
Detecting Test Smells in Python Test Code Generated by LLM:
An Empirical Study with GitHub Copilot

Victor Anthony Alves
Federal University of Ceará (UFC)

Quixadá, Ceará, Brazil
victorpa@alu.ufc.br

Cristiano Santos
Federal University of Bahia (UFBA)

Salvador, Bahia, Brazil
cristianossd@gmail.com

Carla Bezerra
Federal University of Ceará (UFC)

Quixadá, Ceará, Brazil
carlailane@ufc.br

Ivan Machado
Federal University of Bahia (UFBA)

Salvador, Bahia, Brazil
ivan.machado@ufba.br

ABSTRACT
Writing unit tests is a time-consuming and labor-intensive develop-
ment practice. Consequently, various techniques for automatically
generating unit tests have been studied. Among them, the use of
Large Language Models (LLMs) has recently emerged as a popular
approach for automatically generating tests from natural language
descriptions. Although many recent studies are dedicated to mea-
suring the ability of LLMs to write valid unit tests, few evaluate the
quality of these generated tests. In this context, this study aims to
measure the quality of the test codes generated by GitHub Copilot
in Python by detecting test smells in the test cases generated. To
do this, we used approaches to generating unit tests by LLMs that
have already been applied in the literature and collected a sample
of 194 unit test cases in 30 Python test files. We then measured
them using tools specialized in detecting test smells in Python. Fi-
nally, we conducted an evaluation of these test cases with software
developers and software quality assurance professionals. Our re-
sults indicated that 47.4% of the tests generated by Copilot had at
least one test smell detected, with a lack of documentation in the
assertions being the most common quality problem. These findings
indicate that although GitHub Copilot can generate valid unit tests,
quality violations are still frequently found in these codes.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Artificial Intelligence→ Large Language Models;
• General and reference→ Empirical studies.

KEYWORDS
Test Smells, Large Language Models, Python Test Code

1 INTRODUCTION
Unit testing is a foundation of software quality assurance, pro-
viding a mechanism for evaluating the functionality of individual
units of source code in isolation [11]. Despite its critical role, the
creation of unit test code is often overlooked by developers, pre-
dominantly due to its complexity and the time-consuming nature
of the task [2, 5, 25]. The manual generation of tests is not only
labor-intensive but also costly [17]. Consequently, there is a grow-
ing emphasis within the development community on developing
tools and methodologies that automate the generation of unit tests

[28]. This automation aims to alleviate the charge associated with
manual test writing and to enhance overall test effectiveness and
efficiency.

Recent research by Schäfer et al. [27] and El Haji et al. [7] high-
lights the substantial capabilities of Large Language Models (LLMs)
in generating test code. These studies commonly employ a strategy
where LLMs, such as ChatGPT1, GitHub Copilot2, and Amazon
CodeWhisperer3, are pre-trained using natural language prompts.
Such promptsmay drive test code generation that aligns with the an-
ticipated outcomes. This method capitalizes on the models’ human-
like text comprehension and generation abilities, thereby facili-
tating the creation of customized test code for distinct use cases
[35, 37]. LLMs’ depth of knowledge and contextual understanding
enables them to transcend traditional testing limitations, probing
diverse scenarios and identifying potential issues that conventional
methods might overlook.

While LLMs are increasingly indicated as the future of code gen-
eration, a growing body of research is focused on evaluating the
quality of the code they produce. Hansson and Ellréus [13] have
noted that code generated by models such as ChatGPT and GitHub
Copilot sometimes violates established quality guidelines. Further-
more, in production code crafted by various LLMs, Yetiştiren et al.
[36] has conducted a thorough analysis of ’code smells’—indicators
of deeper issues affecting maintainability and reliability. The find-
ings suggest that, despite the correctness of most generated code,
there are significant concerns regarding its maintainability and
trustworthiness

In the domain of test code generation, although numerous stud-
ies have addressed the generation capabilities of LLMs, a significant
research gap remains concerning the quality of test code produced
by these models [7, 29, 30]. Traditional testing methodologies often
encounter issues with test cases, commonly known as test smells,
which may signal deficiencies in test design or implementation.
These shortcomings can lead to decreased efficiency in detecting
failures or validating software behavior [31]. Test smells can mani-
fest in various forms, such as poorly structured test code or overly
complex logic, which complicates both understanding and mainte-
nance of the test code [16].

1https://chat.openai.com/
2https://github.com/features/copilot
3https://aws.amazon.com/pt/codewhisperer/

https://chat.openai.com/
https://github.com/features/copilot
https://aws.amazon.com/pt/codewhisperer/


SBES’24, September 30 – October 04, 2024, Curitiba, PR Alves, et al.

In this context, the main objective of this research project is to
conduct an empirical study on the quality of test code generated
by LLMs, with a specific focus on GitHub Copilot for Python. The
aim is to investigate whether the tests generated by these tools
can be trusted and whether the code produced is well structured.
To achieve this, unit test codes were generated from open source
Python projects. After generating the test code, a detailed analysis
was carried out to assess its quality. This process involved the use
of specialized tools to identify test smells. Finally, we carried out an
evaluation of the test cases generated by Copilot by software quality
and development professionals. This study provides findings on the
reliability of test codes generated by GitHub Copilot, focusing on
the frequency of detection of test smells, the most common types
of test smells and identifiable patterns, as well as practitioners’
perceptions of the quality of these codes.

