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ABSTRACT three specific LLMs, CHATGPT4, LE CHAT MisTRAL and GEMINI

Compilation is an important process in developing configurable
systems, such as Linux. However, identifying compilation errors
in configurable systems is not straightforward because traditional
compilers are not variability-aware. Previous approaches that detect
some of these compilation errors often rely on advanced techniques
that require significant effort from programmers. This study eval-
uates the efficacy of Large Language Models (LLMs), specifically
CHATGPT4, LE CHAT MISTRAL and GEMINI ADVANCED 1.5, in iden-
tifying compilation errors in configurable systems. Initially, we
evaluate 50 small products in C++, Java, and C languages, followed
by 30 small configurable systems in C, covering 17 different types
of compilation errors. CHATGPT4 successfully identified most com-
pilation errors in individual products and in configurable systems,
while LE CHAT M1STRAL and GEMINI ADVANCED 1.5 detected some
of them. LLMs have shown potential in assisting developers in
identifying compilation errors in configurable systems.
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1 INTRODUCTION

Compilation is an important process for creating functional and effi-
cient programs. This challenge is amplified in configurable systems,
as seen with the Linux kernel, where variability and the combina-
tion of different modules and features can result in an exponential
explosion of possible configurations. In such environments, finding
bugs that occur only under specific configurations becomes a par-
ticularly costly and labor-intensive task. Developing configurable
systems with dozens of macros is not easy [17], especially when
annotations are not disciplined [15, 13], potentially affecting code
quality [5]. Traditional compilers can only check one configura-
tion at a time. Variability-aware parsers are advanced parsing tools
designed to handle software systems with multiple configurations
and variability. Using the current variability-aware parsers [12, 9]
is time consuming, require some effort to setup and do not detect
all errors.

Large Language Models (LLMs) have proven to be valuable tools
in software generation and review, assisting with code writing and
documentation [10, 24]. Some studies are investigating the extent
to which LLMs can assist in testing activities [25] and software
engineering [11]. However, to the best of our knowledge, no study
has yet explored the extent to which LLMs can aid in detecting
variability-aware compilation errors.

In this paper, we evaluate the capability of Large Language Mod-
els (LLMs) in identifying compilation errors across diverse pro-
gramming contexts. Our focus is to analyze the performance of

ADVANCED 1.5, in identifying compilation errors. These LLMs were
chosen because they are state-of-the-art models in the field, repre-
senting the latest advancements in large language model technology.
Initially, we assessed the ability of these LLMs to identify issues
in a set of 50 small programs across C++, Java, and C. Later, we
expanded our analysis to include applying these models to 30 small
configurable systems, ranging from 1 to 5 macros in C, with up
to 33 LOC, examining 17 different types of compilation errors. All
experimental data are available online [3]. In summary, our main
contribution is the following:

o Evaluate to what extent CHATGPT4, LE CHAT MISTRAL and
GEMINI ADVANCED 1.5 detect compilation errors in programs
and configurable systems (Sections 2 and 3).

2 EVALUATION: PRODUCTS

First we assess LLM’s performance in compiling single products.

2.1 Methodology

2.1.1 GQM. We structured our evaluation using the Goal-
Question-Metric (GQM) approach [4]. The objective is to assess
the effectiveness of LLMs, specifically CHATGPT4 and LE CHAT
MISTRAL, in identifying compilation errors from the developers’
perspective in the context of individual products. We address the
following research questions (RQs) to achieve the goal:

RQ; To what extent can CHATGPT4 detect compilation errors in
individual products?

RQ; To what extent can LE CHAT MISTRAL detect compilation
errors in individual products?

RQ3; To what extent can GEMINI ADVANCED 1.5 detect compilation
errors in individual products?

Each LLM’s response will be compared to the language compiler to
determine the number of correct and incorrect identifications.

2.1.2  Planning. The study’s planning involves a structured
methodology to assess the capabilities of the selected LLMs. The
plan is as follows. The study uses a sample of 50 products selected
in April 2024 to ensure the results’ relevance and timeliness. These
products are divided between self-developed creations and code
samples extracted from the Codeforces platform, distributed across
C++, Java, and C, ranging from 7 to 70 lines of code (median: 25.06
LOC, mean: 24 LOC). The platform Codeforces was chosen for ex-
tracting code samples because it offers a wide variety of coding
problems and solutions in multiple programming languages, en-
suring diversity and real-world relevance. The code samples were
chosen at random to mitigate selection bias and provide a realistic
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assessment of the LLMs’ capabilities in handling typical program-
ming errors.

