
Mining repositories to analyze the lifecycle of frameworks and
libraries

Ronaldo Rubens Gesse Júnior
Department of Computing

School of Sciences, São Paulo State University (UNESP)
Bauru, SP, Brazil

ronaldo.rubens@unesp.br

Higor Amario de Souza
Department of Computing

School of Sciences, São Paulo State University (UNESP)
Bauru, SP, Brazil

higor.amario@unesp.br

ABSTRACT
In a constantly evolving technological landscape, it is crucial to
choose the right components and technologies for a software project
to ensure its successful development. Frameworks and libraries are
essential components that provide functionality to the code and
accelerate the development process. They assist teams in delivering
results more efficiently to the end user through software reuse. This
work proposes using Mining Software Repositories (MSR) to ana-
lyze the lifecycle of frameworks and libraries. We aim to understand
whether a framework or library is properly updated, maintained,
and sought after by the community, which may indicate its lifecycle
stage. We explored data from several open source projects: the num-
ber of commits and contributors over time. Also, we are using data
from Google Trends to explore the developer community’s interest
in such libraries and frameworks. We are using a trend metric –
Exponential Moving Average (EMA) – over the prior mentioned
variables to indicate the lifecycle stage of such frameworks and
libraries. The initial results show that our approach can distinguish
lifecycle trends for frameworks within the same domain. Our future
research will involve examining additional MSR data (such as pull
requests, issues, and code changes), obtaining other data sources (Q
& A sites), and applying time series Machine Learning techniques
to improve the analysis.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Development frameworks and environments; Soft-
ware evolution;Maintaining software; Software libraries and
repositories; Software maintenance tools; Reusability.

KEYWORDS
Mining software repositories, software reuse, frameworks, libraries

1 INTRODUCTION
The software development process has become more complex over
the years. Software reuse aims to reduce the development effort by
providing generic code structures and specific functions for com-
mon software needs. Frameworks can be defined as code structures
of all or part of a system that must be implemented when building
software systems [10]. Those structures are related to an architec-
tural domain (e.g., web, mobile). A software library is a collection
of strictly related code functions from a specific domain ready for
reuse in other software projects. Some examples are libraries for
building maps, parsing file formats, or building machine learning
models. Libraries are functionalities that can be directly called in the

code, whilst frameworks are characterized by an inverted control,
in which they call their own sequences of activities [11].

Although software reuse’s benefits are known, keeping libraries
and frameworks1 updated during software maintenance is chal-
lenging. In most domains, there are several options to choose from.
Some tools are up-to-date and have a growing and active commu-
nity. Others are no longer maintained or deprecated and have no
support from Q & A sites, such as Stack Overflow or CodeProject.

When evaluating software lifecycle, it is crucial to consider their
relevance and robustness over time. Well-established software tools
typically have an active community of developers, which is an
indication of their long-term sustainability. Furthermore, it is im-
portant to check whether support and source code updates are
frequent, as this indicates the health and vitality of the tool. Over
time, these tools can go through several stages of evolution: initial
development, maintenance, improvement, and eventually, decline.

Even well-established frameworks and libraries may have a de-
creasing usage over time, being replaced by others with better qual-
ity or popularity. Other tools may be poorly documented [19, 23]
or difficult to use [17]. Another problem regards changes in the
Application Programming Interfaces (APIs) of those software tools,
which leads to bugs and backward incompatibilities [4, 14, 18].

Mining software repositories (MSR) uses historical data from
code repositories, mainly the open source ones, to retrieve and
understand several characteristics of software projects [8]. Discov-
eries from MSR may benefit the software engineering community
in improving knowledge and developing techniques to advance
the area: identifying trends and patterns, finding content on bug
reports, collaborator interactions, and so on. Thus, MSR may also
help to understand how frameworks and libraries are used through
software projects. Can we use such data to provide a decision model
that may help software teams choose suitable frameworks and li-
braries for their needs?

