
Design Systems and Component Packages as an Interface for
Accessibility

Sofia Diniz
sdms@cin.ufpe.br

Universidade Federal de Pernambuco (UFPE)
Recife, Brazil

Kiev Gama
kiev@cin.ufpe.br

Universidade Federal de Pernambuco (UFPE)
Recife, Brazil

ABSTRACT
A design system is a collection of interrelated patterns and shared
practices, systematically organized to fulfill the objectives of digital
products. This research aims to understand how Design Systems
can influence software developers in implementing accessibility
guidelines. For this purpose, leading design systems were analyzed
for their coverage of accessibility, and a component package seam-
lessly integrating accessibility concerns was created and tested by
software developers. Results indicated that an accessible Design Sys-
tem can positively influence developers to incorporate accessibility,
thus enhancing the user experience in the final product.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in acces-
sibility.

KEYWORDS
Accessibility, Design system, Swift, Inclusive design

1 INTRODUCTION
To drive innovation and profitability, many software companies are
fostering diverse and inclusive teams [16, 17]. Despite the resource-
intensive process, evidence shows that such diversity enhances
team performance and innovation, though potential conflicts may
arise [15, 26]. Recognizing and accommodating diverse groups such
as women, LGBTQIA+, people of color, and individuals with disabil-
ities is key for inclusion. In requirements engineering, understand-
ing diverse users’ needs is essential. For example, algorithmic bias
in facial recognition software often stems from a lack of diversity
awareness [30], and cultural misalignment in websites can exclude
or offend users [23]. While gender-inclusivity in software engineer-
ing has been widely studied [31], recent research expands to other
human aspects like age, disability, and neurodiversity. Developers,
typically young, male, and of high socio-economic status, may inad-
vertently exclude underrepresented groups [14]. Thus, a “one-size”
design approach is inadequate; it’s key to employ techniques that
address diverse user needs for inclusive software.

Our previous study [13] highlighted the significant gaps in de-
velopers’ awareness and practices regarding user diversity. We
observed that developers who do not belong to underrepresented
groups exhibited a lower awareness of their users’ diversity dimen-
sions [27] such as race, ethnicity, gender, disability, neurodiversity,
and age. Design systems emerged as a potential tool to circumvent
this limited developer empathy around Diversity and inclusion
(D&I) toward users. A design system is a collection of interrelated
patterns and shared practices, systematically organized to fulfill the
objectives of digital products [19]. The current study takes a step

further by providing practical solutions through design systems
that cover accessibility, thereby bridging the gap between aware-
ness and implementation. The results of our previous study serve as
a foundation, demonstrating that increasing developer awareness
is fundamental but must be complemented by tangible tools and
guidelines to achieve truly inclusive software. By connecting these
two phases of research, we aim to contribute to a more inclusive
digital environment, where both developers’ awareness and the
tools they use are aligned to support diverse user needs. This con-
tinuation not only validates our previous findings but also provides
actionable insights to enhance the inclusivity of software products,
ultimately benefiting a wider range of users.

Building on these findings, this research aims to further explore
how design systems can influence software developers’ implemen-
tation of D&I concerns toward users. To evaluate the effectiveness
of such approach, we chose disability as the sole diversity dimen-
sion to focus, by focusing on accessibility guidelines. By analyzing
leading design systems for their adherence to accessibility stan-
dards and testing a fully accessible version with software developers
who not necessarily know details about accessibility, we seek to
understand the impact of D&I aware design systems on promoting
inclusive software development practices.

2 BACKGROUND AND RELATEDWORK
2.1 Accessibility and Usability
In the context of SoftwareQuality, accessibility is a sub-characteristic
of of usability [10]. The concept of accessibility has evolved from
making information available to people with disabilities, to ensur-
ing it is accessible to all users, irrespective of their situation or
capabilities [33]. This broader perspective acknowledges that any-
one can experience temporary or permanent disabilities [2], such as
a parent holding a child and being unable to use one arm [24]. This
definition also includes various disabilities such as visual, hearing,
cognitive, and motor impairments. [19]. To assess the accessibility
of a mobile application, following established guidelines is essential.
In response to the growing need for such content, the World Wide
Web Consortium (W3C) developed the Web Content Accessibility
Guidelines (WCAG). These guidelines have expanded to include mo-
bile applications, ensuring they accommodate users with blindness,
deafness, hearing loss, limited movement, and other impairments.
The WCAG’s recommendations are presented as success criteria
—testable statements that are not technology-specific [4].

In a broader perspective, usability is a vital factor in developing
high-quality user interfaces. In mobile application design, usability
refers to how effectively, efficiently, and satisfyingly a user can
achieve a specified goal within a certain context [33]. Therefore,
good usability in a user interface allows users to quickly familiarize



SBES’24, September 30 – October 04, 2024, Curitiba, PR Sofia Diniz and Kiev Gama

themselves without much guidance and achieve their goals with
minimal friction. When users return to a product, they should also
easily remember how to navigate and perform familiar actions [19].