The code snippets include (nested) loops, (nested) conditionals,
functions, data structures (such as maps, arrays, and vectors), in-
put and output operations, and mathematical calculations. Each
product contains exactly one type of compilation error, which may
include one to three instances of the same error. This selection aims
to provide a comprehensive and representative analysis of LLM
capabilities across different programming contexts.

The prompt used is “Does the following language code compile?
code,” where language specifies the programming language (C++,
Java, or C) and code is the specific code snippet being analyzed.
This prompt formulation was chosen for its simplicity, enabling a
direct and focused interaction with the LLMs, specifically assessing
their ability to determine whether the provided code compiles. We
used default parameters. After receiving the LLMs’ responses, each
product is compiled using the appropriate compiler (GNU GCC 11
for C, GNU G++ 13 for C++, and Java 21 for Java). This step serves
to validate the LLM responses against the compiler’s verdict, which
acts as a baseline for evaluation.

The responses provided by the LLMs are analyzed based on
five main criteria, where each response is classified as “Yes,” “No,”
or “Partially” “Yes" indicates success, “No” denotes failure, and
“Partially” (@) is used for detailed discussion in cases where success
is not fully achieved but is considered a failure for final evaluation.
The criteria are detailed as follows:

e Detect. Determines if the LLM identified the presence of a
compilation error.

o Fix. Evaluates if the LLM proposed an appropriate fix for the
compilation error. The LLM should provide corrected code
or directly and clearly describe a solution without changing
the code’s original purpose.

o Explanation. Assesses if the LLM satisfactorily explains
the problem. Success is only considered if all sub-criteria are
marked “Yes,” which includes:

— Code Element. Checks if the LLM pinpointed the specific
code element causing the error.

- Type of Error. Determines if the LLM accurately classified
the type of error.

- Location. Confirms if the LLM correctly indicated the
error’s location in the code. The LLM must specify in
which function the error occurs, or, in the case of variables,
identify the specific variable where the error happens.

In April 2024, we analyzed CHATGPT4 and LE CHAT MISTRAL. In
May 2024, we also evaluated GEMINT ADVANCED 1.5.

2.2 Results

The performance results of CHATGPT4, LE CHAT MISTRAL, and GEM-
INI ADVANCED 1.5 are summarized in Table 1. CHATGPT4 exhibited
a good performance in detecting and correcting errors, achieving
41 detections and 44 corrections out of a possible 50. In terms of
explanation, this model was effective in 31 out of the 41 errors it
detected. LE CHAT MISTRAL, on the other hand, detected 28 errors
and corrected 32 out of 50 products. LE CHAT MISTRAL explained 23
of the 28 errors it detected. It has a less consistent level compared
to CHATGPT4. GEMINT ADVANCED 1.5 detected 27 errors, corrected
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35 out of 50 products, and explained 21 of the 27 errors it detected.
Among the three models, Gemini Advanced 1.5 was the least ef-
fective in error detection, although it showed a higher number of
corrections than Le Chat Mistral.

2.3 Discussion

2.3.1 Compilation Error Detection. In six examples, none of the
three LLMs can detect the compilation errors. However, in four of
these cases, at least one LLM suggests a code improvement that
resolves the compilation error. When analyzing the specific types of
compilation errors detected by the LLMs, we observe varying per-
formance across different error categories. Notably, syntax errors
like “Missing semicolon” and “Mismatching parentheses” exhibited
high detection rates by all three LLMs, with CHATGPT4 identifying
all 8 cases of “Missing semicolon” and LE CHAT MISTRAL detecting
7 of them. Detection of “Mismatching brackets” was particularly
strong in CHATGPT4, detecting 6 out of 6 cases, while LE CHAT
MisTRAL and GEMINI ADVANCED 1.5 detected none. In contrast,
semantic errors like “Variable not declared” and “Type mismatch”
proved more challenging, with both LLMs showing moderate re-
sults. CHATGPT4, LE CHAT M1sTRAL, and GEMINI ADVANCED 1.5
each detected 3 out of 4 “Variable not declared” cases.

