., totally virtual
or in-person. The quality and completeness of project deliveries
were quite similar in all courses, with few groups as exceptions,
i.e., G1 in 2022 with a high project grade of 9.7 and continuous
delivery improvement, and G4 in 2021 and G2 in 2022 with low
project grades (i.e., 7.6 and 7.5, respectively) and constant delivery
decreasing).

Grades were perceived to decreasemainly in intermediate project
deliveries, i.e., at the end of the second sprint. This result can be ex-
plained since, in this sprint, groups start working with technologies,
which implies investing efforts to learn such technologies while
at the same time understanding the team dynamics. Despite being
trained in time and effort estimates to select the workload to be
executed in a sprint considering their academic and professional
reality, most groups had difficulties organizing their time to conduct
project activities, leading, in some cases, to a decrease in the last
project deliveries grades.

5.3 Challenges faced by students during projects
Only 48% (60/126) of students in all courses answered the post-
course form. This form was intended to identify difficulties the
students faced during the course in both modalities, virtual and
in-person.

Most students (93%) reported the as the main difficulty as recon-
ciling project execution with other academic and professional activ-
ities. A second difficulty, reported by 65% of the students, was team-
work, mainly related to effective communication, team members’
commitment, and work synchronization. The third most reported
issue, by 50% of respondents, was not knowing the technologies
chosen by the team. Additionally, online students reported specific
difficulties conducting the project in a remote environment (12.2%),
mainly due to the lack of face-to-face meetings to decide relevant
actions for the project development. These findings are similar to
the students’ challenges reported in recent experiences of Pérez
and Rubio [12], Suciu et al. [18].

5.4 Most difficult and liked topics
Regarding the theory contents, 50% of students considered software
architecture the most difficult topic to understand, followed by au-
tomated software testing (38,3%), software product quality (21,7%),
and software time and effort estimates (21,7%). In contrast, students
reported software architecture (60%), agile methodologies (58.33%),
product quality (55%), software testing (45%), and software time and
effort estimates (40%) as the topics they liked the most. Even though
some of those topics were the most difficult to understand, they
were applied successfully to the practical project, evidenced by the
quality of the group’s deliverables. Similar results were obtained by
Souza et al. [15] who found that students in PjBL courses positively
perceive the project contribution on learning more difficult topics
such as software design (architecture) and agile methodologies.

5.5 Students’ comments and suggestions
Students could openly write general opinions about the course
execution or suggestions for course improvements in the future.

Page 7 of 11



SBES’24, September 30 – October 04, 2024, Curitiba, PR Garcés and Oliveira

0
1
2
3
4
5
6
7
8
9

10

G1 G2 G3 G4

G
ra

de

2020

−2
−1

0
1
2
3
4
5
6
7
8
9

10

G1 G2 G3 G4 G5 G6 G7

2021

Delivery

Delivery 1

Delivery 2

Delivery 3

Delivery 4

−4
−3
−2
−1

0
1
2
3
4
5
6
7
8
9

10

G1 G2 G3 G4 G5 G6

G
ra

de

2022

−2
−1

0
1
2
3
4
5
6
7
8
9

10

G1 G2 G3 G4 G5 G6

2023

Figure 2: Delivery grades for groups by course. Green and red bars represent the grade difference (positive and negative,
respectively) between the current and previous delivery. Grades range is from 0 to 10, with 6 as the minimum pass mark.

Generally, the students liked the course because they understood
better how all learned knowledge in other courses (e.g., database,
web development, software engineering topics, UX/UI, etc.) fit to-
gether. Examples of students comments are:

• "I really liked the subject; I think it encouraged me to improve
in some of the areas I learned";

• "It is a very interesting subject. It uses a lot of the knowledge ac-
quired during the undergraduate course and expects maturity
from the student";

• "I really liked the discipline and the way it was conducted.
At first, I thought there would be a time requirement far be-
yond what I had available to dedicate. However, the entire
semester course was coherent and very productive, covering a
practical compilation of practically all of our undergraduate
courses. Therefore, I consider it perhaps the most complete and
important subject in the course. I really liked it!";

• "It was a productive course";
• "My experience with the discipline was very satisfactory. I
really liked the approach".