2.2 Design methodologies and guidelines
The process of incorporating accessibility into a digital product is
often related to design methodologies.Universal Design (UD) is a
prominent example of an approach inHuman-Computer Interaction
(HCI) design that respects, values, and accommodates the widest
range of human abilities and needs when designing computer-based
products [28]. UD strives to design products that cater to the broad-
est possible user base while acknowledging that different solutions
may be required for different contexts [33]. Another known ap-
proach is User-centered Design (UCD), a multidisciplinary activity
that incorporates human factors and ergonomics techniques, focus-
ing specifically on developing usable interactive systems [11]. This
process is based on the understanding of users, tasks and environ-
ments and refined by user-centered iterative evaluations [33]. Addi-
tionally, the Universal Design Mobile Interface Guidelines (UDMIG)
v.2.0 is an approach that provides guidelines for designing mobile
interfaces for older adults [28]. Each set of guidelines includes the
an element known as the "Person" component, responsible for ad-
dressing accommodation for various abilities. These guidelines are
based on established strategies for desktop and mobile interfaces,
and research on design for the aging population, integrating multi-
ple strategies for mobile interface design [28]. The prominence and
recognition of guidelines like UCD and UD indicates the design
community’s commitment to accessibility. It represents a positive
outcome of increased exposure to accessibility in education and
training, making these concerns relevant to the design process.

2.3 Software developers and accessibility
The development of an accessible mobile application is not solely
the responsibility of designers. Software developers code user in-
terfaces and directly impact the interaction between applications,
users, and assistive technologies. Unfortunately, accessibility guide-
lines are often overlooked by developers, resulting in significant
user exclusion [36]. This oversight can be attributed to factors such
as lack of customer priority, constrained project timelines, and lack
of emphasis on the topic within the software development company.
Additionally, developers have demonstrated limited familiarity with
accessibility guidelines, suggesting a need for increased training
on this subject [5] and demonstrating a lack of awareness for how
their indifference impacts disabled users [18].

2.4 Team dynamics
Considering the aforementioned approach taken by designers and
developers to accessibility, significant discrepancy can easily be
noticed. Consequently, the multidisciplinary collaboration between
them in software organizations, while fundamental, can face chal-
lenges. For instance, a "culture of defensiveness" has been identified
between these groups, leading to communication barriers [3]. The
designers’ perceptions of developers’ empathy towards design work
has also been examined. They found that developers’ misunder-
standings of design work often led to miscommunication, impact-
ing the final product’s quality [22]. It has also been discovered that

breakdowns in designer-developer collaboration often happened
when: (1) designers failed to communicate specific design details,
(2) a particular case was not covered in the design, or (3) the design
did not consider developers’ technical constraints [21].

2.5 Design systems
Based on this conflicted scenario, design systems have been pro-
posed as a medium for facilitating the collaboration between de-
signers and developers [20]. A Design System (DS) is essentially
composed of various elements such as layout, styles, components,
regions, content, and usability [34]. Usability is where D&I can be
integrated, as a typical DS often expands usability to encompass
accessibility and internationalization, both of which are deeply
connected to D&I dimensions (i.e., disability and culture, respec-
tively). A DS provides meticulously detailed visual guidelines and
recommendations that software teams must diligently follow. De-
sign systems emerged during recent years in the industry as a tool
aimed at the design and development of information and commu-
nication technologies [20]. The motivation for companies to adopt
a DS usually originates from their design-related challenges, with
common scenarios including issues in the consistency of their UI de-
sign, maintainability of design deliverables and the code related to
them, and the collaboration between designers and developers [25].
When considering the perspectives of designers and developers
towards accessibility, the purpose of a DS and the problems it can
solve, it is reasonable to speculate whether a DS fully covering ac-
cessibility could facilitate developers adhering to these guidelines.

3 METHOD
The methodologies used in this study were designed to ensure a
general evaluation of design systems and their impact on acces-
sibility implementation. This mixed-methods approach combined
qualitative analysis with practical testing to provide a broad un-
derstanding. First, a detailed, criterion-based qualitative evaluation
of design systems was conducted. Followed by the practical imple-
mentation of an accessible library, which was then subjected to
hands-on testing by developers. Feedback was collected and incor-
porated iteratively to refine the library and understand its practical
application, ensuring an assessment of how design systems can
influence software development practices toward accessibility.

3.1 Choice of Design Systems
In order to better comprehend the compliance of today’s software
with the WCAG 2.2 accessibility guidelines, the Forbes Top 100 Dig-
ital Companies ranking [12] was consulted. The top five companies
were selected to have their Design Systems evaluated, which at the
time of this research were Apple, Microsoft, Samsung, Alphabet,
and AT&T. Out of the five companies, only AT&T [1], did not have
any publicly available design system, leading to its disqualification
from the study.

Although the WCAG 2.2 guidelines encompass mobile applica-
tions, not all directives are fully applicable within a DS due to its
limited scope. For example, WCAG’s Success Criterion 3.3.7, which
suggests auto-populating repeated information [35], cannot be en-
forced by a Design System. To address these limitations, a filter
was applied to the WCAG 2.2 guidelines to assess their feasibility



Design Systems and Component Packages as an Interface for Accessibility SBES’24, September 30 – October 04, 2024, Curitiba, PR

for implementation in a Design System. After filtering, 46 out of 91
guidelines remained valid for the study.