One specific error analyzed during the evaluation was “variable
out of scope,” where CHATGPT4 correctly identified 7 out of 10 in-
stances. LLMs can identify variables used outside their permissible
scope. However, the two instances where errors were not detected
involved a common scenario in C++ programming;: the declaration
of a variable within a for loop header and attempting to access this
variable immediately after the loop ends (Id 14 from Table 1). LLMs
have 70% success rate in detecting out-of-scope variables. How-
ever, the difficulty in identifying errors involving scopes limited
to specific blocks, such as those introduced by loops, suggests an
opportunity for improvement.

2.3.2  Compilation Error Fixing. In some cases where LLMs did
not explicitly detect an error, they still suggested changes to the
code. Interestingly, these proposed changes, although not initially
aimed at fixing a specific identified issue, ended up resolving the
problem. This led to a number of effective corrections exceeding
the detected compilation errors. For instance, CHATGPT4 did not
initially identify an error in the for element (the missing closing
parenthesis) inId 3: for (int 1 = 0; i < (int)a.size(); i++.
But, it suggests to use a range-based for loop to simplify the code:
for (int num : a).So, it fixed the compilation error. On the other
hand, Le CHAT MISTRAL and GEMINI ADVANCED 1.5 not only detect
the compilation error:

“.. There is a missing right parenthesis )’ in the for loop decla-
ration ...”

but also provide a fix.

2.3.3 Explanation. While hallucinations, or the generation of in-
correct and fictitious information by LLMs, are a known issue [26],
the results of this evaluation show that the models often provide
coherent and useful explanations, even in cases where the initial de-
tection may seem uncertain. In the results presented, we observed
that in some instances, LLMs initially indicate no compilation er-
rors, but as the response develops, they recognize the presence of
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Table 1: Evaluation results of identifying compilation errors in products.

CHATGPT4

Language LOC Type Error Detect ‘ Fix Code Type

‘ Explanation
Location ‘ Detect Fix Code Type ‘ Location Detect ‘ Fix Code Type Location