2 BACKGROUND
2.1 Unit Testing & Test Smells
Unit testing is a technique designed to detect defects and validate
the functionality of the smallest testable parts of software, such
as modules, objects, and classes, which can be examined in isola-
tion [12]. Automated frameworks, such as JUnit4 for Java, have
facilitated the widespread adoption of this method, enabling the fre-
quent and automatic execution of unit test suites [6]. This practice
is instrumental in preventing programming errors and identifying
issues early in the development cycle [14, 24].

In the context of unit testing, certain problems, known as test
smells, may affect the quality of the tests. These issues generally
result from poor design choices made during the implementation
of test cases, significantly affecting test effectiveness [23, 32]. Test
smells often originate when test code is initially committed to
a repository and are likely to persist, adversely affecting the soft-
ware’s maintainability and directly impacting its quality [15, 26, 30].

2.2 Automatic test generation
Automated test generation facilitates the production and execution
of numerous inputs that thoroughly test software units [34]. Tradi-
tional approaches to test generation have included model-driven,
requirement-based, static analysis, and research-driven techniques
[19, 21].

The effectiveness of automatic test generation tools in identifying
software failures has been demonstrated in studies on open-source
software [1]. Tools such as Evosuite5[9] and Randoop6 primar-
ily support the Java programming language, generating tests in
JUnit format. In other programming ecosystems, tools like PYN-
GUIN7[18], which is designed for Python test generation, and
JSEFT8[22], which utilizes function-coverage and abstraction algo-
rithms for JavaScript, are also prominent. However, the industrial
application of these automated unit test generation tools is some-
what restricted due to the substantial time investment required to
analyze their outputs [10].

4https://junit.org/junit5/
5https://www.evosuite.org/
6https://randoop.github.io/randoop/
7https://www.pynguin.eu/
8https://github.com/saltlab/JSeft

LLMs have assumed a significant role in test generation driven by
Natural Language Processing (NLP) [37]. The advent of automatic
code generation via LLMs offers substantial potential to reduce
the time and costs associated with manual coding processes [13].
By training on human language inputs, LLMs such as OpenAI’s
Codex[4] can generate code snippets, documentation, and even
repair bugs. This functionality has been extended in applications
like GitHub Copilot, which has been extensively studied for its
capability in test code generation [7, 27]. Despite these advance-
ments, there remains a gap in the evaluation of the quality of code
generated by these models.

3 STUDY DESIGN
3.1 Goals and Research Questions
This study aims to investigate potential irregularities and quality
violations in test code generated by GitHub Copilot. Python was
chosen for this investigation due to its extensive support by Codex
[4]. GitHub Copilot was selected as the primary LLM owing to
its broad integration with Integrated Development Environments
(IDEs) and its capability to access and interpret code files [36]. To
achieve these goals, three research questions were formulated:
RQ1: How often are test smells detected in the Python test codes gen-

erated by GitHub Copilot? This question aims to determine
the incidence and frequency of test smells identified in the
test codes generated by GitHub Copilot.

RQ2: What types of test smells are detected in the Python test code
generated by GitHub Copilot? This question seeks to identify
the most common types of test smells and to discern any
recurring patterns in the test codes generated by Copilot.

RQ3: How do practitioners feel about the quality of the test codes
generated by GitHub Copilot? This question aims to quali-
tatively assess practitioners’ opinions on the quality of the
test codes generated by Copilot, and to understand whether
their perceptions align with the findings from the previous
research questions.

3.2 Study Settings
We split this study into four phases. First, we selected open-source
projects. Next, we employed GitHub Copilot to generate test code
for these projects. In the third phase, we utilized test smell detection
tools to identify potential quality violations in the generated test
code, addressing RQ1 and RQ2. Finally, we conducted a survey
among practitioners to gather their perceptions regarding the qual-
ity of the generated tests, thereby addressing RQ3. The procedures
are detailed below and illustrated in Figure 1.

3.2.1 Project Selection. For this study, we selected 4 open source
Python projects from GitLab 9 and GitHub10, coming from differ-
ent domains, sizes and complexities. We considered the following
criteria when selecting projects for this study. The chosen projects
should be active, with recent commits, and, following El Haji et al.
[7]’s recommendation, we decided less popular projects. This is
because Codex has already been trained on source codes from the

9https://about.gitlab.com/
10https://github.com/

https://junit.org/junit5/
https://www.evosuite.org/
https://randoop.github.io/randoop/
https://www.pynguin.eu/
https://github.com/saltlab/JSeft
https://about.gitlab.com/
https://github.com/


Detecting Test Smells in Python Test Code Generated by LLM:
An Empirical Study with GitHub Copilot SBES’24, September 30 – October 04, 2024, Curitiba, PR

Figure 1: Methodological procedures

most popular open-source projects and using small and medium-
sized projects allows for more complete LLM training. Furthermore,
we chose projects that already had unit tests to facilitate the identifi-
cation of the most testable and critical parts of the production code.
However, existing unit tests were disregarded for Codex training,
and only production codes were used. This approach aims to ensure
a more complete, accurate and targeted analysis of the test codes
generated by GitHub Copilot without influence from those tests
already present in the project. The training was carried out individ-
ually for each project, aiming to minimize information conflicts and
the occurrence of hallucinations [20] during test generation. Table
1 contains all the projects used in this study and their respective
information.