Two students who had industry experience of more than 2 years
commented about the realism of the course with software industry
practices, corroborating similar results found by Souza et al. [15],
Ståhl et al. [17]:

• "The way the team worked is very similar to the way things
are done in my company".;

• "I see many techniques that we practice in the course in my
company".

Other students suggested improvements to the course and project
execution. For instance, one student felt important that the teacher

"orients how to deal and communicate with someone acting with
less responsibility in the team". In a similar perspective, another
student suggested a "closer monitoring of the teacher to reconcile
internal team problems, such as overload or lack of responsibility of
members". Finally, five students suggested including CI/CD (Contin-
uous Integration and Deployment) or DevOps topics to help teams
choose cloud infrastructure and release workflows during software
deployments in preparation for end user tests.

5.6 Summary of Course Evolution
Executed teaching strategies were motivated by issues identified
in previous course runs, allowing a continuous course evolution
and improving the PjBL application. Table 3 relates the issues that
motivated course changes in next course iterations, the result (e.g.,
not satisfactory, almost satisfactory, or satisfactory) of applying
such changes, and recommendations to maintain or not a change
in next course offering. More maturity and stability were perceived
in the 2023 course, although there are still open challenges to be
addressed in the near future.

6 LESSONS LEARNED
In this section, the authors present their most relevant lessons
learned through four years of teaching software engineering with
PjBL.

Lesson #1: Start the course knowing your students’ back-
ground. An important activity in setting up the course is under-
standing students’ previous knowledge. This lesson is also shared
by Flach and Feitosa [6], in which it is recommended to survey
students’ previous experience and knowledge to adjust the course
plan if required.

Page 8 of 11



Teaching SE with PjBL: A four years experience report SBES’24, September 30 – October 04, 2024, Curitiba, PR

Table 3: Rationale behind course evolution

2021 Iteration
Issues from previous iteration Changes adopted in current iteration Results of changes Recommendation for the next iteration
#1 - High technology learning curve To start technology studies in the first week Not satisfactory Maintain
#2 - Teams internal work alignment Synchronous team meeting by week. Not satisfactory Change
#3 - Lack of motivation by working on a project defined by
the teacher

Teams choose their projects and interact with final users
and clients

Satisfactory Change

#4 - Few time to the project To start the project in the first week. Project with four
sprints, each sprint with a three weeks window.

Not satisfactory Start to work in the project in the first week. Project
with three sprints. Each sprint during four weeks.

#5 - Recorded lectures demotivated studies Synchronous encounters with the teacher Not satisfactory In-person encounters with flipped activities
#6 - Two individual tests was overwhelming No individual test. Only the team project Not satisfactory Individual tests are required.

2022 Iteration
Issues from previous iteration Changes adopted in current iteration Results of changes Recommendation for the next iteration
#7 - Low theoretical domain by students One individual test and the team project Satisfactory Maintain
#8 - Teams time management More focus on realistic project time estimates. Closer follow-

up by the teacher.
Almost satisfactory Add calculation of error metrics for estimates

#9 - Teams internal work alignment Use discord channels for the teacher to check the weekly
team meetings

Almost satisfactory Add in-person work allignment during class

2023 Iteration
Issues from previous iteration Changes adopted in current iteration Results of changes Recommendation for the next iteration
#10 - Roles distribution among teammembers is unbalanced Each student with two roles: developer and one between

the following options PO, SM, soft. architect, tester, UI/UX
designer, Ops engineer.

Almost satisfactory Maintain. Consider improve groups formation.#12 - Experienced students centralize most of the develop-
ment
#11 - Idea’s owner centralize most of the development Idea defined through teammembers discussions and voting. Satisfactory Maintain

In our experience, the pre-course form was essential to have
an idea about the theory contents to be reinforced or introduced
and the technical capacities of students to be explored during the
project. However, the teacher must know that answers to this kind
of questionnaire are informative and not confirmatory. In some
cases, it is required to confirm actual knowledge of essential topics
that can impact project development. In our course, an example
of such a topic is agile methodologies. In the 2023 course, more
than 50% of the students answered that they have good knowledge
and practical experience in following agile methodologies, particu-
larly SCRUM. To confirm such knowledge, the teacher conducted a
formative assessment. Surprisingly, less than 20% of the students
passed this assessment.

