Towards differential fuzzing to reduce manual efforts to identify
equivalent mutants: A preliminary study

Bruno E. R. Garcia
ICMC/USP
Sao Carlos, SP, Brazil
bruno.erg@usp.br

ABSTRACT

Mutation testing is a technique that assesses the effectiveness of
a set of test cases by introducing changes to the source code and
checking whether the test cases can detect them. However, muta-
tion testing is costly, and many academic efforts have been directed
to improve its effectiveness and reduce costs. One of the challenges
related to mutation testing remains in the equivalent mutant prob-
lem. Fuzzing, as a search technique, can find test cases that the
developers might not have addressed in unit testing, and it could
be used to identify equivalent mutants. In this paper, we present a
preliminary study that investigates the use of differential fuzzing
to identify equivalent mutants. To identify equivalent mutants,
one approach is to set a timeout period after which any surviving
mutants are considered equivalent. In our experiment, a 3-minute
timeout yielded an accuracy rate of 97%. In conclusion, differential
fuzzing can be used to identify equivalent mutants accurately at a
reasonable time, especially for projects that maintain a robust seed
corpus for fuzzing.

CCS CONCEPTS

« Software and its engineering — Software testing and debugging.

KEYWORDS

Mutation testing, fuzzing, differential fuzzing, equivalent mutant
problem

1 INTRODUCTION

Mutation testing is a technique that assesses the effectiveness of a
set of test cases by introducing changes (mutations) to the source
code and checking whether the test cases can detect them. This
technique has been largely explored to improve the effectiveness
of software applications [12] [14] [22] and has been adopted in
industry [21].

However, mutation testing is costly, and many academic efforts
have been directed to improve its effectiveness and reduce costs.
One of the challenges related to mutation testing remains in the
equivalent mutant problem. When a set of tests cannot detect a
mutant because the behavior of the mutant may be the same as the
original program for all test cases, we should evaluate it to deter-
mine if this mutant is equivalent to the original program. That is,
the mutant kept the program behavior unchanged and thus cannot
be detected by any test case [17]. The equivalent mutant problem
has been discussed in academia, and researchers have shown that
much work to identify them has been done manually [24]. Recently,
many studies have emerged using Machine Learning (ML) to clas-
sify equivalent mutants [18] [3] [20]. However, as pointed by Chung
and Yoo [5], it is a challenge to build a large enough dataset to train

Marcio E. Delamaro
ICMC/USP
Séao Carlos, SP, Brazil
delamaro@icmc.usp.br

Simone R. S. Souza
ICMC/USP
Séao Carlos, SP, Brazil
srocio@icmc.usp.br

such a model, and most studies that use ML for this purpose have
relied on small datasets for training.

Fuzzing (or fuzz testing) is a software testing technique that
discovers program failures by checking their behavior against a
large number of test cases and inputs, especially with malformed
and unexpected inputs. The idea emerged in early 1980 when Pro-
fessor Barton Miller was connected to his university computer via
a telephone line during a storm. The thunderstorm caused noise
on the line, and this noise, in turn, caused the UNIX commands to
get bad inputs — and crash [23]. That crash made him question the
reliability of the UNIX systems, and then he asked his students to
develop a basic command-line fuzzer to test the reliability of Unix
programs by bombarding them with random data and monitoring
for any crashes.

One of the most used fuzzing approaches is called "coverage-
guided fuzzing", commonly known as grey-box fuzzing [13]. As
the fuzzing engine runs the target program with different inputs, it
monitors the code coverage achieved by each input. Code coverage
refers to which parts of the program’s code were executed during
the input’s processing. The goal is to maximize code coverage,
as unexplored code paths may hide bugs or vulnerabilities. The
fuzzing engine iteratively mutates or evolves the input data based
on the feedback from code coverage. Inputs that lead to increased
code coverage or trigger new code paths are prioritized for further
mutation or evolution. This process helps explore the program’s
logic deeper and potentially discover hidden bugs. In general, we
can look at fuzzing from a genetic algorithm perspective, where:

¢ Initial Population: Generation of an initial set of test cases
to start fuzzing, randomly done.

o Fitness assessment: Evaluation of each input based on
predefined criteria such as code coverage, crash-inducing
potential, or specific behavioral triggers.

e Selection: Choice of the most suitable individuals from the
population to be subjected to additional mutation.

e Mutation and crossover: Introduce variations in selected
inputs through operations such as mutation (changing indi-
vidual bits or characters) and crossover (combining parts of
two or more inputs).

e Repetition: Repeat the process iteratively, with more suit-
able inputs having a greater probability of surviving and
contributing to the next generation.

e Stop: Stop the execution based on a defined termination
condition, such as a time limit, desired coverage achievement,
or bug detection.