This study aims to determine if using MSR – along with Google
Trends, Q & A sites, and other data sources – can indicate the
lifecycle stage of frameworks and libraries. This approach may be
useful for software teams to decide which tools should be chosen
in software development projects [7]. Google Trends has been used
in several domains to describe topics of interest over time [12].

The preliminary analyses presented in this work are based on
data from two main sources: code repositories and Google searches
about frameworks and libraries. Such data is used to verify their
usage trends and to identify their lifecycle stages. This may provide
insights on whether to adopt or replace these software tools.

1For brevity, we will refer to frameworks and libraries as software tools or projects.

https://orcid.org/0000-0003-4233-5987


SBES’24, September 30 – October 04, 2024, Curitiba, PR Gesse Júnior & De Souza

Section 2 describes how our proposal is structured, followed
by Section 3, which presents the results we obtained until now.
Section 4 presents studies with objectives similar to ours. Then,
Section 5 brings our conclusions and the next steps we will pursue.

2 METHODOLOGY
To evaluate the lifecycle of frameworks and libraries, we are select-
ing open source repositories to explore their features along with
data from Google Trends. Then, we use trend analysis metrics to
indicate the lifecycle stages of the analyzed tools.

2.1 Frameworks and libraries
We choose tools from distinct application domains, programming
languages, and maintenance statuses. This choice was based on our
knowledge of common application domains and popular languages,
frameworks, and libraries. The six chosen domains were machine
learning, data science, web, REST APIs, software testing, and secu-
rity. Python, C++, Java, Ruby, and JavaScript were the five chosen
programming languages. Regarding maintenance, we choose active
projects, which are currently being evolved, and well-known legacy
projects, with no current updates or those few used, which have
presented a decreasing interest in the community. Our intention
in choosing legacy projects is two-fold: leveraging data from those
projects that still had a complete lifecycle to improve the analysis of
active ones, and evaluating our method over those legacy projects.

The selection process was carried out manually by the authors
as a way of exploring known frameworks and libraries since not
all project repositories clearly state when it is a framework, library,
or end-user software. Moreover, it was not easy to find some of
the chosen legacy projects as most of their links to the original
repository had expired. For instance, we did not find legacy REST
API tools for Python and C++.

For each domain and language, we selected two active projects
and one legacy project, resulting in 88 projects: 60 active and 28
legacy ones. Tables 2 and 3 (in Section 3) show the selected projects.

2.2 Data collection procedure
Weused pyDriller2 [21] to collect commits from the selected projects.
The pyDriller library lets us collect several data from the commits:
date, inserted and deleted rows, messages, author, etc. For now, we
are using the number of commits and the number of authors over
time to evaluate how much a project is being maintained and how
many contributors the projects have.

To collect data from theGoogle TrendsAPI, we chose the pyTrends
library3, which is being used to measure the popularity and the
community engagement of each selected tool over time. The result-
ing measure is the relative interest per month. The relative interest
is a normalized integer value that ranges between 0 and 100, which
represents an increasing or decreasing interest in the searches for
a particular term regarding the total number of Google searches.

Searching for some terms may bring results not related to the
software tools (e.g., Pistache or Hanami). The pyTrends let us choose
the category of interest: Computers and Electronics in our case.
Furthermore, several tools have been searched using variations of
2https://github.com/ishepard/pydriller
3https://github.com/GeneralMills/pytrends

terms (e.g., junit5, junit 5, and java unit testing 5) such that the sum
of relative interest for a tool can exceed 100 in total.

2.3 Evaluation metrics
We used some evaluation metrics to allow us to identify variations
in the number of commits, number of authors, and relative interest
over time for each select project. To do that, we opted to use met-
rics related to trend analysis of time series data. Also, we applied
correlation analysis to evaluate the chosen variables.