3.2 Evaluation of Design Systems
For the evaluation of the Design Systems, a table was created with
each row representing a Success Criterion and each column rep-
resenting a Design System. Each Success Criterion was scored
as follows: Complies (fully meets the guideline), Partial (partially
meets the guideline), Does not comply (contradicts the guideline),
No evidence (no mention of the guideline found.)

The evaluation of each of the 46 success criteria began by com-
prehending that criterion on WCAG’s website. Their descriptions
frequently included specific jargon with URLs that redirected to
their definitions or mathematical formulas, therefore reading of-
ten expanded into comprehending related concepts and analyzing
mathematical formulas. Afterwards, if the DS in question had an
official Figma package, it was carefully evaluated, looking for signs
of compliance in every single component that the current guideline
could be applied to. Subsequently, the official documentation for
said components was consulted, and any accessibility directives
related to the criterion were accounted for. Then, if the DS had a
page dedicated to general accessibility principles and guidelines
that they followed, said page was consulted. Finally, a targeted
research was done on the entire documentation using keywords
present in or related to the success criterion at hand, aiming to find
any other mentions of the criterion, which often led to the reading
of other articles or pages of that documentation. These steps were
rigorously applied in the evaluation of each criterion on each DS.

Figure 1: Steps taken in the evaluation of each component

3.3 Creation and testing of ALib
Following the evaluation, the DS with the most "Complies" score
was chosen. This DS was then re-evaluated, with notes added to
each Figma component to indicate necessary changes for fullWCAG
2.2 compliance. With these requirements defined, an IDE, program-
ming language, and UI framework were chosen based on their
compatibility with the DS. For instance, Apple’s HIG components
are highly compatible with Swift frameworks like UIKit and Swif-
tUI, while Google’s Material Design works well with frameworks
such as React.JS. The improved components were developed and

published as a code library, facilitating their incorporation by devel-
opers in their projects. After publishing the library, eight software
developers with varying experience levels were invited to test it,
provide feedback, and participate in a brief online interview. They
answered questions about their previous experience with accessi-
bility in software development, their thoughts on the topic, and
their experience with the library. Given the limited sample size, a
straightforward thematic approach was employed for the analysis,
base on in vivo coding (using participants’ own words) to identify
recurring themes and patterns.

4 DESIGN SYSTEMS EVALUATION

Table 1: Design sytems’ evaluation

Complies Partial Does not comply No evidence
Human Interface Guidelines (Apple) 39 4 1 2
Fluent 2 (Microsoft) 29 2 2 13
One UI (Samsung) 29 3 6 8
Material Design (Google/Alphabet) 21 2 6 17

One UI (Samsung) - One UI provided the best browsing experi-
ence for evaluation. Its instructions and guidelines are conveniently
condensed into a single PDF, making navigation and information
search simpler. At the end of the document, there is a checklist for
designers to ensure their projects meet basic accessibility require-
ments. This is an invaluable tool, given that accessibility guides like
WCAG often include several usability hurdles. This checklist also
helped OneUI comply with most of the WCAG 2.2 guidelines since
many of them are mentioned there. Among the four Design Sys-
tems, OneUI implemented the third-highest number of guidelines
successfully. Although it didn’t meet all the WCAG 2.2 require-
ments, it stood out for its concern for accessibility. However, it is
worth noting that there is no mention or representation of diversity
throughout the DS. Despite being the third-largest technology com-
pany globally and dominating markets in culturally, customarily,
and ethnically diverse countries such as India, Argentina, and the
Philippines [32], there is no mention of diversity or representation
in the entire DS. This may be related to the company’s cultural
values [29], which do not mention diversity as their focus.
Fluent 2 (Microsoft) - Fluent 2 offers four distinct versions tai-
lored to specific platforms (iOS, Android, Web, and Windows). Due
to the study’s focus on mobile software development and the lim-
ited availability of versions at the time of evaluation (iOS and Web
only), the iOS version of Fluent 2 was chosen for further analysis.
Fluent 2 prominently declares adherence to all WCAG 2.1 AA acces-
sibility guidelines on its dedicated accessibility page. Evaluations
using the updated WCAG 2.2 standard yielded similar results, with
the primary discrepancy between Fluent 2’s and Apple’s scores
attributable to a lack of explicit mention of certain WCAG guide-
lines within the Fluent 2 documentation. Fluent 2, Apple’s DS and
Material Design demonstrate awareness of user representation and
inclusion. While not as broad as the efforts undertaken by Apple
and Google, Fluent 2 incorporates a subtle yet diverse set of user
profile picture examples throughout the DS. This approach aligns
with their design principle, "One for all, all for one," which they de-
fine as "You want to be included. Your experiences should consider,
learn, and reflect a range of perspectives and abilities for the benefit