To increase efficiency and save time, many projects maintain a
seed corpus. The seed corpus is a collection of valid, well-formed test
cases that are used as a starting point for the fuzz testing. Since

SBES’24, September 30 — October 04, 2024, Curitiba, PR

fuzzing is literally based on search, having a starting point avoids all
the effort of executing it from scratch until finding the first test cases
that will really be useful to test the application. Generally, projects
keep a seed corpus that covers as much code as possible. Cheng et al.
[4] shows that the success of a fuzzing campaign heavily depends
on the quality of seed inputs used for test generation. In their study,
they propose the usage of Machine Learning to improve the quality
of seed inputs for fuzzing programs that take PDF files as input.

Fuzzing has been used in a lot of projects and uncovered many
bugs and vulnerabilities [2] [26]. Due to its significant adoption,
we should consider it in mutation analysis. However, previous
work has pointed out that fuzzing cannot kill a wide variety of
mutants [9]. Although this statement seems negative, this behavior
is expected since fuzzing cannot detect errors that do not induce
the system to crash or fail, since writing an oracle that can deal
with all possibilities of test cases is impractical. In contrast, the
authors point out that differential fuzzing can be promising in this
context.

Differential fuzzing is a technique that applies fuzzing in two or
more systems - or different versions of the same system - simulta-
neously using the same test cases, then compares the outputs to
check for discrepancies between them. In conjunction with muta-
tion testing, this technique has been used to evaluate fuzzing tools
with promising results [7].

Since fuzzing is a technique that is used to find cases that uncover
critical bugs in software, we can suppose that if a mutant is not
equivalent, there is a high probability of fuzzing finding a test
case that reveals it. However, since writing an oracle to cover all
the possibilities is impractical, we could apply differential fuzzing
between a mutant and its original code to reveal it by checking
discrepancies in their outputs. For this reason, this paper aims to
discuss using differential fuzzing to classify mutants, focusing on
identifying equivalent mutants.

2 RELATED WORK

Groce et al. [9] described an effort to investigate and enhance the ef-
fectiveness of the Bitcoin Core implementation fuzzing effort. Their
research started from a question about how to escape saturation
in the Bitcoin Core’s fuzzing effort. The authors explored different
approaches to analyze it, such as ensemble fuzzing, swarm testing,
and mutation analysis. By applying mutation testing, Groce et al.
[9] pointed out fuzzing was able to detect only 12% of all mutants,
which is a good result since fuzzing is not so effective in detect-
ing non-crash-inducing bugs. Since Bitcoin Core is the reference
implementation of the Bitcoin protocol, the authors pointed out
that usage of differential fuzzing could be promising in that context.
Groce et al. concludes the study showing that improvements to the
oracle may be the best way to get more out of fuzzing.

Mutation testing has also been used to evaluate fuzzers. Gorz
et al. [7] show that eliminating coverage mutants using static seed
files and using "super mutants” for the remaining evaluation can
significantly reduce the computational expenditure necessary for
mutation analysis and make mutation analysis feasible for fuzzing.
In the same direction, Groce et al. [10] proposed that fuzzing pro-
grams "near" the System Under Test (SUT) can, in fact, improve
the effectiveness of fuzzing. Their preliminary experiment shows

Bruno et al.

that fuzzing mutants is trivial to implement and provides a better
overview of a fuzzing harness’s mutation score.

Vikram et al. [25] developed and evaluated a tool called Mu2, a
Java-based framework for incorporating mutation analysis in the
grey-box fuzzing loop. The goal is to produce a test-input corpus
with a high mutation score. They implemented differential testing
as an oracle for killing mutants and proposed optimizations to
improve fuzzing throughput by dynamically pruning the number
of mutants to be executed. Moreover, one of their intentions was
to spread mutation analysis techniques in the fuzzing community.

Nourry et al. [19] investigated the obstacles encountered by de-
velopers in the realm of fuzzing activities. This study analyzed 829
randomly selected GitHub issues related to fuzzing, from which
they derived insightful questions. Notably, practitioners frequently
highlighted the issue of bad fuzzing targets, resulting in failures
or inconsistencies, as a prominent concern in their findings. Fur-
thermore, a substantial concern was raised about the excessive
consumption of resources by the fuzzing process, highlighting it as
a significant issue.