Trend analysis is a process of estimating a gradual change in fu-
ture events from past historical data [5, 20]. Trend analysis has been
used in distinct domains (e.g., stock market, ecology, climate) for
forecasting pattern changes over time. Several statistical methods
(e.g., Simple Moving Average (SMA), Mann-Kendall), and machine
learning algorithms (e.g., Autoregressive Integrated Moving Aver-
age – ARIMA) can be used for trend analysis.

The idea behind using trend analysis is to identify a changing
point – a moment in which a software project may have an increase
or a decrease in its usage or maintenance – that would indicate a
change in its lifecycle stage. For now, we are using one statistical
trend analysis method: exponential moving average, as follows.

2.3.1 Exponential moving average (EMA). The exponential moving
average is used to smooth variations in time series data, providing
a result that is more sensitive to recent changes than long-term
changes. EMA takes into account the current value, the previous
EMA value, and a weighting factor. This factor determines how
quickly the EMA reacts to new data.

The EMA formula is presented in Equation 1, where 𝑉 is the
current average value, 𝐸𝑀𝐴𝑡−1 is the value of the previous time
period 𝑡 − 1 and 𝐾 is the weighting factor. In the weighting factor
formula (Equation 2), 𝑁 is the chosen time period.

𝐸𝑀𝐴 = 𝑉 ∗ 𝐾 + 𝐸𝑀𝐴𝑡−1 ∗ (1 − 𝐾) (1) 𝐾 =
2

𝑁 − 1
(2)

2.3.2 Correlation analysis. Correlation analysis is a statistical mea-
sure useful to compare the dependency relationship between two
variables. It is particularly useful when coping with big data to
explore multivariate variables to reduce data dimensionality [22].
It is also useful to evaluate data from distinct datasets. The Spear-
man’s rank correlation coefficient is nonparametric (i.e., it does
not assume that data has any specific distribution) and its values
range from -1 (strong negative correlation) to 1 (strong positive
correlation. Values close to 0 have weak or no correlation.

We used the Spearman’s rank correlation coefficient to assess
the correlation among our study’s variables: number of commits,
number of authors, and relative interest.

2.4 Analysis procedures
To evaluate the lifecycle of the selected tools, we performed quan-
titative and qualitative analyses. For the quantitative analysis, we
considered the trends for the exponential moving average (EMA)
using two time periods: a short-term period (12 months) and a long-
term period (24 months). We defined that a project lifecycle can fit
into one of three stages based on the possible trends: uptrend, stable,
or downtrend. Table 1 shows the criteria to classify frameworks and
libraries into each lifecycle stage based on the EMA short-term and
long-term periods. We calculate the lifecycle stage for each variable

https://github.com/ishepard/pydriller
https://github.com/GeneralMills/pytrends


Mining repositories to analyze the lifecycle of frameworks and libraries SBES’24, September 30 – October 04, 2024, Curitiba, PR

Table 1: Criteria to classify frameworks and libraries accord-
ing to their EMA short-term and long-term periods

Criterion Lifecycle stage
EMA short-term period > EMA long-term period Uptrend
EMA short-term period = EMA long-term period Stable
EMA short-term period < EMA long-term period Downtrend

– number of commits, number of authors, and relative interest. To
obtain a final lifecycle stage classification, we consider the preva-
lence of two or more variables with the same value. If there is a
draw – one of each variable as stable, uptrend, and downtrend –
the framework or library is considered stable.

For the qualitative analysis, we compared the tools from the same
domain and language to analyze them in more detail. The idea is to
exemplify how a software team would use the proposed method to
decide on using a framework or library. We chose a sample of the
selected tools to perform this analysis, which includes time series
charts, lifecycle stages, and correlation results. In the next section,
we present our preliminary results.

3 PRELIMINARY RESULTS
The quantitative analysis shows a general sight of the lifecycle
stages of the evaluated frameworks and libraries. Then, we present
a qualitative analysis that takes a closer look at some projects to
understand their specificities regarding our classification method.

3.1 Quantitative analysis
The 88 tools were classified using EMA to calculate the trends for
each variable: the number of commits, number of authors, and
relative interest. The lifecycle stage is assigned based on the most
frequent value trend value among the three variables.