SBES’24, September 30 – October 04, 2024, Curitiba, PR Sofia Diniz and Kiev Gama

of all" [6]. However, beyond accessibility features and the afore-
mentioned user profile examples, no further explicit references to
D&I were identified within the DS. This suggests that while Fluent
2 is on the right track, there is still room to improvem in this area.
Human Interface Guidelines (Apple) - Among the four De-
sign Systems assessed, Apple’s Human Interface Guidelines (HIG)
emerged as the top evaluation. The assessment included Apple’s
official Figma file and its HIG website. The Figma file provided
visual examples of components, while the HIG website gave de-
tailed instructions for building iOS interfaces. The HIG website
was invaluable, containing nearly all information about Apple’s
DS. It was easy to navigate, clear, and well-organized. Furthermore,
Apple’s HIG sets a commendable standard for D&I. In a dedicated
chapter, they offer guidelines for iOS designers and developers on
how to communicate with and represent users, with a focus on
preventing discrimination, exclusion, or miscommunication. Their
approach stems from the acknowledgment that biases and stereo-
types often shape design decisions unconsciously [9]. To counter
this, they provide a list of characteristics that are commonly subject
to prejudice, encouraging designers and developers to reflect on and
address their biases. Apple’s dedication to inclusivity, diversity, and
accessibility was reflected in its overall score in the DS evaluation,
with a significant 10-point difference.
Material Design - Google’s Material Design initially appeared
to be and well-organized DS. However, it contained many incom-
plete pieces of information. For instance, despite mentioning in
its documentation the WCAG success criterion 2.5.5 - Target Size
(Enhanced), a significant number of clickable components available
in their Figma file disregard it. Moreover, many ambiguous pieces
of information were found, such as the instructions on adding de-
scriptive texts to images. While WCAG 2.2 states that images with
purely decorative function should not contain descriptive texts,
Material Design chose a decorative image as its primary example
of how to add alt texts to images. The correction of this error could
only be found after targeted research throughout the documen-
tation. Another issue is the omission of accessibility guidelines
combined with their discreet usage. This is evident in the cases
of instructions on the use of complex gestures, italicized text, and
text with low visual weight. All of these artifacts are discouraged
by WCAG 2.2, and Material Design navigates this by not using
them in most of its components, while not mentioning them as bad
practices. Similarly, during the analysis period, some components
(e.g., Tooltip [7], Snackbar [8]) were available in the Figma file and
featured on the Material Design website, yet when attempting to
access their accessibility guidelines, a message titled "Accessibility
guidelines coming soon" was encountered. Despite its shortcom-
ings, Material Design offers a fresh view on diversity. Its avatars,
designed to depict Google users, prioritize humanity, including
individuals with various disabilities, ethinicities, and sexualities.
This consideration is also evident in their team’s blog posts.

5 ALIB - COMPONENTS LIBRARY
After assessing the design systems, the HIG components not com-
plying with WCAG 2.2 were corrected and their updated versions
created as a package of components named ALib.

5.1 Design
The design process initiated with another analysis of Apple’s com-
ponents on Figma. The purpose was to contrast each component
against every valid WCAG 2.2 guideline once more. This analysis
brought forth the shortcomings of individual components, which
were then annotated within a Figma file, indicating the specific
issues that needed to be addressed in the updated versions of the
components. From the 27 total groups of components examined, it
was found that 14 either did not comply with at least oneWCAG 2.2
success criterion, or unintentionally encouraged designers not to ad-
here to the guidelines. The latter scenario represented a significant
portion of the total components and could not be overlooked. This
phenomenon was particularly noticeable in the case of buttons. The
company managed to fully comply with the Target Size (Enhanced)
criterion predominantly due to their exhaustive written documen-
tation. The documentation reinforced this criterion and prescribed
specific padding sizes for each button component, creating a co-
hesive set of instructions and avoiding contradictions. However,
this scenario can be improved to reduce the chances of misleading
designers and developers who incorporate these components into
their projects. Out of the 14 components in the aforementioned cat-

Table 2: Inadequate components

1.4.3 - Contrast (Minimum) 7
2.5.5 - Target Size (Enhanced) 12
4.1.2 - Name, Role, Value 6

egories, 7 violated Success Criterion 1.4.3, 12 provided misdirection
that could cause designers to violate Success Criterion 2.5.5, and
6 were input methods that should comply with Success Criterion
4.1.2. This analysis made it clear which areas of the library needed
addressing: color contrast, target size, and content description. Fur-
thermore, the components were filtered based on the technical
feasibility of correcting them through a code library. Consequently,
out of 14 components, 8 were deemed suitable for development.
Out of the 8 components, 6 were identified as collections of simpler
parts. This indicated that fixing their problems required new ver-
sions of common building blocks that complied with accessibility
standards. Finally, the components chosen for the Swift Package
ALib were: Button, Text, Text Field, Toggle, List Item, and Image.

5.2 Development
The choice of technology prioritized compatibility with the DS at
hand. Therefore, Apple’s developer ecosystem was chosen. This in-
cludes the IDE XCode, Swift as the programming language, together
with SwiftUI and the Swift Package Manager.