Jain et al. [15] proposed to use the difference between source
code coverage and mutation score as a new metric to evaluate test
adequacy. They advocate that it provides a way to identify source
files where it is likely a weak oracle test important code.

Fernandes et al. [6] explores the reduction of manual effort in mu-
tation testing. They introduced an approach to suggest equivalent
mutants based on automated behavioral testing, which consists of
test cases based on the behavior of the original program. Compared
to manual analysis to identify equivalent mutants, their approach
takes a third of the time to suggest equivalents and is 25 times faster
to indicate non-equivalents.

Klooster et al. [16] studied the effectiveness and scalability of
fuzzing in Continuous Integration/Continuous Delivery (CI/CD)
pipelines. Their research was surrounded by the research question:
"What is a reasonable fuzzing campaign duration that is compatible
with CI/CD testing timelines but is still effective in finding security
vulnerabilities?". They conclude that campaigns of 10 minutes can
still be almost as effective as ones that take multiple hours.

3 PRELIMINARY STUDY

This preliminary study focuses on utilizing differential fuzzing
to identify equivalent mutants, guided by the following research
questions:
RQ1 - What is the time required for differential fuzzing to
effectively kill a mutant?
RQ2 - How differential fuzzing could identify equivalent
mutants?
RQ3 - How does differential fuzzing compare to other testing
methods, such as system or unit testing, in terms of efficiency
and the detection of specific mutant operators?

3.1 Experimental setup

The experiments were conducted in Bitcoin Core, which is the
reference implementation of the Bitcoin protocol, widely adopted
by over 98% of nodes in the Bitcoin P2P network !. This project
is notably robust, featuring over 35,000 stars and 900 contributors

Uhttps://github.com/bitcoin/bitcoin

Towards differential fuzzing to reduce manual efforts to identify equivalent mutants: A preliminary study

on GitHub, along with more than 40,000 commits, making it a
substantial test subject for software testing research.

For mutation testing, our study focuses on the coin selection
function of Bitcoin Core, specifically the "Branch and Bound" (BnB)
algorithm 2. This function was selected for its implementation of
a widely utilized search algorithm that effectively breaks down
optimization problems into smaller, manageable subproblems. It
employs bounding functions to swiftly eliminate subproblems that
cannot yield optimal solutions, thereby enhancing efficiency. Ad-
ditionally, the BnB function is notable for its high test coverage
across multiple testing methodologies, including fuzzing, unit tests,
and functional tests. To conduct our mutation analysis, all avail-
able tests within these categories will be executed to evaluate the
effectiveness of the function under various mutated conditions.

3.2 Mutation testing tool

To perform mutation testing we chose the universalmutator, a versa-
tile, regex-based tool capable of generating and analyzing mutants
across multiple programming languages [8]. This tool stands out
for its flexibility in adapting to various languages and for its test-
ing capabilities which include generating mutants and conducting
mutation analysis through running existing tests. The mutant op-
erators and the number of each operator used by the tool for the
Bitcoin Core’s BnB algorithm are summarized in Table 1. The three
most applied rules were: Arithmetic Operator Replacement, which
involves substituting arithmetic operators (e.g., replacing + with -),
Conditional Expression Replacement, which modifies conditional
logic (e.g., replacing && with ||), and Relational Operator Replace-
ment, which alters relational operators (e.g., replacing == with

)

Table 1: Mutant operators and the number of valid mutants
generated for each operator by universalmutator for Bitcoin
Core’s Branch and Bound algorithm

Mutant operator No. of valid mutants

Arithmetic Operator Replacement 100
Conditional Expression Replacement 76
Relational Operator Replacement 75
Break Statement Addition 37
Continue Statement Addition 37
Array Index Replacement 3
Math Function Replacement 3
Else Statement Deletion 2

3.3 Differential Fuzzing Application

Differential fuzzing was applied between mutants and the original
code to evaluate the first two research questions. This technique
involves checking if same inputs in both the original and mutated
code produce different outputs, an indication of behavioral discrep-
ancies is useful for identifying non-equivalent mutants, as shown
in Figure 1.