GEMINI ADVANCED 1.5
Explanation

‘ LE CHAT MISTRAL
‘ Explanation ‘

1 C++ 7 | Syntax | Missing semicolon v v v v v v v v v v v v v v v

2 C++ 11 | Syntax | Missing semicolon (2x) v v v v v v v v v v v v v v ]

3 C++ 8 | Syntax | Mismatching parentheses X v X X X v v v v v v v v v v

4 C++ 8 | Syntax | Mismatching parentheses v v v v v v v v X v v v v v v

5 C++ 11 | Syntax | Mismatching parentheses v v v v v X 3 X X X v v v v v

6 C++ 11 | Syntax | Mismatching parentheses v v v v v X v X X X v v v v v

7 C++ 10 | Syntax | Mismatching brackets v v v v v X X X X X X X X X X

8 C++ 11 | Syntax | Mismatching brackets v v v v v = v X X v X v X X X

9 C++ 35 | Syntax | Mismatching parentheses v v v v v X 3 X X X X X X X X
10 C++ 10 | Syntax | Mismatching quotes v v v v v v v v v v X X v v v
11 C++ 10 | Syntax | Invalid variable name (3x) v N v v [<] v v v v v v N v v v
12 C++ 7 | Semantic | Variable not declared (2x) @ v v v @ e v v v e v v v v v
13 C++ 15 | Semantic | Type mismatch v v v v v v v v v v v v v v v
14 C++ 16 | Semantic | Variable out of scope X X X X X X X X X X X v X X X
15 C++ 12 | Semantic | Variable out of scope v v v X v X 3 X X X X v X X X
16 C++ 13 | Semantic | Variable out of scope X X X X X X X X X X X v X X X
17 C++ 15 | Semantic | Variable out of scope v v v v v X X X X X X X X X X
18 C++ 41 | Semantic | Variable out of scope v v v v ® v v v v v X X X X X
19 C++ 31 | Semantic | Variable out of scope v v v v v X X X X X X X X X X
20 C++ 26 | Semantic | Variable not declared v v v v v v X v v v X X X X X
21 C++ 55 | Semantic | Function signature mismatch v v v v v v v v v v v v v v v
22 C++ 23 | Semantic | Variable out of scope v v v v v v v v v v v v v v v
23 C++ 55 | Semantic | Variable out of scope (3x) X X X X X X X X X X X X X X X
24 C++ 48 | Syntax | Missing semicolon (2x) v v v [<) v X X X X X X X X X X
25 C++ 28 | Semantic | Variable out of scope v v v v v v v v v v X v X X X
26 C++ 69 | Semantic | Variable redefinition v v v v v X X v X X v v v X v
27 C++ 39 | Syntax | Missing semicolon v v v =) v v v v v v v v v v v
28 C++ 23 | Syntax | Missing semicolon v v v v v v v v v v v v v X v
29 C++ 29 | Syntax | Missing semicolon v v v v v v v v v v v v v v v
30 C++ 18 | Syntax | Invalid macro usage v v v v v X 3 X X X v v v X v
31 Java 24 | Semantic | Dereference of primitive type v v v = v v v v v v v v v v v
32 Java 33 | Syntax | Missing semicolon v v v v v v v v v v X X X X X
33 Java 35 | Syntax | Missing semicolon v v v v v v v v X v X v X X X
34 Java 27 | Syntax | Illegal character v v v X v v v v X v v v v v v
35 Java 31 | Semantic | Variable not declared v Vv v v v v v v X v v Vv v v v
36 Java 29 | Syntax | Mismatching parentheses v v v v v v v v v v v v v v v
37 Java 32 | Syntax | Mismatching brackets X X X X X X v X X X X X X X X
38 Java 30 | Semantic | Type mismatch X X X X X X X X X X X v X X X
39 Java 21 | Syntax | Mismatching brackets X X X X X X X X X X X X X X X
40 Java 55 | Semantic | Type mismatch (2x) @ v v v @ =] v X v X v v v v v
41 C 24 | Syntax | Missing operand v v v X v X X v X X X v X X X
42 C 25 | Syntax | Mismatching brackets v v v v v X X X X X X X X X X
43 C 25 | Semantic | Type mismatch v v v v v v v X X X v v v v v
44 C 23 | Semantic | Variable out of scope v v v v v v v v v v v v v v v
45 C 26 | Syntax | Invalid return type v v v v v v v v v v v v v v v
46 C 15 | Semantic | Function not defined v v v v v X X X X X X X X X X
47 C 18 | Syntax | Mismatching quotes v v v X v v v v v v v v X X v
48 C 18 | Syntax | Mismatching parentheses v v v v v v v v v v v v v v v
49 C 38 | Semantic | Variable not declared v v v X v v v v v v v v v X v
50 C 29 | Semantic | Operator not defined v v v v v v v v v v X X X X X

issues, adjusting their initial conclusions. Although this change in
stance might seem inconsistent, it rarely compromises the quality
of the explanations provided. The final responses, which include
corrections to the model’s initial assessment, typically offer detailed
explanations of the nature and context of the detected error. Ac-
cording to our “Explanation” evaluation metrics, the results were
considered satisfactory, with all three LLMs successfully meeting
the explanation criteria more than 75% of the time.

2.4 Threats to Validity

A factor that can compromise result validity is selection bias in code
samples, as choosing examples that don’t adequately represent the
diversity of real-world errors could skew the evaluation of LLMs.
We created some examples based on compilation errors found in
real systems. The modifications made and the new examples created
help to minimize the risk of data leakage when using LLMs [23].

3 EVALUATION: CONFIGURABLE SYSTEMS

Next, we evaluate configurable systems.

3.1 Methodology

3.1.1  GQM. The objective is to assess the effectiveness of LLMs,
specifically CHATGPT4 and LE CHAT MISTRAL, in identifying com-
pilation errors from the developers’ perspective in the context of
configurable systems. We address the following RQs:

RQ; To what extent can CHATGPT4 detect compilation errors in
configurable systems?

RQ; To what extent can LE CHAT MISTRAL detect compilation
errors in configurable systems?

RQ3; To what extent can GEMINI ADVANCED 1.5 detect compilation
errors in configurable systems?
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Each LLM’s response will be compared to the language compiler
for each product within the configurable system to accurately de-
termine the number of correct and incorrect identifications.