To guarantee compliance with success criteria 2.5.3 and 4.1.2,
alternative labels became a mandatory requirement for most of
the components. For success criterion 2.5.5, a minimum height
and width were set on all tappable components. Finally, to address
success criterion 1.4.3, functions were created to calculate contrast
using the W3C formula. This calculation compares the foreground
and background colors defined by the developer. If the contrast
ratio is less than 4.5, the foreground color is replaced with either



Design Systems and Component Packages as an Interface for Accessibility SBES’24, September 30 – October 04, 2024, Curitiba, PR

Table 3: ALib components

2.5.3 - Label
in Name

1.4.3 - Contrast
(Minimum)

4.1.2 - Name,
Role, Value

2.5.5 - Target Size
(Enhanced)

AText X
AButton X X X X
AToggle X X
ATextField X X X
AList X X X X
AVStack X
AZStack X
AHStack X

black or white, depending on which provides a higher contrast ratio
with the background.

The ALib package also includes developer documentation on the
Figma platform, aimed at guiding developers on how to effectively
implement the ALib components within the SwiftUI framework.
When combined with the other, already WCAG compliant, com-
ponents of SwiftUI, ALib allows developers to experience working
with a fully accessible DS.

6 DEVELOPER INTERVIEWS
For the concluding phase of this study, ALib was made available
on GitHub. To gain more insights and assess the impact of a fully
accessible DS, multiple developers from different experience levels
were invited for an interview session, out of which eight accepted
and gave their free and informed consent to participate. Initially, a
profile of their experience and fluence in SwiftUI was established.
Afterwards, developers were encouraged to share their thoughts
and perspectives on accessibility in software development. They
were also given an opportunity to recount their experiences with
the implementation of accessibility features in their past or ongo-
ing projects. Next, the developers were introduced to ALib and its
documentation, and asked to perform a hands-on test. This test was
designed to let them freely familiarize themselves with ALib, under-
stand its capabilities, and evaluate its ease-of-use and functionality.
Their feedback on this experience was collected, providing key data
for comprehending the impact of an accessible DS on the adher-
ence of software developers to accessibility. Finally, the developers
were asked to comment on whether a DS built like ALib, which is
geared towards enhancing accessibility, would make any significant
difference in the software they develop.

Table 4: Participants profile

Participant Gender Experience
P1 F 2 years
P2 F 2 years
P3 M 1 1/2 years
P4 F 8 months
P5 M 3 years
P6 M 4 years
P7 M 5 years
P8 F 2 years

6.1 Developer profiles
The SwiftUI framework was released in 2019, five years prior to
this research. Therefore, the maximum possible experience with
the framework is five years. The interview sample was selected

based on diverse experience levels to broadly understand devel-
opers’ interactions with the library. Among the eight participants
(Table 4), 2 had less than two years of SwiftUI experience, 4 had be-
tween two and three years, and 2 had over three years of experience.
Participants were also asked to classify their programming knowl-
edge and practical experience into one of four categories: intern,
junior, mid-level, or senior. Since these roles lack clear definitions
in the job market, participants provided classifications based on
their current or most recent job positions. Consequently, 5 out of 8
participants’ answers reflected their current roles, while the remain-
ing 3 based their answers on their previous traditional software
engineer positions and the experience gained since.

6.2 Accessibility within previous projects
In the third question, participants were asked about the accessibility
in their past projects. The aim was to determine whether their ex-
periences parallel the literature’s portrayal of software developers’
interaction with accessibility. This information could then be used
to comprehend their initial position before using ALib.

P1, who currently works as a junior software developer, ex-
plained that they simply follow the designer’s instructions, and
that they fully attribute the reasoning behind accessibility to the
designers. Internally, they sometimes think about accessibility, but
feel they don’t have the power to share their opinions, as “Develop-
ers don’t think they should give an opinion on an already finalized
design”. Curiously, when building independent projects, they think
“a lot” about accessibility and utilize SwiftUI tools to implement it,
such as supporting changes in font size by assistive technologies.

Moreover, P2, P3, P4, and P5 noted that accessibility was only
a significant part of the development process when creating apps
aimed at users with disabilities, such as a game for children with
low vision. Additionally, P2 stated that in a developer-only team,
they would likely be the most concerned about accessibility. How-
ever, if there was at least one designer, this role would typically fall
to them. These participants also indicated that in projects aimed at
the general public, accessibility was often viewed as "optional" or
something to be added only if time permitted. Notably, two of the
four participants used the concept of ’usability’ in place of ’accessi-
bility’. While there is some overlap between these concepts, and
improved usability can enhance accessibility, they are not identical.

P6 stated that they prioritize accessibility, constantly implement-
ing unit tests at work to simplify the application these requirements
for other developers. However, P7 and P8 said they do not consider
accessibility at all. These varying responses from eight individuals
affirm the literature’s suggestion that software developers may not
consistently implement or emphasize accessibility enough.

6.3 Interest in accessibility
On the fourth question of the interview, participants were asked
whether they had any intention to improve their knowledge on
accessibility. This question was included to comprehend whether
developers recognize that there is still room for improvement or
not. Furthermore, if the answer was positive, they were asked to
expand on some of their efforts. All of them declared some form
of recognition agreement to this statement, but not in the same
ways. P1 answered in terms of their experience, believing that



SBES’24, September 30 – October 04, 2024, Curitiba, PR Sofia Diniz and Kiev Gama

as they become more experienced, they’ll gain more freedom to
give opinions on accessibility. P4 also associated accessibility with
work experience, but for the designers instead of their own. P2
and P6 demonstrated practical steps toward learning and applying
accessibility-related techniques. One of them has been building
projects to learn about accessibility tools, and the other proof of
concepts to promote practices that could enhance their company’s
commitment to accessibility. Moreover, P3 said they would like
to improve, but would only further study accessibility if a project
required that. Otherwise, they will keep improving their coding
skills, since good code practices can also partially influence accessi-
bility. Finally, besides P8, all participants declared having studied
accessibility at least once since they first began to use SwiftUI.