Therefore, it is important to have an overview of the student’s
background before starting the course; however, confirmatory as-
sessments can be necessary for relevant topics to the project. In
cases where students lack such knowledge, the teacher can design
instructions for reinforcement purposes.

Lesson #2: Start working with technologies as soon as pos-
sible. The technology learning curve must be overcome before the
start of the second sprint. For that, the teacher must encourage
teams to select and train technologies during the first weeks of
the course. In addition, class time could be destined for students to
train the technology chosen for their project.

Lesson #3: Start the course with a defined team meeting
schedule. Student groups had difficulties handling diverse aca-
demic and professional activities and communication betweenmem-
bers. At the course start, the teacher could define, together with
each team, standard weekly time slots for team activities alignment
meetings using communication applications, i.e., discord, in which
the teacher can know student assistance at such meetings. Sprint
review and retrospective encounters must also be defined for all
teams in the first week of the course, which helps teams establish
deadlines for planning their project deliveries.

Lesson #4: Encourage teams’ autonomy and accountability.
Students felt more motivated in the course when they could choose
their project topics and the technologies they wanted to apply. The

teacher can give tips about choosing the technology stack, consid-
ering characteristics such as good documentation, community size,
and open training material. Group discussions to reach a consen-
sus on selecting the technologies and project topics is a valuable
activity for training soft skills such as conflict resolution.

Responsibilities and accountability for each team member must
be clear from the project beginning. Students must select their roles,
knowing which project artifacts (e.g., documents, models, backlogs,
code, repositories, infrastructure, etc.) and sprint activities are under
their responsibility. Moreover, the accountability mindset must be
trained since all team members must be accountable for a project
release’s success or failure.

This lesson was also reported by Simpson and Storer [13]. In
their report, confirmed by our experience, they stated the students
must see role-specific responsibilities as their primary responsibility
and be aware that they must be accountable for the quality of the
outputs they produce during the project.

Lesson #5: Teach and practice with reality. Students mani-
fested interest in software engineering topics taught with realism.
For instance, using cases explaining software architecture construc-
tion and application in real industry software projects made the
software architecture topic the most interesting topic to students.
Similarly, talks with specialist scrum masters and project managers
raise students’ interest in topics such as agile actual practice and
project estimates in the software industry. From the same perspec-
tive, working with real problems and real users during software
project development increases the motivation of students to apply
software engineering methods and techniques correctly. A similar
lesson was also reported in Simpson and Storer [13].

Lesson #6: Be present for the teams, no matter the course
format. As mentioned, groups must be autonomous to make im-
portant project decisions. However, in addition to theory classes,
there are activities in which the teacher must intervene, namely,
review of the interview plan and questions during requirements
elicitation with users, the definition of the project scope, review of
sprint backlog at the beginning of each sprint, quality of documen-
tation delivered at the end of each sprint, encourage the execution
of sprint retrospective and review of the planning of acceptation

Page 9 of 11



SBES’24, September 30 – October 04, 2024, Curitiba, PR Garcés and Oliveira

tests by final users in the last sprint. Additionally, proactive inter-
vention by the teacher is relevant when conflicts between team
members occur, especially in cases of overloading or low partici-
pation of team members. This lesson corroborates hints in related
experiences reported by Fioravanti et al. [5], Suciu et al. [18], and
Delgado et al. [2].

In our practice, we identified the importance of maintaining
an asynchronous communication channel, different from e-mail or
forum panels, that allows the teacher to answer team doubts quickly.
We started using Slack in 2020 and moved to Discord in 2021 to
2023 courses since the last one suited better our needs. The teacher
could use this channel to observe team members’ interaction (or
lack thereof) and identify and mediate possible conflicts. The need
to define effective communication channels early in the course was
also recommended by Flach and Feitosa [6].

This lesson is pertinent in any course modality, e.g., totally vir-
tual, hybrid, or in-person.