Zhttps://github.com/bitcoin/bitcoin/blob/26.x/src/wallet/coinselection.cpp

SBES’24, September 30 — October 04, 2024, Curitiba, PR

The fuzzer used to perform it was libfuzzer 3, an in-process,

coverage-guided, evolutionary fuzzing engine that utilizes LLVM’s
SanitizerCoverage instrumentation. This tool is tasked with gener-
ating initial test cases, mutating them to create new test cases, and
analyzing the behavior of the system under test.

The "target", as shown in Figure 1, is a code that will receive the
inputs from the fuzzing tool, send them to the applications under
test, and, finally, act as an oracle that will compare the applications’
outputs to check whether there are any discrepancies.

Figure 1: Differential fuzzing between a mutant and its origi-
nal code

—
Test cases

|

Fuzzer (fuzz testing tool)

| [original code|

[

Any discrepancy?

| mutant | |

No

3.4 Experimental design

Experiments were designed to evaluate the efficiency of differential
fuzzing under different conditions:

(1) Employing only the test cases from the system under test’s
seed corpus.

(2) Running differential fuzzing without the seed corpus until
the mutant is terminated, with a timeout of 24 hours per
mutant.

(3) Using the seed corpus until the mutant is killed, with a time-
out of 24 hours per mutant.

All experiments were performed on a Macbook Pro M1 with
16GB RAM. All results that will be presented for fuzzing and differ-
ential fuzzing are derived from the average of 30 executions exclud-
ing outliers to ensure statistical consistency and reliability of the
findings. Also, we compiled the code with the sanitizers: Undefined-
BehaviorSanitizer (UBSan) and AddressSanitizer (ASan). UBSan
identifies operations that lead to undefined behavior as per the C++
standard, such as integer overflows, null pointer dereferencing, and
out-of-bounds array indexing, thus preventing unpredictable pro-
gram behavior. ASan, on the other hand, focuses on memory errors,

Shttps://llvm.org/docs/LibFuzzer.html

SBES’24, September 30 — October 04, 2024, Curitiba, PR

including buffer overflows, use-after-free, and memory leaks, by
instrumenting the code to monitor memory accesses and utilizing
a shadow memory for tracking.

4 RESULTS

Figure 2 shows the results of our mutation analysis conducted on the
Branch and Bound algorithm within Bitcoin Core’s coin selection
module. We tested the mutants using all unit tests and functional
tests that reached the mutated code, the coin selection fuzz target,

and differential fuzzing between a mutant and the original code.

Out of 448 mutants, 30 were not killed by any test. Notably, only
11% of the mutants were killed by the fuzzing process alone, which
is consistent with the findings reported by Groce et al. [9].

Unit + functional tests Fuzz coin_selection

M

Differential fuzzing
Figure 2: Number of killed mutants

4.1 Differential Fuzzing performance

Differential fuzzing, when enhanced by various configurations,
showed significant results. As detailed in Table 2, executing only test
cases from Bitcoin Core’s seed corpus successfully killed 88% of the
mutants, underscoring the quality of these test cases. Interestingly,
even starting without the SUT’s seed corpus, the mutation score
remained robust.

Table 2: Differential fuzzing setups and mutation scores

Setup (per mutant) Mutation score
Max total time of 24hs from SUT’s seed corpus 99%
Max total time of 24hs 99%
One individual test run from SUT’s seed corpus 88%

While the mutation score is a valuable metric, evaluating the
time required to kill mutants is essential, with a maximum allowable
timeframe of 24 hours. In this experiment, killing a mutant from the
SUT’s seed corpus took approximately 3 minutes on average, with
around 13,936 executed units. Conversely, without the project’s
seed corpus and without composing a new one (i.e., without reusing
test cases from previous runs), the process took 2.2 hours. When a
new seed corpus was introduced, effectively reusing inputs from
previous runs, the average time was reduced to 6.2 minutes. Also, it
is important to note that parallelization may be employed to further
improve efficiency in both scenarios.

Bruno et al.

RQ1: Differential fuzzing can kill mutants within 3 min-
utes. Starting with a good seed corpus it is crucial for a
better performance.

4.2 Analysis of Unkilled Mutants

Analysis of the mutants that survived all tests revealed that they
were all equivalent. This insight suggests that fuzzing can uncover
test cases that are not addressed by conventional unit tests, thereby
enhancing the testing suite’s coverage. If mutants were killed by
any method other than differential fuzzing, it could indicate a fault
in the target or oracle used for fuzz testing.