3.1.2 Planning. The study’s planning involves a structured
methodology to assess the capabilities of the selected LLMs. We in-
cluded 30 configurable systems, ranging from 4 to 33 LOC (median:
16.8 LOC, mean: 16 LOC). Each configurable system contains 1 to 5
macros and contains one or two types of compilation errors. The
code snippets include loops, conditionals, functions, data structures
(such as maps, arrays, and vectors), input and output operations,
and mathematical calculations. Additionally, they feature nested
ifdefs, ifdefs with simple boolean expressions, both disciplined and
undisciplined ifdefs [13], ifdefs inside functions, and ifdefs within
function declarations. We created 14 configurable systems. Addi-
tionally, there are six systems that are based on Braz et al’s studies
that identified compilation errors in configurable systems [6, 7].
The remaining systems are adapted from Abal et al’s research on
variability bugs in the Linux kernel, providing simplified versions
of the original code [1, 2].

We used the prompt “Does the following C code compile? code,”
where code represents the code snippet. This prompt was chosen
for simplicity, focusing on direct interaction with the LLMs to evalu-
ate their ability to comprehend and process conditional compilation.
English was used because LLMs are trained on a significantly larger
volume of data in this language. Each configurable system is com-
piled using the GNU GCC 11 compiler for C. During this process,
we manually analyzed how many unique products could be gen-
erated by activating different features. Each unique product was
manually compiled to verify how many configurations contained
compilation errors. The 30 configurable systems generated a total
of 103 unique products, of which 40 contained compilation errors.

The analysis of the LLM responses follows the same structure
used in the evaluation of individual products (Section 2.1.2), with
specific adaptations for the configurable systems context:

e Detect. It refers to the number of distinct products with
compilation errors that the LLMs successfully identified.

e Fix. To classify a correction as “Yes,” the LLM’s proposed
solution must be general and applicable to all products, with-
out relying on specific adjustments like directly defining
macros in the code that only guarantee compilation in that
particular configuration. This criterion seeks to evaluate the
model’s ability to propose sustainable and generalizable fixes
that maintain product functionality without specific manual
interventions.

o Explanation. The explanation evaluation follows the same
approach as the individual product analysis, considering
whether the LLM can satisfactorily clarify the detected prob-
lem. This includes correctly identifying the code element
causing the compilation error, the nature of the error, and
the specific location of the issue within the code of a product.

In April 2024, we analyzed CHATGPT4 and LE CHAT MISTRAL. In
May 2024, we evaluated GEMINI ADVANCED 1.5. We utilized the
default parameters.
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3.2 Results

The results of the configurable systems evaluation using CHATGPT4,
GEMINI ADVANCED 1.5 and LE CHAT MISTRAL are presented in
Table 2. CHATGPT4 detects all compilation errors (CE) in 28 of the
30 tested configurable systems. This model also identified errors
in 38 of the 40 individual configurations derived from these lines,
missing only “Type Mismatch” and “Variable not declared.” In Id
19, CHATGPT4 detected errors in only one of the two erroneous
configurations. In terms of fixes, CHATGPT4 proposed effective
fixes for 12 of the 30 configurable systems. Regarding explanations,
the model was able to provide adequate explanations for 26 of the
29 configurable systems with compilation errors.

L CHAT MisTRAL, meanwhile, identified all compilation errors
in 24 of the 30 configurable systems, and 31 of the 40 individual
configurations. The model managed to propose fixes for 9 of the
30 configurable systems and provided adequate explanations for
18 of the 26 detected lines. In Ids 2 and 21, LE CHAT MISTRAL
detected compilation errors in some configurations but not all.
These results indicate that although it is effective at detecting some
compilation errors, LE CHAT MISTRAL faces more challenges in
proposing effective fixes and providing detailed explanations.

GEMINI ADVANCED 1.5, on the other hand, can detect all compila-
tion errors in 16 configurable systems. However, it incorrectly states
that 10 configurable systems do not have compilation errors. In
four configurable systems, it detects some of the compilation errors.
In our study, the GEMINI performance is worse than CHATGPT4
and LE CHAT MISTRAL.