Lesson #7:Maintain individual students’ assessments. From
the author’s experience, assessing individual students’ knowledge
of software engineering applied to the project is relevant. Ideally,
each student can conclude the course by understanding software
engineering practice beyond the specific role he/she has performed
in the project; therefore, the student has first personal experience
on which to base his/her professional profile.

Lesson #8: Leverage past experiences to anticipate and ad-
dress challenges: Software engineering course syllabuses evolve
as the industry evolves. Teaching in software engineering is now
more challenging than a decade ago since society and the software
industry are changing continuously. From our experience, adapting
course syllabus and adopting new teaching methodologies in the
classroom, as suggested by academic societies, was overwhelming
and required us to leave our comfort zones. By the time of our first
course, we had used some insights from fellow teachers, helping
us a lot but not enough to prepare us for all the challenges we
faced. Good software engineering teaching reports, such as those
introduced in Section 2, are rich know-how sources for beginning
teachers in PjBL since they summarize the benefits and drawbacks
of applying specific teaching strategies in the classroom.

7 CONCLUSION
Computing curriculum by ACM1 and SBC2 suggest considering
a project course as an essential approach to give students the op-
portunity to solve challenging projects in which them can deepen
their knowledge in a transversal way. Therefore, an increasing em-
ployment of PjBL in software engineering education and training
is expected.

Using PjBL demands more effort and time from instructors for
planning, executing, and learning compared with traditional classes
(i.e., lecturers and tests) and with other active learning approaches
(e.g., flipped classroom or case-based learning) [7, 9]. Moreover,
PjBL courses require continuous improvement to adapt them to
students and industry realities and in a sustainable manner [8, 9, 17].

Improving a course is a trial-and-error task that requires years
of teaching. Teachers who desire to adopt PjBL in their courses

1https://www.acm.org/education/curricula-recommendations
2https://www.sbc.org.br/documentos-da-sbc/category/131-curriculos-de-referencia

could benefit from lessons learned by their peers, thus decreasing
their learning curve and avoiding common issues found when this
teaching method is implemented. The research of Cico et al. [1]
evidenced that PjBL is the learning method most used in software
engineering courses. However, by 2021, less than 10% of software en-
gineering education research reports challenges and lessons learned
in applying this method.

This work presented four years of accumulated experience in
teaching software engineering with PjBL in both virtual and face-
to-face modalities. Such experience allowed the course to improve
over the years. Issues found after each course run were presented,
as well as lessons learned to be applied in future course offerings.
We expect this report to give our colleagues insights into what
actions to avoid and which ones to consider in their PjBL-based
software engineering courses.

From our teaching practice, we did not identify a significant dif-
ference between conducting a virtual or in-person course with PjBL;
therefore, we believe all challenges and lessons reported herein are
valid for both formats. Regardless of the course modality, open chal-
lenges remain, especially those related to teamwork organization
and team members’ communication and engagement.

The team formation and role allocation between team members
strategies should be reconsidered to allowmore balanced teamwork.
Until now, in our course, students chose their own teams. While it
seems this strategy leads to slightly better performance in teams
[10], it did not mitigate internal teamwork problems, e.g., lack of
team member engagement and overwhelming of compromised stu-
dents. Therefore, it is important to investigate different ways of
forming teams and assessing individual soft skills whilst maintain-
ing team performance. By now, in our courses, assessments are
related to the quality of artifacts, outputs, releases, and correctness
of software engineering techniques execution. For new courses, it
is necessary to include evaluation criteria that allow the assessment
and improvement of students’ individual soft skills.

Regarding syllabus changes, special attention will be given to
topics such as DevOps, security, and refactoring, with the aim of
increasing the quality of software produced by the students during
the project.

8 AVAILABILITY OF ARTIFACTS
Artifacts related to data collection and analysis used in this study
are available in [11].

ACKNOWLEDGMENTS
To all our students who believed in us. To the "Pró-Reitoria de
Pesquisa e Inovação (PRPI), Universidade de São Paulo" (Process:
22.1.09345.01.2).