To better assess the efficacy of differential fuzzing in detecting
equivalent mutants, we ran the experiments again with a timeout of
three minutes per mutant, after manually excluding all equivalent
mutants. This approach achieved a 97% accuracy rate when running
from the project’s seed corpus and 92% when started from scratch.
In comparison, Table 3 presents other approaches, their respective
time to classify the mutants and their accuracy.

Table 3: Approaches to identify equivalent mutants, their
average time to analyze them and the accuracy

Approach
Differential ~ fuzzing
with SUT’s seed corpus

Avg time
3 minutes | 97%

Accuracy

Differential ~ fuzzing | 3 minutes | 92%
without SUT’s seed
corpus

Automated behavioral | 5 minutes | 57% ~ 100%.

testing [1]

Manual analysis [11] 15 minutes | N/A

RQ2: Differential fuzzing can effectively kill mutants in a
short time. To identify equivalent mutants, one approach is
to set a timeout period after which any surviving mutants
are considered equivalent. In our experiment, a 3-minute
timeout yielded an accuracy rate of 97%. It is important
to note that projects utilizing fuzzing usually maintain a
robust seed corpus, which is crucial for the performance
of this approach.

4.3 Specific findings
By analyzing the mutants killed only by differential fuzzing, we
could notice that most of them applies the following rules:

o Relational Operator Replacement

e Constant Replacement

In particular, mutants that substituted relational operators re-

placed <with < or >with >. Additionally, constant replacement
predominantly involved incrementing or decrementing the original

Towards differential fuzzing to reduce manual efforts to identify equivalent mutants: A preliminary study

value by one. An illustrative instance is presented in Figure 3, where
Bitcoin Core’s branch and bound function conduct 100,000 attempts
to find the best solution. By reducing the attempts to 99,999, we
need a specific case where, in fact, the best solution was found
precisely in the 100,000th try. Having a unit or functional test to
capture this scenario appears challenging, yet fuzzing proves adept
at discovering such nuanced cases, as demonstrated in this instance.
The same mutation was applied to another function within the
coin selection codebase, named ApproximateBestSubset 4. Despite
decreasing the total attempts by one, our differential fuzzing ap-
proach, even after running for over 24 hours, failed to kill this
mutant. It means there is no need for this number of tries.

- for (size_t curr_try = 0, utxo_pool_index
— curr_try < TOTAL_TRIES; ++curr_try,

— ++tutxo_pool_index) {

+ for (size_t curr_try = 1, utxo_pool_index = 0;
— curr_try < TOTAL_TRIES; ++curr_try,

— ++tutxo_pool_index) {

1
(S

Figure 3: Mutant killed only by differential fuzzing

RQ3: By decreasing or increasing a constant by one or
changing, for example, <to <, few cases can reach these
changes, and they may not be addressed in the unit or
functional tests. In this case, fuzzing can find those cases,
and differential fuzzing can kill them.

In Groce et al. study [9], they applied mutation testing for the
tx_verify.cpp file. In their research, fuzzing could detect just under
12% of all the generated mutants and they pointed out that only 90
of the 430 compiling mutants survived all tests (unit and functional
tests), for an overall mutation score of 79.07%. After a manual inspec-
tion, they realized that 29 of them are equivalent. Their detailed list
of surviving, killable mutants is available in https://github.com/agr
oce/bitcorpus/blob/master/mutation/prioritized_full inspect.txt.

We applied differential fuzzing with the mutants from their list
with the same setup as we did for the Branch and Bound function,
limiting the execution to three minutes per mutant and with the
SUT’s seed corpus. The goal is to evaluate our approach to iden-
tify equivalent mutants. Considering the list does not contain any
equivalent mutant, the number of mutants killed by differential
fuzzing reflects its accuracy to detect equivalent mutants.

Figure 4 shows that it killed 90.25% of the mutant, which means
90.25% of accuracy. However, this is not the reality. By analyzing
the survived mutants we noticed that most of them are, in fact,
equivalent.

“https://github.com/bitcoin/bitcoin/blob/26.x/src/wallet/coinselection.cpp#L260

SBES’24, September 30 — October 04, 2024, Curitiba, PR

Equivalent

6,7%
Not killed
1,7%

Killed

91,7%

Figure 4: Mutation analysis with differential fuzzing for the
mutants from Groce et al.’s list [9]

Figure 5 shows one of the mutants from the list. Although it
seems a not-equivalent mutant, nLockTime can not be negative so
this change does not have any effect. It shows that manual analysis
of mutants also depends on good knowledge about the source code..
Excluding the equivalent mutants, the accuracy of our approach
is 98.3% for this case, overcoming the results from our previous
experiment.