Table 1: List of open-source projects used in this study

Project Domain # LOC # Classes # Functions
python-lottie File manipulation 20770 442 1573
click CLI 10157 67 508

pyflunt Domain Driven
Design (DDD) 2969 14 200

brutils-python Python Library 2849 25 140

3.2.2 Test Code Generation. Once the open-source projects had
been selected, the production codes were chosen as the basis for
generating the unit tests. To do this, Python files containing classes,
methods or functions with testable returns were considered. Thus,
for each production code file𝐶𝑖 , a test Python file𝑇𝑖 was generated.
For each pair (𝐶𝑖 ,𝑇𝑖 ), GitHub Copilot generated the test case 𝐶𝑇𝑖, 𝑗 ,
with 𝑗 being able to vary from 5 to 20 test cases per file. The libraries
used to generate the test codes were pytest11 and unittest12.

To generate each test file𝑇𝑖 , we submitted a series of prompts so
that Copilot could generate the tests according to the specifications.
Each prompt should contain information about (i) which classes,
methods, or functions would be tested, (ii) the types of scenarios
to consider (successful, alternative, and exception), (iii) possible
restrictions to be taken into account, such as the maximum number
11https://docs.pytest.org/en/8.2.x/
12https://docs.python.org/3/library/unittest.html

of test cases, the name of the test case and the parts of 𝐶𝑖 to be
disregarded, and (iv) the test library that would be used. Figure 2
shows a generic example of the prompt created:

Figure 2: General prompt used to generate the test files

After submitting the command prompt to Copilot, the unit tests
were returned and stored in each project’s directory for later ex-
ecution. A sample of 30 pairs (𝐶𝑖 ,𝑇𝑖 ) was generated, totaling 397
test cases. All the test cases were executed, and only the valid ones
were considered for this study. We considered valid code to be that
which Python interpreted without any errors or hallucinations.
After filtering, the sample was reduced to 194 valid test cases.

3.2.3 Test smells detection tools. Once the test cases had been gen-
erated and filtered, a series of Python-specific tools were selected
to detect test smells in the code. Three different tools were used for
this analysis: Pynose [33], TEMPY [8] and pytest-smell [3]. Each of
them has its own techniques and approaches for identifying and
categorizing test smells, providing a broader view of the quality of
the test code generated by GitHub Copilot. We call bad test codes
those Python 𝑇𝑖 files in which at least one test smell has been iden-
tified in the corresponding test cases, which we call bad test cases.
Table 2 lists the test smells that were addressed in this study and
the tools that identified them. The list containing all the test cases
and detections is available at the end of this paper.

https://gitlab.com/mattbas/python-lottie
https://github.com/pallets/click
https://github.com/fazedordecodigo/pyflunt
https://github.com/brazilian-utils/brutils-python
https://docs.pytest.org/en/8.2.x/
https://docs.python.org/3/library/unittest.html


SBES’24, September 30 – October 04, 2024, Curitiba, PR Alves, et al.

Table 2: Test smells detected by tools

Test smell Tools Description

Assertion Roulette Pynose,
pytest-smell

Several asserts without any explanation
or message [33]

Magic Number Test Pynose,
pytest-smell

Existence of literal numeric values in a
test [33]

Unknow Test TEMPY Tests without assertions [8]

Conditional Test Logic
Pynose,
pytest-smell,
TEMPY

Tests with control statements (if, for,
while...)[33]

Eager Test pytest-smell Tests that invoke multiple methods of
production code[3]

Duplicate Assert pytest-smell Duplicate assertions in the same test [3]

Test Maverick Pynose
If the test suite has a fixture with setup,
but a test case in this suite does not use
this setup[33]

3.2.4 Practitioners’ Assessment. Once the tools had detected the
test smells, an evaluation was carried out by professionals on se-
lected test cases. The test cases with the highest number of detected
test smells were chosen, with the aim of investigating the profes-
sionals’ perception of these tests generated by GitHub Copilot and
checking whether their opinions corroborated with the results ob-
tained by the tools. An online questionnaire was applied, containing
six sets of test cases, called 𝑆𝑖 , so that professionals could assess
the quality of each set. Each set contained 2 to 3 test cases from the
same 𝑇𝑖 file. The professionals were given a list of characteristics
corresponding to the description of each test smell detected by the
tools (column Description of Table 2) and had to mark which of
these characteristics they could identify in each set of test cases.
They also had the opportunity to describe other characteristics not
mentioned and suggest improvements to the code. To improve the
validity of the evaluations, we do not inform practitioners that qual-
ity problems have been detected in the tests by the tools. A total of
20 professionals, mostly Software Developers or Software Quality
Assurance with 1 to 7 years of experience in the industry, took part
in the evaluation. Table 3 shows the profile of each professional
who took part in this study.