6.4 WCAG and W3C
When queried about their familiarity with WCAG or W3C, partici-
pants were mostly uninformed. P1 had come across and conducted
research on it two years prior to the interview. P2, P3, P4, P7, and
P8 had heard of these terms but lacked a clear understanding or
never pursued further research. P5 had a very basic understanding
of WCAG andW3C, while P6 hadn’t heard of either. Interestingly, 7
out of 8 participants had received at least one lesson on accessibility
during their university studies, but could barely remember any de-
tails. These responses suggest that developers may underestimate
the importance of accessibility, even when they have access to rele-
vant information. In the final segment of the interview, participants
were asked to create a SwiftUI project in Xcode, integrate ALib
into the project dependencies, and simulate interface construction
using accessible components. To ensure all developers began with
the same understanding of these components, everyone received a
detailed documentation of the library and could consult it as they
wished. During this session, participants were encouraged to voice
their opinions, feedback, and general thoughts. Two participants
suggested that the documentation should be directly available on
XCode, alongside the code, to avoid the need to switch environ-
ments. P4 enjoyed their experience with ALib, particularly noting
the autocomplete feature and the mandatory accessibility labels
as positive aspects. P1 expressed their intention to use ALib on
their projects due to the guidance it provides. P2 offered positive
feedback, stating, "If accessibility features are right in front of you,
you’re going to use them anyway", and also praised the autocom-
plete feature of the library. P8 provided overall positive feedback on
the library, but raised some interesting points. They mentioned that
the library’s behavior to correct contrast might pose a challenge to
designers. However, they believed this would ultimately improve
the original design. P8 also noted that while ALib seemed useful,
a tight project deadline might deter developers from using it due
to the extra parameters required to make components accessible.
Finally, it was suggested that the tutorial on accessibility audits,
currently located at the end of the library documentation, should be
moved to the beginning. During this portion of the interview, it was
noted that all of the participants demonstrated a lack of knowledge
on proper accessibility label semantics. They were not aware of
the recommendations made by Apple and WCAG 2.2 on how to
interact with assistive technologies, suggesting that good practices
on the subject would be a valuable addition to the documentation.

7 LIMITATIONS
As any research, this study has limitations. Concerning the evalua-
tion of design systems, it was limited by selection bias towards top
companies, potentially missing diversity in design systems across
industries. The focus onWCAG 2.2 guidelines may have overlooked
other accessibility aspects, and the methodology, lacking user test-
ing with individuals with disabilities, might miss practical issues.
Additionally, filtering guidelines by feasibility could exclude benefi-
cial ones, suggesting the need for broader integration approaches.

In the context of the library study, including a small and diverse
sample size of only eight developers limits the generalizability of
the findings. Reliance on self-reported data may lead to biases,
suggesting the need for triangulating findings with observational
data or user testing. Additionally, the study is centered around the
SwiftUI framework, making the findings particularly relevant to iOS
development but potentially less applicable to other programming
environments. Future research could address these limitations by
including a larger, more diverse sample, standardized experience
classifications, and a broader scope of accessibility dimensions.

8 CONCLUSION
Despite remarkable advancements in the field, it is evident that
software developers and designers still grapple with the challenge
of adequately integrating accessibility aspects into their projects.
The reasons for this are manifold, ranging from a lack of awareness
about accessibility standards to limitations of time and resources.
However, the research points toward a promising strategy to ad-
dress this issue. The implementation of a well-structured and fully
accessible design system could prove instrumental in enhancing
the accessibility of software projects. Such a system would ideally
encompass a visual representation of components, providing a clear,
tangible reference for designers and developers. Additionally, the
design systemwould also include the general rules of usage for each
component. This serves as a guiding tool for developers, ensuring
that the components are used correctly and consistently, further en-
hancing the accessibility and usability of the final product. Lastly, it
would feature the coded versions of these components. This would
act as a ready-to-use toolkit for developers, eliminating the need
to repeatedly code each component from scratch. This not only
saves time but also ensures that the components are coded in a way
that adheres to accessibility standards. In conclusion, this research
suggests that the adoption of a well-structured and fully accessible
design system, containing the visual representation of components,
general rules of usage, and coded versions of said components,
could be a valid and effective strategy to improve the current sce-
nario on accessibility in software design and development. This
approach could potentially pave the way for more inclusive digital
environments that cater to the needs of all users, thereby bringing
us a step closer to realizing the ideal of digital inclusion.