- if (tx.nLockTime == 0)
+ if (tx.nLockTime <= 0)

Figure 5: Killable mutant from Groce et al.’s list [9]

5 THREATS TO VALIDITY

Threats to validity in this study include the following considera-
tions: Internal Validity: The use of universalmutator may limit the
comprehensiveness of mutants generated, as it is not specifically
tailored for C++ and Rust. The experimental setup on a single hard-
ware configuration (MacBook Pro M1 with 16GB RAM) and the
manual exclusion of equivalent mutants could introduce biases and
affect the results. External Validity: The study’s focus on Bitcoin
Core may limit generalizability to other projects, especially those in
different domains. Results might vary with different fuzzing tools,
and the specific characteristics of Bitcoin Core may not apply to
other software systems. Construct Validity: The three-minute
timeout for killing mutants is arbitrary and may not be optimal for
all contexts. The effectiveness of differential fuzzing heavily relies
on the quality of the seed corpus, which may not be representative
across different projects. Further studies on diverse projects and
using various fuzzing tools are needed to strengthen the validity of
these findings.

6 CONCLUSION AND FUTURE WORK

This study explores the application of differential fuzzing for identi-
fying equivalent mutants. Differential fuzzing is particularly adept
at uncovering test cases that may be overlooked by traditional unit
or functional tests. Given the prevalence of fuzz testing in many
projects and the maintenance of robust seed corpuses, differential

https://github.com/agroce/ bitcorpus/blob/master/mutation/prioritized_full_inspect.txt
https://github.com/agroce/ bitcorpus/blob/master/mutation/prioritized_full_inspect.txt

SBES’24, September 30 — October 04, 2024, Curitiba, PR Bruno et al.

fuzzing emerges as a highly effective and efficient method for iden- [12
tifying equivalent mutants, especially when utilizing the SUT’s
seed corpus. Additionally, we demonstrate the straightforward im- [13
plementation of differential fuzzing when comparing the original
code to its mutants.

This research is ongoing, and the preliminary findings are promis-
ing. Our future work will extend this research in several key areas: [14

Pieter Hartel and Richard Schumi. 2020. Mutation Testing of Smart Contracts at
Scale. In Tests and Proofs, Wolfgang Ahrendt and Heike Wehrheim (Eds.). Springer
International Publishing, Cham, 23-42.

Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer,
and Antony L. Hosking. 2021. Seed selection for successful fuzzing. In Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis (Virtual, Denmark) (ISSTA 2021). Association for Computing Machinery,
New York, NY, USA, 230-243. https://doi.org/10.1145/3460319.3464795

Qiang Hu, Lei Ma, Xiaofei Xie, Bing Yu, Yang Liu, and Jianjun Zhao. 2019. Deep-
Mutation++: A Mutation Testing Framework for Deep Learning Systems. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
1158-1161. https://doi.org/10.1109/ASE.2019.00126

K. Jain, G. Kalburgi, C. Le Goues, and A. Groce. 2023. Mind the Gap: The Difference
Between Coverage and Mutation Score Can Guide Testing Efforts. In 2023 IEEE
34th International Symposium on Software Reliability Engineering (ISSRE). IEEE
Computer Society, Los Alamitos, CA, USA, 102-113. https://doi.org/10.1109/IS
SRE59848.2023.00036

Thijs Klooster, Fatih Turkmen, Gerben Broenink, Ruben Ten Hove, and Marcel
Bohme. 2023. Continuous Fuzzing: A Study of the Effectiveness and Scalability of
Fuzzing in CI/CD Pipelines. In 2023 IEEE/ACM International Workshop on Search-
Based and Fuzz Testing (SBFT). 25-32. https://doi.org/10.1109/SBFT59156.2023.0
0015

Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz J6zala. 2014.
Overcoming the Equivalent Mutant Problem: A Systematic Literature Review
and a Comparative Experiment of Second Order Mutation. IEEE Transactions on
Software Engineering 40, 1 (2014), 23-42. https://doi.org/10.1109/TSE.2013.44
Muhammad Rashid Naeem, Tao Lin, Hamad Naeem, and Hailu Liu. 2020. A

(1) Expanding the replication of experiments across diverse
projects and different contexts to validate the robustness [15
and adaptability of our findings.

(2) Applying the experiments using various fuzzers to assess
the impact of fuzzing tools on the outcomes.