Table 3: Practitioners’ Profile

Practitioner Experience Load
P1 2 to 5 years Quality Assurance (QA)
P2 1 to 2 years Project manager
P3 Less than 1 year Software Developer
P4 1 to 2 years Software Developer
P5 2 to 5 years Software Developer
P6 Less than 1 year Quality Assurance (QA)
P7 2 to 5 years Quality Assurance (QA)
P8 More than 7 years Software Developer
P9 More than 7 years Software Developer
P10 2 to 5 years Quality Assurance (QA)
P11 1 to 2 years Quality Assurance (QA)
P12 2 to 5 years Quality Assurance (QA)
P13 1 to 2 years Quality Assurance (QA)
P14 1 to 2 years Software Developer
P15 2 to 5 years Software Developer
P16 2 to 5 years Software Developer
P17 1 to 2 years Software Developer
P18 2 to 5 years Software Developer
P19 2 to 5 years Software Developer
P20 More than 7 years Software Developer

4 RESULTS AND DISCUSSION
4.1 RQ1: Test smell detection frequency
To determine the frequency, we recorded how many times a tool
identified the presence of a test smell in a test case. We counted
the detections of all three tools. In some cases, more than one tool
identified the same test smell in the same test case. To avoid double
counting, in this scenario we only considered one detection.

Of the 194 test cases analyzed, 92 had at least one occurrence
of test smell, representing 47.4% of the total. Of the 30 test files
generated, 21 contained at least one test smell detection. We also
measured the frequency according to the number of detections
in the same test case and in the same Python file. From this, we
observed that the presence of a single test smell per test case is more
common, while the occurrence of up to 3 test smells in the same
test case is less frequent. Table 4 shows the three statuses detected
in the test set generated by Copilot, the detection frequency for
each test case 𝐶𝑇𝑖, 𝑗 and for each test file 𝑇𝑖 .

Table 4: Test smells detection frequency

Detection Status 𝐶𝑇𝑖,𝑗 %𝐶𝑇𝑖,𝑗 𝑇𝑖 %𝑇𝑖
1 test smell detected 84 43,2% 15 60%
2 test smell detected 6 3,1% 4 16%
3 test smell detected 2 1,1% 2 8%
TOTAL 92 47,4% 21 84%

Answer to RQ1: 47.4% of the test cases generated by Copilot had
at least one test smell detected by the tools. This means that in most
of Python test files (84%), at least one test smell was identified in
the corresponding test cases. These results show that code quality
violations were identified recurrently in the tests generated by
Copilot and that, in some tests, more than one violation can be
found. This shows an instability in the quality of the test codes.

4.2 RQ2: Types of test smells detected
To answer this question, we counted the occurrences of test smells
according to their type. Table 5 shows the detection count for each
type of test smell. The Occurrences column shows the count of
occurrences of the type of test smells. % Occurrences highlights the
percentage of these smells. % Frequency shows the frequency of
detection of each type of test smell in relation to the 194 test cases
generated.

Table 5: Occurrences of test smells by type

Test smell Occurrences % Occurrences % Frequency
Assertion Roulette 82 75% 42%
Magic Number Test 11 10% 5,6%
Conditional Test Logic 5 4,5% 2,5%
Unknow Test 4 3% 2%
Duplicate Assert 3 2,7% 1,5%
Eager Test 3 2,7% 1,5%
Test Maverick 1 0,9% 0,5%

Table 5 reveals that the Assertion Roulette test smell was the most
prevalent, occurring in 82 of the 92 test cases where test smells
were detected. Next, the Magic Number Test smell was identified
in 11 cases, followed by Conditional Test Logic and Unknown Test,
with 5 and 4 occurrences respectively. These results, in light of



Detecting Test Smells in Python Test Code Generated by LLM:
An Empirical Study with GitHub Copilot SBES’24, September 30 – October 04, 2024, Curitiba, PR

the concepts proposed by van Deursen et al. [32], indicate viola-
tions in the tests generated by Copilot, including the excessive use
of undocumented assertions (Assertion Roulette), the presence of
numeric literal values (Magic Number Test) and the complexity of
conditional logic (Conditional Test Logic). In addition, the tools also
identified test cases without assertions (Unknown Test), duplicate
test cases (Duplicate Assert) and test cases that make excessive calls
to methods in production code (Eager Test).

Answer to RQ2: The tests generated by GitHub Copilot revealed
a diversity of detected test smells. The most common test smell was
Assertion Roulette, observed in 42% of the tests, suggesting an exces-
sive use of undocumented assertions. In addition, other test smells
were also identified, such as Magic Number Test, Conditional Test
Logic, Unknown Test, Duplicate Assert, Eager Test and Test Maverick,
although less frequently. These results highlight specific areas in
which the test codes generated by Copilot can be improved.