REFERENCES
[1] Orges Cico, Letizia Jaccheri, Anh Nguyen-Duc, and He Zhang. 2021. Exploring

the intersection between software industry and Software Engineering education
- A systematic mapping of Software Engineering Trends. Journal of Systems and
Software 172 (2021), 110736. https://doi.org/10.1016/j.jss.2020.110736

[2] David Delgado, Alejandro Velasco, Jairo Aponte, and Andrian Marcus. 2017.
Evolving a Project-Based Software Engineering Course: A Case Study. In 2017
IEEE 30th Conference on Software Engineering Education and Training (CSEE&T).
77–86. https://doi.org/10.1109/CSEET.2017.22

Page 10 of 11

https://doi.org/10.1016/j.jss.2020.110736
https://doi.org/10.1109/CSEET.2017.22


Teaching SE with PjBL: A four years experience report SBES’24, September 30 – October 04, 2024, Curitiba, PR

[3] Vinicius Gomes Ferreira and Edna Dias Canedo. 2020. A Design Sprint based
model for User Experience concern in project-based learning software develop-
ment. In IEEE Frontiers in Education Conference (FIE) (Uppsala, Sweden, 2020-10-
21). IEEE, 1–9. https://doi.org/10.1109/FIE44824.2020.9274214

[4] Maria Lydia Fioravanti, Bruna Oliveira Romeiro, Leo Natan Paschoal, Brauner
Oliveira, Simone R. S. De Souza, Ellen Francine Barbosa, and AnaM.Moreno. 2023.
Software Engineering Education Through Experiential Learning for Fostering
Soft Skills. In 2023 IEEE Frontiers in Education Conference (FIE) (2023). IEEE,
College Station, TX, USA, 1–8. https://doi.org/10.1109/fie58773.2023.10343452

[5] Maria Lydia Fioravanti, Bruno Sena, Leo Natan Paschoal, Laíza R. Silva, Ana P.
Allian, Elisa Y. Nakagawa, Simone R.S. Souza, Seiji Isotani, and Ellen F. Barbosa.
2018. Integrating Project Based Learning and Project Management for Software
Engineering Teaching: An Experience Report. In Proceedings of the 49th ACM
Technical Symposium on Computer Science Education (Baltimore Maryland USA,
2018-02-21). ACM, 806–811. https://doi.org/10.1145/3159450.3159599

[6] Christina Von Flach and Daniela Soares Feitosa. 2023. Teaching and Promoting
Engagement with OSS: Yet Another Experience Report. In Proceedings of the
XXXVII Brazilian Symposium on Software Engineering (<conf-loc>, <city>Campo
Grande</city>, <country>Brazil</country>, </conf-loc>) (SBES ’23). Association
for Computing Machinery, New York, NY, USA, 534–543. https://doi.org/10.
1145/3613372.3614190

[7] Chetna Gupta. 2022. The Impact and Measurement of Today’s Learning Tech-
nologies in Teaching Software Engineering Course Using Design-Based Learning
and Project-Based Learning. IEEE Transactions on Education 65, 4 (2022), 703–712.
https://doi.org/10.1109/TE.2022.3169532

[8] Philippe Kruchten. 2011. Experience teaching software project management
in both industrial and academic settings. In 2011 24th IEEE-CS Conference on
Software Engineering Education and Training (CSEE&T). IEEE, Waikiki, Honolulu,
Hawaii, 199–208. https://doi.org/10.1109/CSEET.2011.5876087

[9] Stephan Krusche and Lukas Alperowitz. 2014. Introduction of continuous de-
livery in multi-customer project courses. In Companion Proceedings of the 36th
International Conference on Software Engineering (Hyderabad, India) (ICSE Com-
panion 2014). Association for ComputingMachinery, NewYork, NY, USA, 335–343.
https://doi.org/10.1145/2591062.2591163

[10] Henrik Hillestad Løvold, Yngve Lindsjørn, and Viktoria Stray. 2020. Forming and
Assessing Student Teams in Software Engineering Courses. In Agile Processes in
Software Engineering and Extreme Programming – Workshops, Maria Paasivaara

and Philippe Kruchten (Eds.). Springer International Publishing, Cham, 298–306.
[11] B. Oliveira and L.’ Garcés. 2024. Supplementary material for the work intitled:

Teaching Software Engineering with Project-Based Learning: A Four Years Expe-
rience Report. on-line. https://doi.org/10.5281/zenodo.12794894