(3) Investigating the use of differential fuzzing in conjunction 16
with mutation testing to reveal fault-revealing mutants.

(4) Employing differential fuzzing and mutation testing to iden-
tify test cases that would enrich the existing unit test effort.

[17

REFERENCES

[1] Samuel Amorim, Leo Fernandes, Marcio Ribeiro, Rohit Gheyi, Marcio Delamaro, [18

Marcio Guimaraes, and André Santos. 2024. Reducing Manual Efforts in Equiva-
lence Analysis in Mutation Testing. Journal of Software Engineering Research and
Development 12, 1 (Mar. 2024), 3:1 - 3:17. https://doi.org/10.5753/jserd.2024.3588
Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and
Thorsten Holz. 2022. JIT-Picking: Differential Fuzzing of JavaScript Engines. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security (Los Angeles, CA, USA) (CCS "22). Association for Computing Machinery,
New York, NY, USA, 351-364. https://doi.org/10.1145/3548606.3560624
Claudinei Brito, Vinicius H. S. Durelli, Rafael S. Durelli, Simone R. S. de Souza,
Auri M. R. Vincenzi, and Marcio Eduardo Delamaro. 2020. A Preliminary In-
vestigation into Using Machine Learning Algorithms to Identify Minimal and
Equivalent Mutants. In 2020 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). 304-313. https://doi.org/10.1109/
ICSTW50294.2020.00056
] Liang Cheng, Yang Zhang, Yi Zhang, Chen Wu, Zhangtan Li, Yu Fu, and Haisheng
Li. 2019. Optimizing Seed Inputs in Fuzzing with Machine Learning. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). 244-245. https://doi.org/10.1109/ICSE-Compan
10n.2019.00096
] Seungjoon Chung and Shin Yoo. 2022. Augmenting Equivalent Mutant Dataset
Using Symbolic Execution. In 2022 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). IEEE, 150-159.
Leo Fernandes, Marcio Ribeiro, Rohit Gheyi, Marcio Delamaro, Marcio Guimaraes,
and André Santos. 2022. Put Your Hands In The Air! Reducing Manual Effort in
Mutation Testing. In Proceedings of the XXXVI Brazilian Symposium on Software
Engineering (<conf-loc>, <city>Virtual Event</city>, <country>Brazil</country>,
</conf-loc>) (SBES °22). Association for Computing Machinery, New York, NY,
USA, 198-207. https://doi.org/10.1145/3555228.3555233
Philipp Gérz, Bjorn Mathis, Keno Hassler, Emre Giiler, Thorsten Holz, Andreas
Zeller, and Rahul Gopinath. 2023. Systematic Assessment of Fuzzers Using
Mutation Analysis. In Proceedings of the 32nd USENIX Conference on Security
Symposium (Anaheim, CA, USA) (SEC ’23). USENIX Association, USA, Article
254, 18 pages.
Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang.
2018. An Extensible, Regular-Expression-Based Tool for Multi-Language Mu-
tant Generation. In Proceedings of the 40th International Conference on Soft-
ware Engineering: Companion Proceeedings (Gothenburg, Sweden) (ICSE ’18).
Association for Computing Machinery, New York, NY, USA, 25-28. https:
//doi.org/10.1145/3183440.3183485
Alex Groce, Kush Jain, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi,
and Claire Le Goues. 2022. Looking for Lacunae in Bitcoin Core’s Fuzzing
Efforts. In Proceedings of the 44th International Conference on Software En-
gineering: Software Engineering in Practice (Pittsburgh, Pennsylvania) (ICSE-
SEIP °22). Association for Computing Machinery, New York, NY, USA, 185-186.
https://doi.org/10.1145/3510457.3513072

=

=

=

[10] Alex Groce, Goutamkumar Tulajappa Kalburgi, Claire Le Goues, Kush Jain, and

Rahul Gopinath. 2022. Registered report: First, fuzz the mutants. In International
Fuzzing Workshop, ser. FUZZING, Vol. 22.

Bernhard J. M. Griin, David Schuler, and Andreas Zeller. 2009. The Impact of
Equivalent Mutants. In 2009 International Conference on Software Testing, Verifica-
tion, and Validation Workshops. 192-199. https://doi.org/10.1109/ICSTW.2009.37

machine learning approach for classification of equivalent mutants. Journal of
Software: Evolution and Process 32, 5 (2020), e2238.