4.3 RQ3: Practitioners’ Perceptions
To answer RQ3, we performed a qualitative and quantitative anal-
ysis of the evaluations provided by industry professionals in the
online questionnaire. In the quantitative analysis, we counted how
many times each test smell was identified by professionals in each
set of test cases. Table 6 presents the types of test smells included
in the questionnaire. The columns referring to 𝑆𝑖 denote the six
sets of test cases evaluated and the absolute frequency with which
professionals in their evaluations identified each test smell. Figure
3 presents a visual sample of the percentage of identification of
each test smell in the evaluation.

Table 6: Test Smells detected by practitioners

Test Smell 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6
Assertion Roulette 10 5 19 15 18 17
Conditional Logic Test 6 1 1 17 3 1
Magic Number Test 15 16 17 18 15 18
Duplicate Assert 1 0 2 5 3 0
Unknow Test 16 6 1 0 1 1
Eager Test 9 8 11 7 12 10

From the analysis of Table 6 and the graph in Figure 3, we can see
that the Assertion Roulette and Magic Number Test smells identified
by the tools continued to be frequently detected by professionals.
Magic Number Test was identified in 20 to 40% of the cases evaluated,
while the Assertion Roulette appeared in 10 to 30% of the detections.
Eager Test was also frequently cited, ranging from 15 to 20%. We
noticed that some test smells prevailed in certain sets of tests. For
example, Unknown Test was identified with considerable frequency
only in the 𝑆1 and 𝑆2 sets, while Conditional Test Logic was detected
more frequently only in the 𝑆4 set. These observations indicate
that certain smells are more likely to appear in specific contexts,
reflecting the varied nature of the quality problems identified by
professionals in the tests generated by Copilot.

Qualitatively, the professionals also offered opinions and sug-
gestions on the quality of the test codes that went beyond the test
smells included in the questionnaire. We noticed from the responses
that some professionals identified very similar tests due to the nam-
ing of the variables in the methods being the same or showing only
minimal differences. This similarity, along with other problems,

Figure 3: % Test smells detected by professionals for each set
of test cases

made it difficult for some to distinguish between two or more tests.
Several other problems related to readability were also identified, ac-
companied by suggestions for improvement. Some reports on these
problems included lack of variables, repetition of code structure in
more than one test, lack of context in the naming of tests, objects
and variables, among others. In addition, professionals pointed out
that the tests generated by Copilot did not take advantage of most
of the resources offered by the pytest and unittest libraries, which
may have contributed to the problem of code readability. Some
reports on these problems were left on the form:

P9:“It is interesting to assign the positional parameters of the classes to
variables, in order to facilitate the understanding of the meaning of each
argument passed. Just by reading the test, you can’t debug its purpose”

P11:“Pytest has some features that could make this test more efficient, and the
same goes for the previous one.”

P12:“You can use asserts such as assertTrue, assertEquals, etc. These would
make the conditions simpler.”

Answer to RQ3: The practitioners’ perception of the quality of
the Python test codes generated by GitHub Copilot is predomi-
nantly negative in the six sets of test cases that were evaluated,
highlighting several areas of concern. From the quantitative analy-
sis, the professionals frequently identified test smells such as Asser-
tion Roulette, Magic Number Test, and Eager Test, as well as others
such as Unknown Test and Conditional Test Logic in specific con-
texts. Qualitatively, the professionals also pointed out significant
problems related to the readability, maintainability and clarity of
the tests generated. In addition, they pointed out that the tests
generated did not use most of the resources, such as assertions
and functions, offered by the pytest and unittest libraries. These
observations indicate that although Copilot is capable of generat-
ing functional tests, there are significant areas for improvement,
especially in terms of the clarity and readability of the test codes.



SBES’24, September 30 – October 04, 2024, Curitiba, PR Alves, et al.

5 THREATS TO VALIDITY
Internal Threats: Although projects with recent commits have been
chosen, this does not guarantee that these commits are substantial
or relevant to test generation. The methodology of disregarding
existing unit tests may have affected the way Copilot generated new
tests, as it had no basis for how to build them, possibly introducing
a form of bias. To mitigate this threat, we sought to identify exactly
the pieces of code that the existing tests covered when generating
the new tests.

External Threats: The analysis of 197 test cases in 30 files may
not be sufficient to generalize the results to all tests generated by
Copilot in different contexts and domains. The professionals who
took part in the study may not represent the full diversity of the
software industry, and there may be geographical and experience
restrictions. The quality of the test codes generated by GitHub
Copilot may depend on the specific version of the tool used, as well
as possible future updates that may impact the results.

Construction Threats: The tools used (Pynose, TEMPY, pytest-
smell) may have different approaches and algorithms for detecting
test smells. The metrics used to assess the quality of tests, such as
the count of test smells, may not capture all the general aspects
surrounding the quality of test code. That’s why we also decided
to collect qualitative information from professionals. However, the
perceptions of professionals are subjective and can vary widely
depending on the experience and context of each professional.

6 RELATEDWORK
El Haji et al. [7] conducted an experimentwith the Codex [4] version
of GitHub Copilot, investigating the usability of different test cases
generated using command prompts. They found that a comment
combining instructive natural language with an example of code
usage resulted in more usable test generations. Similarly, Yu et al.
[37] analyzed ChatGPT’s ability to generate mobile test scripts.
This study’s findings indicate that ChatGPT can generate useful
tests when provided with sufficient context and information about
the project architecture. Although several studies [27, 29] have
found promising results on the capability and limitations of LLMs,
they did not evaluate the design quality of the generated test code,
focusing mainly on the validity of these codes. For this study, we
used the test generation methods of the two works [7, 27].