Table 2 shows the results for the active projects. Projects in the
uptrend stage (↑) are those in a gray background. The other projects
are in the downtrend stage (↓). We can see that active tools vary
regarding their lifecycle stages. From them, 31% (19 out of 60) were
classified in an uptrend lifecycle. For example, the D3.js library is
in an uptrend. The Chart.js library, from the same language and
domain, is in a downtrend lifecycle. C++’s Pistache and Restbed
tools are in a downtrend. Also, we did not assume beforehand
whether an active tool has an upward or downward trend of usage
as we did for the legacy ones.

Table 3 follows the same rationale of Table 2 for the legacy
projects. It shows that most legacy projects were correctly classified
in a downtrend, 78.5% of them. Most of the exceptions are tools for
the Ruby language or security tools.

None of the projects was classified as stable. It only could occur
if a project has the three variables assigned with distinct trends,
or if at least two variables had a stable stage for the same project,
which did not occur for the selected tools.

Of the 88 tools, 25 were classified in an uptrend lifecycle – 19 of
them are active projects and 6 are legacy ones. The 64 remaining
projects were classified in a downtrend stage. Of the 64, 29 have a
high trend of relative interest – 25 are active and 4 are legacy.

The correlation analysis shows varied patterns of results. For
example, pandas, pytorch, playframework, and cppunit had a strong

positive correlation among all variables. A few projects, such as
minitest, have presented no correlation between the three compar-
isons. Table 4 shows the aggregated number of projects by corre-
lation value levels: medium-to-strong positive correlations (> 0.5),
medium-to-strong negative correlations (< -0.5), and weak positive
and negative correlations or no correlation (> -0.5 and < 0.5). There
were 11 projects without enough information of relative interest,
which were in the last row (no data).

There are stronger correlations between the number of commits
and the number of authors, which makes sense since more authors
tend to submit more commits. There are several cases in which the
relative interest has a strong negative correlation with the number
of commits and the number of authors (e.g., NSP – Node Security
Protect), which may mean that projects with high interest and low
maintenance are stable, with no need for frequent improvements.
We will explore such issues in future work. Since almost all projects
presented at least one strong positive or negative correlation, we
intend to use the correlation as a weighting criterion for classifying
the lifecycle stages in future work.

3.2 Qualitative analysis
For the qualitative analysis, we made three comparisons, each one
by selecting two projects from the same domain and language. Thus,
we intended to assess how the proposed method can be useful to
decision-making on choosing between two similar tools. Moreover,
we can show in more detail the characteristics of those tools and
how they are related to our lifecycle classification method.

We explored different approaches in the comparisons: compet-
ing active projects (PyTorch vs TensorFlow and RubyOnRails vs
Hanami); active and legacy projects (JUnit 4 vs JUnit 5); program-
ming languages (Python, Java, and Ruby); and domains (machine
learning, web, and testing).

3.2.1 PyTorch vs TensorFlow. PyTorch and TensorFlow are exam-
ples of competing machine-learning Python libraries. PyTorch has
had commits since 2012 but was released in 2016, while TensorFlow
was released in 2015. First, we can visualize trends in the number
of commits, number of authors, and relative interest to understand
how this data relates, which can help inform eventual design deci-
sions. Figure 1 shows the relative interest over time. Table 5 shows
the obtained EMA trends for PyTorch and TensorFlow, and Table 6
shows the correlations among the variables for both projects.

It is possible to observe an advantage of PyTorch trends com-
pared to TensorFlow. According to Dai et al. [3], PyTorch is easier
to use and has a lower learning curve, which helps to explain a
certain advantage in the relative interest. Despite both being well-
established tools, TensorFlow had a more pronounced growth in the
number of commits and authors in the initial years when compared
to PyTorch. Both libraries have strong correlations.