Olivier Nourry, Yutaro Kashiwa, Bin Lin, Gabriele Bavota, Michele Lanza, and
Yasutaka Kamei. 2023. The Human Side of Fuzzing: Challenges Faced by Devel-
opers during Fuzzing Activities. ACM Trans. Softw. Eng. Methodol. 33, 1, Article
14 (nov 2023), 26 pages. https://doi.org/10.1145/3611668

Samuel Peacock, Lin Deng, Josh Dehlinger, and Suranjan Chakraborty. 2021.
Automatic Equivalent Mutants Classification Using Abstract Syntax Tree Neural
Networks. In 2021 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). 13-18. https://doi.org/10.1109/ICSTW 52544
.2021.00016

Goran Petrovi¢, Marko Ivankovi¢, Gordon Fraser, and René Just. 2022. Practical
Mutation Testing at Scale: A view from Google. IEEE Transactions on Software
Engineering 48, 10 (2022), 3900-3912. https://doi.org/10.1109/TSE.2021.3107634
Amol Saxena, Roheet Bhatnagar, and Devesh Kumar Srivastava. 2021. Improving
Effectiveness of Spectrum-based Software Fault Localization using Mutation
Testing. In 2021 2nd International Conference for Emerging Technology (INCET).
1-7. https://doi.org/10.1109/INCET51464.2021.9456109

Ari Takanen, Jared D Demott, Charles Miller, and Atte Kettunen. 2018. Fuzzing
for software security testing and quality assurance. Artech House.

Thierry Titcheu Chekam, Mike Papadakis, Tegawendé F Bissyandé, Yves Le Traon,
and Koushik Sen. 2020. Selecting fault revealing mutants. Empir. Softw. Eng. 25,
1 (Jan. 2020), 434-487.

Vasudev Vikram, Isabella Laybourn, Ao Li, Nicole Nair, Kelton OBrien, Rafaello
Sanna, and Rohan Padhye. 2023. Guiding Greybox Fuzzing with Mutation Testing.
In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Test-
ing and Analysis (<conf-loc>, <city>Seattle</city>, <state>WA</state>, <coun-
try>USA</country>, </conf-loc>) (ISSTA 2023). Association for Computing Ma-
chinery, New York, NY, USA, 929-941. https://doi.org/10.1145/3597926.3598107
Youngseok Yang, Taesoo Kim, and Byung-Gon Chun. 2021. Finding Consensus
Bugs in Ethereum via Multi-transaction Differential Fuzzing. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 21). USENIX
Association, 349-365. https://www.usenix.org/conference/osdi21/presentation/

yang

Received 24 May 2024; revised 31 May 2024; accepted 5 July 2024

https://doi.org/10.5753/jserd.2024.3588
https://doi.org/10.1145/3548606.3560624
https://doi.org/10.1109/ICSTW50294.2020.00056
https://doi.org/10.1109/ICSTW50294.2020.00056
https://doi.org/10.1109/ICSE-Companion.2019.00096
https://doi.org/10.1109/ICSE-Companion.2019.00096
https://doi.org/10.1145/3555228.3555233
https://doi.org/10.1145/3183440.3183485
https://doi.org/10.1145/3183440.3183485
https://doi.org/10.1145/3510457.3513072
https://doi.org/10.1109/ICSTW.2009.37
https://doi.org/10.1145/3460319.3464795
https://doi.org/10.1109/ASE.2019.00126
https://doi.org/10.1109/ISSRE59848.2023.00036
https://doi.org/10.1109/ISSRE59848.2023.00036
https://doi.org/10.1109/SBFT59156.2023.00015
https://doi.org/10.1109/SBFT59156.2023.00015
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1145/3611668
https://doi.org/10.1109/ICSTW52544.2021.00016
https://doi.org/10.1109/ICSTW52544.2021.00016
https://doi.org/10.1109/TSE.2021.3107634
https://doi.org/10.1109/INCET51464.2021.9456109
https://doi.org/10.1145/3597926.3598107
https://www.usenix.org/conference/osdi21/presentation/yang
https://www.usenix.org/conference/osdi21/presentation/yang

	Abstract
	1 Introduction
	2 Related work
	3 Preliminary study
	3.1 Experimental setup
	3.2 Mutation testing tool
	3.3 Differential Fuzzing Application
	3.4 Experimental design

	4 Results
	4.1 Differential Fuzzing performance
	4.2 Analysis of Unkilled Mutants
	4.3 Specific findings

	5 Threats to validity
	6 Conclusion and future work
	References