Several studies have already been conducted by researchers to
assess its quality for production code. Yetistiren et al. [35] exam-
ined the quality of the code produced by GitHub Copilot, looking
at aspects such as efficiency and design. They observed that al-
though Copilot is able to generate valid code, many of them still
have problems related to efficiency and design. In complementary
research, Yetiştiren et al. [36] investigated the presence of code
smells in the codes generated by Amazon’s CodeWhisperer, Copilot
and ChatGPT. They found that certain code smells tend to recur in
the generated code and that the LLMs themselves have the ability to
fix these maintenance problems. This pattern of repeating problems
that impact code maintainability was also identified by Hansson
and Ellréus [13], but the authors emphasized that ChatGPT and
GitHub Copilot have proven to be more effective in generating
quality code. Thus, although there have been several evaluations of
the quality of code produced by LLMs, these analyses have focused

mainly on production code and have not specifically addressed test
code. From this works we were able to extract code quality analysis
techniques and adapt them to test code.

7 CONCLUSION AND FUTUREWORK
In this paper, we conducted an empirical study on the quality of
test code generated by GitHub Copilot for Python. To do this, we
designed three research questions and generated a total of 194
valid test cases in 30 Python files to analyze the quality of the code
through the detection of test smells carried out by both automated
tools and development and quality assurance professionals.

We analyzed the frequency with which the tools detected smells
in the sample of test cases generated and found that approximately
47% of the test cases contained at least one test smell, which indi-
cated the presence of smells in 84% of the Python files that contained
these test cases. In addition, we investigated which types of test
smells were most commonly found by the tools, finding that As-
sertion Roulette was the most prevalent. Finally, we analyzed the
perception of professionals about these test cases, revealing aspects
other than those reported by the tools, such as readability problems,
repetition of code and failure to take advantage of the resources of-
fered by the libraries. As future work, we intend to further explore
the test generation techniques in GitHub Copilot to investigate
whether the way they are generated has an impact on the quality
of the code that the LLM generates. We also want to analyze these
aspects in other programming languages and with others LLMs.

ARTIFACT AVAILABILITY
We provide our artifacts at: https://zenodo.org/records/11426592

ACKNOWLEDGEMENTS
This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001; CNPq grants 315840/2023-4 and 403361/2023-0; and FAPESB
grantPIE0002/2022.

REFERENCES
[1] M. Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Bene-

felds. 2017. An Industrial Evaluation of Unit Test Generation: Finding Real Faults
in a Financial Application. In 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). 263–272.
https://doi.org/10.1109/ICSE-SEIP.2017.27

[2] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
In When, how, and why developers (do not) test in their IDEs (Bergamo, Italy)
(ESEC/FSE 2015). Association for Computing Machinery, New York, NY, USA,
179–190. https://doi.org/10.1145/2786805.2786843

[3] Alexandru Bodea. 2022. Pytest-Smell: a smell detection tool for Python unit
tests. In Proceedings of the 31st ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (<conf-loc>, <city>Virtual</city>, <country>South
Korea</country>, </conf-loc>) (ISSTA 2022). Association for Computing Machin-
ery, New York, NY, USA, 793–796. https://doi.org/10.1145/3533767.3543290

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de
Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss,
Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji,
Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario

https://zenodo.org/records/11426592
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1145/2786805.2786843
https://doi.org/10.1145/3533767.3543290


Detecting Test Smells in Python Test Code Generated by LLM:
An Empirical Study with GitHub Copilot SBES’24, September 30 – October 04, 2024, Curitiba, PR

Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating Large Language Models Trained on Code. CoRR abs/2107.03374 (2021).
arXiv:2107.03374 https://arxiv.org/abs/2107.03374

[5] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer.
2015. Modeling readability to improve unit tests. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE
2015). Association for Computing Machinery, New York, NY, USA, 107–118.
https://doi.org/10.1145/2786805.2786838

[6] Ermira Daka and Gordon Fraser. 2014. A Survey on Unit Testing Practices and
Problems. In 2014 IEEE 25th International Symposium on Software Reliability
Engineering. 201–211. https://doi.org/10.1109/ISSRE.2014.11

[7] Khalid El Haji, Carolin Brandt, and Andy Zaidman. 2024. In Using GitHub Copilot
for Test Generation in Python: An Empirical Study (Lisbon, Portugal) (AST ’24).
ACM, New York, NY, USA, 11. https://doi.org/10.1145/3644032.3644443

[8] Daniel Fernandes, Ivan Machado, and Rita Maciel. 2022. TEMPY: Test Smell
Detector for Python. In Proceedings of the XXXVI Brazilian Symposium on Software
Engineering (<conf-loc>, <city>Virtual Event</city>, <country>Brazil</country>,
</conf-loc>) (SBES ’22). Association for Computing Machinery, New York, NY,
USA, 214–219. https://doi.org/10.1145/3555228.3555280