3.3 Discussion

3.3.1 Compilation Error Detection. Most undetected errors by
LLMs are semantic: both undetected errors by CHATGPT4 and eight
out of nine undetected errors by LE CHAT MISTRAL are semantic,
pointing to a potential area for enhancement. We present a con-
figurable system (Id 10 from Table 2) in Listing 1. In this example,
the norm function adapts its calculations depending on whether the
macros A and B are defined. When macro A is not defined, the norm
function is configured to accept only two parameters, conflicting
with the call made in the main function, where norm is invoked
with three arguments.

#include <stdio.h>
struct point { int x, y;};
int norm(
int x,
#ifdef A
inty,
#endif
int z
N
intw=xxz;
#ifdef B
w+=y;
#endif
return w;

int main() {
int x = norm(1, 2, 3);
printf("%d\n", x);
return 0;

}

Listing 1: LE CHAT M1sTRAL and GEMINI ADVANCED 1.5 do
not detect a compilation error in Id 10.
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Table 2: Evaluation results of identifying compilation errors in configurable systems.

Detect

Fix

LE CHAT MISTRAL
Explanation

Detect

La Macros  #Prod. Type Error #CE g . p X .
1 |C 2 4 9 Semantic | Type not declared 1 1 v v v v 0 X X X X 0 X X X X
2 | C 2 4 16  Semantic | Func. not def.; Func. redef. 2 2 @ v v v 1 x v (<] v 2 X v v v
3 |C 1 2 10 Syntax Mismatching quotes 1 1 v v v v 1T v Y v v 1 v v v v
4 | C 1 2 11 Semantic | Function not defined 1 1 v v v v 1 v v v v 1 v v v v
5 | C 1 2 8 Semantic | Variable not declared 1 1 v v v v 1 x v v v 1 v v v v
6 | C 1 2 13 Syntax Mismatching brackets 1 1 v v v v 1 X X X v 0 X X X X
7 | C 1 2 9 Syntax Missing semicolon 1 1 v v v v 1 v v v v 0 X X X X
8 | C 2 4 13 Semantic | Type not declared 1 1 X v v X 0 X X X X 0 X X X X
9 |C 2 4 16 Semantic | Variable not declared 1 1 X v v v 1 X v v v 1 v v v v
10| C 2 4 22 Semantic | Func. sig. mism. (2x) 2 2 X v v v 0 x  x X X 1 v S S ]
11| C ‘2 4 23 Semantic | Func. sig. mism. (2x); Var. not decl. 3 3 X v v v 0 VAR X X 1 X o o (o]
zlc 1 2 17 Semantic | Label not declared 1 1 vV VR 1 x  x x x 0 x | x x x
13| C 2 4 11 Semantic | Type not declared 1 1 X v v v 1 x J X v 1 X v X v
14| C 1 2 5 Syntax Missing struct keyword 1 1 X v X v 1 v v v v 1 v v X v
15| C 1 2 10 Semantic | Label not declared 1 1 X v v v 1 v v v v 0 X X x X
16 | C 1 2 4 Syntax Invalid return type 1 1 v v v v 1 [ v v v 1 v v v v
17 | C 1 2 14 Semantic | Cont. statement outs. a loop 1 1 v v v v 1 X v v v 1 v v v v
18| C 1 2 12 Semantic | Address of bitfield requested 1 1 X v v v 1 X X X X 1 v v v v
19 | C 3 5 32 Semantic | Fund. not def.; Var. not decl. 2 1 X [} - [} 2 X v v v 1 X [} [} -
20| C 3 5 27 Semantic | Variable not declared 1 1 X v v v 1 X X X X 1 v v X v
21| C 2 4 25 Syntax Invalid return type (3x) 3 3 X v v v 2 X X X X 2 [ v [ v
22| C 2 4 20 Semantic | Function not defined 1 1 v v v v 1 v v v v 1 X v v v
23| C 2 4 19 Semantic | Function not defined 1 1 v v v v 1 x v v v 1 v v v v
24 | C 2 4 19 Semantic | Function not defined 1 1 x v v v 1 v v v v 1 v v v v
25| C 5 8 33 Semantic | Variable not declared (3x) 3 3 X v v v 3 X v v v 3 v v v v
26 | C 4 8 26 Semantic | Function not defined (2x) 2 2 X v v v 2 X X X X 0 X X X X
27 | C 2 3 26 Semantic | Type mismatch 1 0 X X X X 1 X v v v 0 X X X X
28 | C 1 2 11 Semantic | Function signature mismatch 1 1 X v v v 1 v v v v 0 X X X X
29| C 2 4 22 Semantic | Function redefinition 1 1 v v v v 1 X v v v 1 X v v v
30 | C 3 2 21 Semantic | Macro not defined 1 1 X v v v 1 X v v v 0 X X X X