3.2.2 JUnit 4 vs JUnit 5. The Java testing framework JUnit 5 is the
successor to JUnit 4. There is a big difference in lifecycle of both
versions. Figure 2 shows the number of authors over time for JUnit
4 and JUnit 5. Table 5 shows the obtained EMA trends for JUnit 5
and JUnit 4.

As expected, the trends for commits and authors are higher for
JUnit 5 compared to JUnit 4. However, for the relative interest, JUnit



SBES’24, September 30 – October 04, 2024, Curitiba, PR Gesse Júnior & De Souza

Table 2: Lifecycle stage of active projects

Domain Python C++ Java Ruby JavaScript

Machine Learning TensorFlow ↓ TensorFlow ↓ Spark ↑ TensorFlow.rb ↓ TensorFlow.js ↓
PyTorch ↑ pytorch-cpp ↑ H2O ↓ SciRuby ↓ Brain.js ↓

Web Django ↓ Wt↑ Play Framework ↓ Ruby on Rails ↑ React ↓
Flask ↑ C++ REST SDK ↓ Apache Struts 2 ↑ Hanami ↓ Vue.js ↓

Data Science pandas ↑ Armadillo ↓ MOA ↓ NMatrix ↓ D3.js ↑
Dask ↓ ITK ↓ WEKA ↓ Statsample ↑ Chart.js ↓

Rest API FastAPI ↑ Pistache ↓ Spring REST ↑ Grape ↓ Express ↓
Eve ↓ Restbed ↓ RESTEasy ↓ Roda ↓ koa ↓

Testing pytest ↑ GoogleTest ↑ JUnit 5 ↑ RSpec ↓ Jest ↓
Robot Framework ↓ Catch2 ↓ TestNG ↓ minitest ↓ Cypress ↓

Security ZAP ↑ OpenSSL ↑ OWASP Java Encoder ↓ Brakeman ↓ nsp ↓
Paramiko ↑ Botan ↑ Bouncy Castle ↓ Sorcery ↓ Helmet.js ↓

Table 3: Lifecycle stage of legacy projects

Domain Python C++ Java Ruby JavaScript
Machine Learning Orange ↓ CNTK ↓ Deeplearning4j ↓ RubyFANN ↓ Synaptic ↓
Web Web2py ↓ CppCMS ↓ Apache Struts 1 ↓ Camping ↑ Backbone.js ↓
Data Science PyTables ↓ mlpack ↓ Apache Mahout ↓ Scruffy ↑ jStat ↓
Rest API – – Jakarta Faces ↓ Sinatra ↓ Restify ↓
Testing unittest2 ↓ CppUnit ↓ JUnit 4 ↓ Test::Unit ↑ QUnit ↓
Security PyCrypto ↑ LibTomCrypt ↓ JCE ↓ OpenSSL ↑ jsrsasign ↑

Figure 1: Relative interest over time for PyTorch and TensorFlow

Table 4: Number of tools for distinct levels of Spearman’s
correlation score for the compared variables: number of com-
mits (C), authors (A), and relative interest (I)

Correlation C/I A/I C/A
> 0.5 18 27 53
< -0.5 16 9 0

> -0.5 and < 0.5 43 41 35
No data 11 11 0

Table 5: EMA’s short-term (12) and long-term (24) for the
number of commits (C), authors (A), and relative interest (I)
for the selected tools

Tool EMA (C) EMA (A) EMA (I)
12 24 12 24 12 24

PyTorch 1017.15 1004.10 226.74 220.21 83.99 80.37
TensorFlow 1486.54 1533.46 207.49 209.97 51.85 53.65
JUnit 4 2.95 3.84 1.32 1.59 48.79 48.20
JUnit 5 44.74 43.90 6.79 6.69 145.90 146.64
Ruby on Rails 320.09 314.84 64.92 66.44 42.02 41.85
Hanami 7.75 8.68 2.27 2.52 16.41 14.49



Mining repositories to analyze the lifecycle of frameworks and libraries SBES’24, September 30 – October 04, 2024, Curitiba, PR