[9] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering (Szeged,
Hungary) (ESEC/FSE ’11). Association for Computing Machinery, New York, NY,
USA, 416–419. https://doi.org/10.1145/2025113.2025179

[10] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg.
2015. Does Automated Unit Test Generation Really Help Software Testers? A
Controlled Empirical Study. ACM Trans. Softw. Eng. Methodol. 24, 4, Article 23
(sep 2015), 49 pages. https://doi.org/10.1145/2699688

[11] Danielle Gonzalez, Joanna C.S. Santos, Andrew Popovich, Mehdi Mirakhorli, and
Mei Nagappan. 2017. A Large-Scale Study on the Usage of Testing Patterns That
Address Maintainability Attributes: Patterns for Ease of Modification, Diagnoses,
and Comprehension. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). 391–401. https://doi.org/10.1109/MSR.2017.8

[12] D. Graham, R. Black, and E. van Veenendaal. 2021. Foundations of Software Testing
ISTQB Certification, 4th edition. Cengage Learning. https://books.google.com.
br/books?id=mOwxEAAAQBAJ

[13] Emilia Hansson and Oliwer Ellréus. 2023. Code Correctness and Quality in
the Era of AI Code Generation : Examining ChatGPT and GitHub Copilot. ,
69 pages. https://lnu.diva-portal.org/smash/record.jsf?pid=diva2%3A1764568&
dswid=9049

[14] V. Khorikov. 2020. Unit Testing Principles, Practices, and Patterns: Effective testing
styles, patterns, and reliable automation for unit testing, mocking, and integration
testing with examples in C#. Manning. https://books.google.com.br/books?id=
CbvZyAEACAAJ

[15] Dong Jae Kim. 2020. An Empirical Study on the Evolution of Test Smell. In 2020
IEEE/ACM 42nd International Conference on Software Engineering: Companion
Proceedings (ICSE-Companion). 149–151.

[16] Dong Jae Kim, Tse-Hsun Chen, and Jinqiu Yang. 2021. The secret life of test
smells-an empirical study on test smell evolution and maintenance. Empirical
Software Engineering 26 (2021).

[17] Chun Li. 2022. In Mobile GUI test script generation from natural language
descriptions using pre-trained model (Pittsburgh, Pennsylvania) (MOBILESoft
’22). Association for Computing Machinery, New York, NY, USA, 112–113.
https://doi.org/10.1145/3524613.3527809

[18] Stephan Lukasczyk and Gordon Fraser. 2022. Pynguin: automated unit test
generation for Python. In Proceedings of the ACM/IEEE 44th International Confer-
ence on Software Engineering: Companion Proceedings (Pittsburgh, Pennsylvania)
(ICSE ’22). Association for Computing Machinery, New York, NY, USA, 168–172.
https://doi.org/10.1145/3510454.3516829

[19] P. Maragathavalli. 2011. Search-based software test data generation using evolu-
tionary computation. ArXiv abs/1103.0125 (2011). https://api.semanticscholar.
org/CorpusID:25209645

[20] Ariana Martino, Michael Iannelli, and Coleen Truong. 2023. Knowledge Injection
to Counter Large Language Model (LLM) Hallucination. In The Semantic Web:
ESWC 2023 Satellite Events, Catia Pesquita, Hala Skaf-Molli, Vasilis Efthymiou,
Sabrina Kirrane, Axel Ngonga, Diego Collarana, Renato Cerqueira, Mehwish
Alam, Cassia Trojahn, and Sven Hertling (Eds.). Springer Nature Switzerland,
Cham, 182–185.

[21] Phil McMinn. 2004. Search-based software test data generation: a survey: Re-
search Articles. Softw. Test. Verif. Reliab. 14, 2 (jun 2004), 105–156.

[22] Shabnam Mirshokraie, Ali Mesbah, and Karthik Pattabiraman. 2015. JSEFT:
Automated Javascript Unit Test Generation. In 2015 IEEE 8th International Con-
ference on Software Testing, Verification and Validation (ICST). 1–10. https:
//doi.org/10.1109/ICST.2015.7102595

[23] Fabio Palomba, Andy Zaidman, and Andrea De Lucia. 2018. Automatic Test Smell
Detection Using Information Retrieval Techniques. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 311–322. https:
//doi.org/10.1109/ICSME.2018.00040

[24] Zedong Peng, Xuanyi Lin, Michelle Simon, andNanNiu. 2021. Unit and regression
tests of scientific software: A study on SWMM. Journal of Computational Science
53 (2021), 101347. https://doi.org/10.1016/j.jocs.2021.101347

[25] P. Runeson. 2006. A survey of unit testing practices. IEEE Software 23, 4 (2006),
22–29. https://doi.org/10.1109/MS.2006.91

[26] Railana Santana, Luana Martins, Larissa Rocha, Tássio Virgínio, Adriana Cruz,
Heitor Costa, and Ivan Machado. 2020. RAIDE: a tool for Assertion Roulette
and Duplicate Assert identification and refactoring. In Proceedings of the XXXIV
Brazilian Symposium on Software Engineering. 374–379.