This inconsistency should lead to a compilation error, but both
LE CHAT MisTRAL and GEMINI ADVANCED 1.5, while analyzing
possible products, identifies this only as a warning rather than a
compilation error, failing to recognize the problem:

“.. Neither A nor B defined: The code compiles without errors.
The norm function has arguments x and z, and it only calculates
w = x * z. The main function calls norm(1, 2, 3), passing
the extra argument 2, but it’s ignored by the function ...”

GEMINI ADVANCED 1.5 does point out another problem (Listing 1):

“.. Only B defined: The code won’t compile. There will be an
error because y is used in the norm function but not declared as
an argument ...”

Listing 2: GEMINI ADVANCED 1.5 does not detect a compilation
error in Id 7.

LE CHAT MISTRAL can detect the compilation errors not detected
by CHATGPT4 in two configurable systems containing nested ifdefs
(Ids 19 and 27). There are other examples with nested ifdefs (Ids 20
and 21). CHATGPT4 cannot detect a type mismatch in Id 27 when
one macro is enabled and another one is disabled. However, the
latest CHATGPT4-0 detects and explains in details the compilation
error. LE CHAT MISTRAL correctly explains why the compilation
error happens. In Id 19, we have 3 macros, and CHATGPT4 yields
the following message:

This seems to indicate a lack of understanding of the C language
by both LE CHAT MISTRAL and GEMINI ADVANCED 1.5. On the other
hand, CHATGPT4 detects both problems.

Furthermore, Listing 2 shows an example containing a missing
semicolon (Id 7). CHATGPT4 and LE CHAT MISTRAL can detect
and explain how to fix it. GEMINI does not detect the compilation
error:

“.. if you were to define A then the subtraction would be per-
formed ...”

#include <stdio.h>
int main() {
inta=3,b=7;
intx=a=b;
#ifdef A
x-=1
#endif
printf("%d\n", x);

“.. I B is defined but C is not, the variable x is defined and
updated in the loop, but y remains undeclared and unused ...”

It correctly indicates that y remains undeclared but CHATGPT4
cannot identify that y is used in x += sum + y;. CHATGPT4-0 and
GEMINI ADVANCED 1.5 also do not detect it. On the other hand, LE
CHAT MIsTRAL correctly identifies the compilation error:

“.. the variable y will not be declared, but there is an attempt
to use y in the expression x += sum + y;, which will result in
a compilation error ...”

3.3.2 Compilation Error Fixing. During the evaluation of config-
urable systems, LLMs suggested fewer fixes compared to individ-
ual products (Section 2). Despite this decline, the results are still
promising, indicating that even in more complex scenarios, LLMs
can identify and suggest valid interventions, albeit less frequently.
This suggests that although the models have a reasonable under-
standing of errors, they could benefit from more specific guidance
when proposing solutions. This leads us to consider improvements
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for future work, where the prompt used to interact with the LLMs
could be adjusted to explicitly request a correction. Changing the
prompt to explicitly request a solution could help guide the models
not only to identify the issue but also to focus more directly on
generating an applicable fix.

3.3.3 Explanation. CHATGPT4 demonstrated a good performance
in explaining errors, providing consistent and clear details that
aid in understanding the issues detected. This model was effective
in clarifying the contexts of compilation errors and their impli-
cations, especially for complex cases like “Function not defined”
and “Type not declared,” where the explanations were detailed and
informative. Additionally, CHATGPT4 responses were longer and
more comprehensive than those of LE CHAT MISTRAL.

Both LE CHAT MISTRAL and GEMINI ADVANCED 1.5 exhibited
limitations in crafting detailed explanations. The model were less
consistent, especially in cases requiring a deeper understanding of
the interactions between multiple macros and their impact on the
code’s logic. The discrepancy between compilation error detection
and the quality of explanations was more pronounced, indicating
significant room for improvement in the accuracy and depth of
responses. All three LLMs struggled to explain errors involving
configurable systems that generate 4* products, often failing to
provide explanations that fully captured the nature and cause of the
issues. This challenge suggests that, although useful, the models
still require refinement to effectively handle the complexity of
configurable systems.