Table 6: Correlations between the number of commits (C),
authors (A), and relative interest (I) for the selected tools

Tool C/I A/I C/A
PyTorch 0.952 0.953 0.972
TensorFlow 0.659 0.609 0.982
JUnit 4 0.443 -0.259 0.602
JUnit 5 -0.839 0.216 0.391
Ruby on Rails 0.081 0.113 0.87
Hanami 0.24 0.096 0.948

4 is in an uptrend while JUnit 5 is in a downtrend. A possible reason
is that JUnit 4 is still used in many projects that have not been
updated to JUnit 5 [6]. Although JUnit 5 is in a downtrend, it is
almost three times more searched compared to JUnit 4 considering
their relative interest. Thus, in future work, we should consider the
absolute values of relative interest as a weighting criterion. Table 6
shows that the correlation results involving the relative interest are
inversely proportional for JUnit 4 and JUnit 5.

3.2.3 Ruby on Rails (RoR) vs Hanami. The RoR and Hanami are
competing active web frameworks from the Ruby language. Hanami
is more recent, starting in 2014, ten years after RoR. Figure 3 shows
the number of commits over time for both tools.

Despite the long time since its launch, Ruby on Rails continues to
be widely used due to its stability. Hanami is still on the rise. It has
less community support, implementations, and tutorials available
when compared to RoR [1]. It can be seen by observing the trends
(Table 5) and correlations (Table 6). RoR has a greater number of
commits, authors, and relative interest. However, Hanami is in an
uptrend regarding relative interest, as it is promising, lightweight,
and has extensive documentation.

4 RELATEDWORK
There are other studies and initiatives to identify suitable projects
for software reuse. Mileva et al. [13] used mining software repos-
itories (MSR) through hundreds of open source Java projects to
discover their external dependencies (libraries – APIs). They con-
sider that a successful API is the one that is largely used, which is
referred to as the wisdom of the crowds of API users. On the con-
trary, an API is considered decadent if it lacks popularity. APIs are
classified into four types of trends: increasing, decreasing, stable,
and undecided. This crowdsourcing-based approach may not deal
with new emergent APIs, which could be of high quality but are
not popular yet.

Hora and Valente [9] presented a tool (apiwave) that monitors
650 Java projects. The tool computes the popularity of an API from
the differences in its usage in the observed projects, which can
increase or decrease over time. Beyond the popularity chart, the
tool presents a migration rank, which contains the most replaced
APIs. Also, it presents code excerpts with usage examples. Currently,
the tool platform is unavailable at the provided URL.

Coelho et al. [2] measured the level of maintenance of GitHub
projects. To do that, the authors explored data from 2927 projects
written in several programming languages during the year of 2018.

The random forest classifier was applied to features related to com-
mits, issues, pull requests, and contributors, among others, to clas-
sify projects as maintained or unmaintained.

Mujahid et al. [15, 16] investigate the decline of packages of
the node package manager (npm) for software reuse. In [16], they
propose an approach to identify package decline using a centrality
trend metric. The centrality is calculated periodically considering
the dependencies among all npm packages, which are represented
by a dependency graph. The proposed technique is provided as a
tool that can be used for packages from the npm ecosystem. In [15],
the authors suggest alternative packages for those in decline. They
first identify migration patterns to find candidates for replacement
suggestions. Only packages among the ten percent best central-
ity scores are considered as replacement candidates to avoid the
suggestion of immature packages.

Our study aims at identifying the lifecycle stages of libraries
and frameworks. As in the work of Coelho et al. [2], we explore
the internal features of the assessed projects. However, our study
will also explore data from Q & A sites and Google Trends. This
latter is not used in previous related work. Our proposal addresses
software tools from several languages, which is not done in most
related work, more focused on the Java language, while Mujahid
et al. [15, 16] is focused on npm ecosystem (JavaScript). Moreover,
our work also differentiates by using trend analysis (i.e., exponential
moving average) to classify the assessed projects.