ARTIFACT AVAILABILITY
• Interview guide and full evaluation of the design systems:
https://doi.org/10.6084/m9.figshare.26379760

• ALib code repository:
https://anonymous.4open.science/r/ALib-442C/

https://doi.org/10.6084/m9.figshare.26379760
https://anonymous.4open.science/r/ALib-442C/


Design Systems and Component Packages as an Interface for Accessibility SBES’24, September 30 – October 04, 2024, Curitiba, PR

ACKNOWLEDGMENTS
This work is partially supported by INES (www.ines.org.br), CNPq
grant 465614/2014-0, FACEPE grants APQ-0399-1.03/17 andAPQ/0388-
1.03/14, CAPES grant 88887.136410/2017-00.

REFERENCES
[1] 2024. ATT. https://www.att.com January 20, 2024.
[2] Apple. 2024. Human Interface Guidelines. https://developer.apple.com/design/

human-interface-guidelines/accessibility February 10, 2024.
[3] Stephanie Chamberlain, Helen Sharp, and Neil Maiden. 2006. Towards a frame-

work for integrating agile development and user-centred design. In International
Conference on Extreme Programming and Agile Processes in Software Engineering.
Springer, 143–153.

[4] World Wide Web Consortium. 2024. Web Content Accessibility Guidelines
(WCAG) 2.2 - Abstract. https://www.w3.org/TR/WCAG22/#abstract February
05, 2024.

[5] Victor Leal de Almeida and Kiev Gama. 2021. Mobile accessibility guidelines
adoption under the perspective of developers and designers. In 2021 IEEE/ACM
13th International Workshop on Cooperative and Human Aspects of Software Engi-
neering (CHASE). IEEE, 127–128.

[6] Fluent Microsoft Design. 2024. Design Principles. https://fluent2.microsoft.
design/design-principles January 15, 2024.

[7] Material Design. 2023. Tooltips: Accessibility. https://m3.material.io/
components/tooltips/accessibility November 18, 2023.

[8] Material Design. 2024. Snackbar: Accessibility. https://m3.material.io/
components/snackbar/accessibility February 7, 2024.

[9] Apple Developer. 2023. Human Interface Guidelines: Accessibility. https://
developer.apple.com/design/human-interface-guidelines/accessibility December
3, 2023.

[10] International Organization for Standardization. 2011. ISO/IEC 25010:2011 -
Systems and software engineering - Systems and software Quality Require-
ments and Evaluation (SQuaRE) - System and software quality models. https:
//www.iso.org/standard/35733.html.

[11] International Organization for Standardization (ISO). 1999. ISO 13407:1999 -
Human-centred design processes for interactive systems. https://www.iso.org/
obp/ui/#iso:std:iso:13407:ed-1:v1:en December 10, 2023.

[12] Forbes. 2019. Top Digital Companies. https://www.forbes.com/top-digital-
companies/list/#tab:rank February 02, 2024.

[13] Kiev Gama, Ana Paula Chaves, Danilo Monteiro Ribeiro, Kezia Devathasan, and
Daniela Damian. 2024. How much do you know about your users? A study of
developer awareness about diverse users. In 2024 IEEE 9th International workshop
on empirical requirements engineering (EmpiRE). IEEE.

[14] John Grundy, Tanjila Kanij, Jennifer McIntosh, Hourieh Khalajzadeh, and Ingo
Mueller. 2022. Diverse End User Requirements. preprint arXiv:2210.02543 (2022).

[15] Vivian Hunt, Sundiatu Dixon-Fyle, Sara Prince, and Kevin Dolan. 2020. Diversity
wins: How inclusion matters. https://www.mckinsey.com/featured-insights/
diversity-and-inclusion/diversity-wins-how-inclusion-matters

[16] Vivian Hunt, Sara Prince, Sundiatu Dixon-Fyle, and Lareina Yee. 2018. Delivering
through diversity. Mckinsey & Company. 26 (2018), 2018.

[17] Stefanie K Johnson. 2017. What 11 CEOs Have Learned About Championing
Diversity. Harvard Business Review (2017).

[18] Alenka Kavcic. 2005. Software accessibility: Recommendations and guidelines.
In EUROCON 2005-The International Conference on" Computer as a Tool", Vol. 2.
IEEE, 1024–1027.

[19] Alla Kholmatova. 2017. Design Systems: A practical guide to creating design
languages for digital products. Smashing Magazine.

[20] Yassine Lamine and Jinghui Cheng. 2022. Understanding and supporting the
design systems practice. Empirical Software Engineering 27, 6 (2022), 146.

[21] Germán Leiva, Nolwenn Maudet, Wendy Mackay, and Michel Beaudouin-Lafon.
2019. Enact: Reducing designer–developer breakdowns when prototyping custom
interactions. ACM Transactions on Computer-Human Interaction (TOCHI) 26, 3
(2019), 1–48.

[22] Malin Lundström, Johan Åberg, and Johan Blomkvist. 2015. Perceptions of
software developers’ empathy with designers. In Proceedings of the 2015 British
HCI Conference. 239–246.

[23] Danaë Metaxa, Michelle A Gan, Su Goh, Jeff Hancock, and James A Landay. 2021.
An image of society: Gender and racial representation and impact in image search
results for occupations. Proceedings of the ACM on Human-Computer Interaction
5, CSCW1 (2021), 1–23.

[24] Microsoft. 2024. Microsoft Inclusive Design. https://inclusive.microsoft.design
January 20, 2024.