[12] Beatriz Pérez and Ángel L. Rubio. 2020. A Project-Based Learning Approach
for Enhancing Learning Skills and Motivation in Software Engineering. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Ed-
ucation (Portland OR USA, 2020-02-26). ACM, Portland, OR, USA, 309–315.
https://doi.org/10.1145/3328778.3366891

[13] Robbie Simpson and Tim Storer. 2017. Experimenting with Realism in Software
Engineering Team Projects: An Experience Report. In 2017 IEEE 30th Conference
on Software Engineering Education and Training (CSEE&T). 87–96. https://doi.
org/10.1109/CSEET.2017.23

[14] Alexander Soska, Irmgard Schroll-Decker, and Jürgen Mottok. 2014. Imple-
mentation of practical exercises in software engineering education to improve
the acquirement of functional and non-functional competences: A field re-
port about project-based learning in software engineering. In 2014 Interna-
tional Conference on Interactive Collaborative Learning (ICL). 338–345. https:
//doi.org/10.1109/ICL.2014.7017795

[15] Maurício Souza, Renata Moreira, and Eduardo Figueiredo. 2019. Students Per-
ception on the use of Project-Based Learning in Software Engineering Educa-
tion. In Proceedings of the XXXIII Brazilian Symposium on Software Engineer-
ing (SBES) (Salvador Brazil, 2019-09-23). ACM, Salvador, BA, Brazil, 537–546.
https://doi.org/10.1145/3350768.3352457

[16] A Strobel, J. & van Barneveld. 2009. When is PBL More Effective? A Meta-
synthesis of Meta-analyses Comparing PBL to Conventional Classrooms. In-
terdisciplinary Journal of Problem-Based Learning 3(1) (2009), 44–58. https:
//doi.org/10.7771/1541-5015.1046

[17] Daniel Ståhl, Kristian Sandahl, and Lena Buffoni. 2022. An Eco-System Approach
to Project-Based Learning in Software Engineering Education. IEEE Transactions
on Education 65, 4 (2022), 514–523. https://doi.org/10.1109/TE.2021.3137344

[18] Dan Mircea Suciu, Simona Motogna, and Arthur-Jozsef Molnar. 2023. Transi-
tioning a project-based course between onsite and online. An experience report.
Journal of Systems and Software 206 (2023), 111828. https://doi.org/10.1016/j.jss.
2023.111828

Received 24 May 2024; revised 25 June 2024; accepted 11 July 2024

Page 11 of 11

https://doi.org/10.1109/FIE44824.2020.9274214
https://doi.org/10.1109/fie58773.2023.10343452
https://doi.org/10.1145/3159450.3159599
https://doi.org/10.1145/3613372.3614190
https://doi.org/10.1145/3613372.3614190
https://doi.org/10.1109/TE.2022.3169532
https://doi.org/10.1109/CSEET.2011.5876087
https://doi.org/10.1145/2591062.2591163
https://doi.org/10.5281/zenodo.12794894
https://doi.org/10.1145/3328778.3366891
https://doi.org/10.1109/CSEET.2017.23
https://doi.org/10.1109/CSEET.2017.23
https://doi.org/10.1109/ICL.2014.7017795
https://doi.org/10.1109/ICL.2014.7017795
https://doi.org/10.1145/3350768.3352457
https://doi.org/10.7771/1541-5015.1046
https://doi.org/10.7771/1541-5015.1046
https://doi.org/10.1109/TE.2021.3137344
https://doi.org/10.1016/j.jss.2023.111828
https://doi.org/10.1016/j.jss.2023.111828

	Abstract
	1 Introduction
	2 Related Work
	3 Course Design
	4 Course runs
	4.1 First Course Run - 2020
	4.2 Second Course Run - 2021
	4.3 Third and Fourth Course Runs - 2022 and 2023

	5 Results
	5.1 Students' expectations and suggestions
	5.2 Project grades
	5.3 Challenges faced by students during projects
	5.4 Most difficult and liked topics
	5.5 Students' comments and suggestions
	5.6 Summary of Course Evolution

	6 Lessons Learned
	7 Conclusion
	8 Availability of Artifacts
	Acknowledgments
	References