[27] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2024. An Empirical
Evaluation of Using Large Language Models for Automated Unit Test Generation.
IEEE Transactions on Software Engineering 50, 1 (2024), 85–105. https://doi.org/
10.1109/TSE.2023.3334955

[28] Domenico Serra, Giovanni Grano, Fabio Palomba, Filomena Ferrucci, Harald C.
Gall, and Alberto Bacchelli. 2019. On the Effectiveness of Manual and Automatic
Unit Test Generation: Ten Years Later. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). 121–125. https://doi.org/10.
1109/MSR.2019.00028

[29] Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin
Ulfat, Fahmid Al Rifat, and Vinicius Carvalho Lopes. 2024. Using Large Language
Models to Generate JUnit Tests: An Empirical Study. arXiv:2305.00418 [cs.SE]

[30] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel
Sundaresan. 2021. Unit Test Case Generation with Transformers and Focal
Context. arXiv:2009.05617 [cs.SE]

[31] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. An empirical investi-
gation into the nature of test smells. In Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering (Singapore, Singapore)
(ASE ’16). Association for Computing Machinery, New York, NY, USA, 4–15.
https://doi.org/10.1145/2970276.2970340

[32] Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok. 2001.
Refactoring Test Code. Proceedings 2nd International Conference on Extreme
Programming and Flexible Processes in Software Engineering (XP2001) (may 2001).

[33] Tongjie Wang, Yaroslav Golubev, Oleg Smirnov, Jiawei Li, Timofey Bryksin, and
Iftekhar Ahmed. 2022. In PyNose: a test smell detector for python (Melbourne,
Australia) (ASE ’21). IEEE Press, 593–605. https://doi.org/10.1109/ASE51524.2021.
9678615

[34] Tao Xie and David Notkin. 2006. Tool-assisted unit test generation and selection
based on operational abstractions. Automated Software Engineering Journal 13, 3
(July 2006), 345–371.

[35] Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. 2022. In Assessing the qual-
ity of GitHub copilot’s code generation (Singapore, Singapore) (PROMISE 2022).
Association for Computing Machinery, New York, NY, USA, 62–71. https:
//doi.org/10.1145/3558489.3559072

[36] Burak Yetiştiren, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. 2023. In Evaluating
the Code Quality of AI-Assisted Code Generation Tools: An Empirical Study on
GitHub Copilot, Amazon CodeWhisperer, and ChatGPT. https://doi.org/10.48550/
arXiv.2304.10778

[37] Shengcheng Yu, Chunrong Fang, Yuchen Ling, Chentian Wu, and Zhenyu Chen.
2023. In LLM for Test Script Generation and Migration: Challenges, Capabilities,
and Opportunities. 206–217. https://doi.org/10.1109/QRS60937.2023.00029

https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/2786805.2786838
https://doi.org/10.1109/ISSRE.2014.11
https://doi.org/10.1145/3644032.3644443
https://doi.org/10.1145/3555228.3555280
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2699688
https://doi.org/10.1109/MSR.2017.8
https://books.google.com.br/books?id=mOwxEAAAQBAJ
https://books.google.com.br/books?id=mOwxEAAAQBAJ
https://lnu.diva-portal.org/smash/record.jsf?pid=diva2%3A1764568&dswid=9049
https://lnu.diva-portal.org/smash/record.jsf?pid=diva2%3A1764568&dswid=9049
https://books.google.com.br/books?id=CbvZyAEACAAJ
https://books.google.com.br/books?id=CbvZyAEACAAJ
https://doi.org/10.1145/3524613.3527809
https://doi.org/10.1145/3510454.3516829
https://api.semanticscholar.org/CorpusID:25209645
https://api.semanticscholar.org/CorpusID:25209645
https://doi.org/10.1109/ICST.2015.7102595
https://doi.org/10.1109/ICST.2015.7102595
https://doi.org/10.1109/ICSME.2018.00040
https://doi.org/10.1109/ICSME.2018.00040
https://doi.org/10.1016/j.jocs.2021.101347
https://doi.org/10.1109/MS.2006.91
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/MSR.2019.00028
https://doi.org/10.1109/MSR.2019.00028
https://arxiv.org/abs/2305.00418
https://arxiv.org/abs/2009.05617
https://doi.org/10.1145/2970276.2970340
https://doi.org/10.1109/ASE51524.2021.9678615
https://doi.org/10.1109/ASE51524.2021.9678615
https://doi.org/10.1145/3558489.3559072
https://doi.org/10.1145/3558489.3559072
https://doi.org/10.48550/arXiv.2304.10778
https://doi.org/10.48550/arXiv.2304.10778
https://doi.org/10.1109/QRS60937.2023.00029

	Abstract
	1 Introduction
	2 Background
	2.1 Unit Testing & Test Smells
	2.2 Automatic test generation

	3 Study Design
	3.1 Goals and Research Questions
	3.2 Study Settings

	4 Results and Discussion
	4.1 RQ1: Test smell detection frequency
	4.2 RQ2: Types of test smells detected 
	4.3 RQ3: Practitioners' Perceptions

	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	References