3.4 Threats to Validity

Selection bias in the code samples is a significant concern since
examples that don’t adequately capture the diversity of errors found
in real-world development environments can lead to a skewed eval-
uation of the LLMs’ capabilities. We created some examples based
on compilation errors found in real configurable systems. The mod-
ifications made and the new examples created help to minimize the
risk of data leakage when using LLMs [23]. Additionally, while the
compilers used as a baseline are generally reliable, the possibility of
them containing bugs cannot be completely ruled out. We manually
analyze the compiler results.

Beyond these aspects, a specific limitation of this study was
the relatively small size of configurable systems assessed, with the
largest containing only 33 LOC. Many configurable systems are
simplified versions of more complex codebases, potentially making
it easier for the LLMs to detect and correct errors. This simplification
might not fully reflect the challenges encountered in more extensive
and intricate software scenarios, potentially inflating the models’
perceived effectiveness.

4 RELATED WORK

Some variability-aware tools have been previously proposed, such
as TypeChef [12] and SuperC [9], for detecting certain syntax and
type errors in configurable systems written in C. These tools use ad-
vanced techniques to implement non-trivial static analyses to iden-
tify compilation errors in real-world configurable systems. Users
must configure these tools before use. Our work assesses how well
LLMs can perform variation-aware analysis, requiring minimal
effort from the user.

Lucas Albuquerque, Rohit Gheyi, and Marcio Ribeiro

Abal et al. [2, 1] identified a number of bugs in configurable C
systems and studied their characteristics. Some of these bugs are
related to compilation errors and were included in our work. For
future work, we aim to explore how well LLMs can identify other
issues, such as vulnerabilities in addition to compilation errors,
using this set of cataloged examples [2, 21]. For instance, we could
evaluate a set of vulnerabilities in configurable systems identified
by previous approaches [22, 19].

Medeiros et al. [18] proposed a technique to identify a set of
syntax errors in configurable C systems. Later, Medeiros et al. [20]
proposed a method to detect undeclared variable usage. Both tech-
niques could identify real-world compilation errors in configurable
C systems. In our evaluation, some examples are associated with
bugs found in these earlier studies.

Brazetal. [6, 7] proposed a technique to detect compilation errors
in configurable C systems by analyzing the impact of changes. They
suggested a non-trivial static analysis to identify new compilation
errors introduced by changes. This technique successfully identified
multiple compilation errors in real systems. Our work adopts a
simpler approach by using LLMs to detect compilation errors in
configurable systems. For future work, we plan to evaluate not
only real systems but also LLMs with larger context windows like
GEMINI to handle larger examples.

5 CONCLUSION

In this paper, we evaluate the extent to which LLMs such as CHAT-
GPT4 and LE CHAT MISTRAL are capable of identifying compilation
errors in configurable systems. CHATGPT4 successfully identified
41 out of 50 possible errors in products and 28 out of errors in
30 configurable systems, demonstrating high effectiveness in de-
tecting compilation errors. On the other hand, LE CHAT MISTRAL
identified 28 out of 50 errors in products and 24 out of 30 errors
in configurable systems in small examples. GEMINI ADVANCED 1.5
identified errors in 16 out of 30 configurable systems. LLMs have
shown potential in assisting developers in identifying compilation
errors in configurable systems. Some of them are not detected by
variability-aware parsers [12]. The CHATGPT4’s explanations help
developers to understand and fix them.

Future Work. We plan to evaluate real systems. Additionally,
we intend to consider other LLMs such as CLAUDE 3.5 SONNET,
GitHub Copilot, Llama 3, among others. We also aim to evaluate
other prompts [14, 8], as well as assess how well LLMs can de-
tect and correct compilation errors more deeply, especially in real
configurable systems. We aim to investigate the time required for
processing by LLMs and the extent to which they propose fixes.
We may face challenges similar to those encountered previously by
other techniques analyzing highly configurable systems [16]. We
will consider the use of sampling algorithms in these scenarios in
the context of LLMs.
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