[25] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida,
and Yunwen Ye. 2002. Evolution patterns of open-source software systems and
communities. In Proceedings of the international workshop on Principles of software
evolution. 76–85.

[26] Lisa Hope Pelled, Kathleen M Eisenhardt, and Katherine R Xin. 1999. Exploring
the black box: An analysis of work group diversity, conflict and performance.
Administrative science quarterly 44, 1 (1999), 1–28.

[27] Gema Rodríguez-Pérez, Reza Nadri, and Meiyappan Nagappan. 2021. Perceived
diversity in software engineering: a systematic literature review. Empirical
Software Engineering 26, 5 (2021), 1–38.

[28] Ljilja Ruzic, Seunghyun Tina Lee, Yilin Elaine Liu, and Jon A Sanford. 2016. De-
velopment of universal design mobile interface guidelines (UDMIG) for aging
population. In Universal Access in Human-Computer Interaction. Methods, Tech-
niques, and Best Practices: 10th International Conference, UAHCI 2016, Held as Part
of HCI International 2016, Toronto, ON, Canada, July 17-22, 2016, Proceedings, Part
I 10. Springer, 98–108.

[29] Samsung. 2023. About Us - Company Information. https://www.samsung.com/
latin_en/about-us/company-info/ March 6, 2023.

[30] Selena Silva and Martin Kenney. 2019. Algorithms, platforms, and ethnic bias.
Commun. ACM 62, 11 (2019), 37–39.

[31] Karina Kohl Silveira and Rafael Prikladnicki. 2019. A systematic mapping study of
diversity in software engineering: a perspective from the agile methodologies. In
2019 IEEE/ACM 12th Intl Workshop on Cooperative and Human Aspects of Software
Eng. (CHASE). IEEE, 7–10.

[32] Statista. 2024. APAC: Samsung smartphone market share by country
2020. https://www.statista.com/statistics/1254665/apac-samsung-smartphone-
market-share-by-country/ February 5, 2024.

[33] Constantine Stephanidis, Demosthenes Akoumianakis, Michael Sfyrakis, and
Alexandros Paramythis. 1998. Universal accessibility in HCI: Process-oriented
design guidelines and tool requirements. In Proceedings of the 4th ERCIMWorkshop
on User Interfaces for all, Stockholm, Sweden. 19–21.

[34] Sarrah Vesselov and Taurie Davis. 2019. Building Design Systems. Springer.
[35] WorldWideWeb Consortium (W3C). 2024. Web Content Accessibility Guidelines

(WCAG) 2.2 - Redundant Entry. https://www.w3.org/TR/WCAG22/#redundant-
entry February 10, 2024.

[36] Xiaoyi Zhang, Lilian De Greef, Amanda Swearngin, Samuel White, Kyle Murray,
Lisa Yu, Qi Shan, Jeffrey Nichols, Jason Wu, Chris Fleizach, et al. 2021. Screen
recognition: Creating accessibility metadata for mobile applications from pixels.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–15.

https://www.att.com
https://developer.apple.com/design/human-interface-guidelines/accessibility
https://developer.apple.com/design/human-interface-guidelines/accessibility
https://www.w3.org/TR/WCAG22/#abstract
https://fluent2.microsoft.design/design-principles
https://fluent2.microsoft.design/design-principles
https://m3.material.io/components/tooltips/accessibility
https://m3.material.io/components/tooltips/accessibility
https://m3.material.io/components/snackbar/accessibility
https://m3.material.io/components/snackbar/accessibility
https://developer.apple.com/design/human-interface-guidelines/accessibility
https://developer.apple.com/design/human-interface-guidelines/accessibility
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/obp/ui/#iso:std:iso:13407:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:13407:ed-1:v1:en
https://www.forbes.com/top-digital-companies/list/#tab:rank
https://www.forbes.com/top-digital-companies/list/#tab:rank
https://www.mckinsey.com/featured-insights/diversity-and-inclusion/diversity-wins-how-inclusion-matters
https://www.mckinsey.com/featured-insights/diversity-and-inclusion/diversity-wins-how-inclusion-matters
https://inclusive.microsoft.design
https://www.samsung.com/latin_en/about-us/company-info/
https://www.samsung.com/latin_en/about-us/company-info/
https://www.statista.com/statistics/1254665/apac-samsung-smartphone-market-share-by-country/
https://www.statista.com/statistics/1254665/apac-samsung-smartphone-market-share-by-country/
https://www.w3.org/TR/WCAG22/#redundant-entry
https://www.w3.org/TR/WCAG22/#redundant-entry

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Accessibility and Usability
	2.2 Design methodologies and guidelines
	2.3 Software developers and accessibility
	2.4 Team dynamics
	2.5 Design systems

	3 Method
	3.1 Choice of Design Systems
	3.2 Evaluation of Design Systems
	3.3 Creation and testing of ALib

	4 Design Systems evaluation
	5 ALib - components library
	5.1 Design
	5.2 Development

	6 Developer Interviews
	6.1 Developer profiles
	6.2 Accessibility within previous projects
	6.3 Interest in accessibility
	6.4 WCAG and W3C

	7 Limitations
	8 Conclusion
	Acknowledgments
	References