5 CONCLUSIONS AND NEXT STEPS
This work presents an approach to analyze the lifecycle of frame-
works and libraries to help choose possible alternatives for use in
software development projects. Our proposed method indicates
lifecycle stages of software tools, which can serve as useful infor-
mation for software maintenance and evolution. These lifecycle
stages are based on trend results for the number of commits and
authors over time, extracted from their repositories, and the relative
interest over time obtained from Google Trends. To do this, we use
the exponential moving average (EMA) trend metric. Furthermore,
we evaluated the correlation between these variables.

We should consider that each project has its own characteristics
and that its data may vary without following a specific pattern, de-
pending on factors such as the programming language, application
domains, and developers’ collaborations.

The results show that the proposed method can identify the
frameworks’ and libraries’ lifecycle trends in most cases. The quan-
titative analysis shows that most legacy projects (78.5%) were classi-
fied as in a downtrend lifecycle, as expected. A few legacy projects
showed an uptrend lifecycle stage. Even small changes in commits
among the periods or in the increase in the interest in a library or
framework may lead to an uptrend status. The qualitative analysis
shows that, for those selected projects, the lifecycle stages can be
explained through the characteristics of the tools’ historical data.

Regarding the selection of the active projects, we do not assume
any previous trend about their popularity, current level of usage, or
maintenance frequency.We simply selectedwell-known projects for
each programming language and domain. Therefore, other relevant
projects may have been out of this preliminary study.



SBES’24, September 30 – October 04, 2024, Curitiba, PR Gesse Júnior & De Souza

Figure 2: Authors over time for JUnit 4 and JUnit 5

Figure 3: Commits over time for Ruby on Rails and Hanami

5.1 Future work
Although preliminary results are promising, there is a lot of useful
data that can improve the proposed work. We will include data
from projects that use such frameworks and libraries, and other
data from repositories’ popularity metrics: number of stars, forks,
and watchers. We will use text mining to extract data from bug
reports, issues, posts from Q & A sites, and IT-related sites.

We will explore time periods other than 12 and 24 months to
calculate EMA, which was the choice for this current study. We
will also assess if there is a threshold for the number of commits,
authors, and relative interest that we could consider to avoid slight
variations in those variables changing the lifecycle stage.

In our next steps, we will evaluate how time series machine
learning techniques, such as ARIMAX (AutoRegressive Integrated
Moving Average with Exogenous Regressors), SARIMAX (Seasonal
ARIMAX), and LSTM (Long Short-Term Memory) can be used to
improve the trend analysis prediction. We intend to cover more
frameworks and libraries from other programming languages and
domains. Finally, we will perform a user study to assess how useful

such an approach can be in the software development workflow
for the decision-making process of software reuse.

The repository data is available at: https://github.com/higoramario/
software-lifecycle-msr.

REFERENCES
[1] Marek Buszman. 2023. Modern Ruby Frameworks Comparison: RoR vs Hanami.

[Online]. Available from: https://www.netguru.com/blog/comparison-ror-vs-
hanami. Acessed in: 20 oct. 2023.

[2] Jailton Coelho, Marco Tulio Valente, Luciano Milen, and Luciana L. Silva. 2020.
Is this GitHub project maintained? Measuring the level of maintenance activity
of open-source projects. Information and Software Technology 122 (2020), 106274.
https://doi.org/10.1016/j.infsof.2020.106274

[3] Hulin Dai, Xuan Peng, Xuanhua Shi, Ligang He, Qian Xiong, and Hai Jin. 2022.
Reveal training performance mystery between TensorFlow and PyTorch in the
single GPU environment. Science China Information Sciences 65 (2022), 1–17.

[4] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2019. An empirical compar-
ison of dependency network evolution in seven software packaging ecosystems.
Empirical Software Engineering 24, 1 (2019), 381–416.

[5] Alexander Elder. 2002. Come into my trading room: a complete guide to trading.
John Wiley & Sons, New York, NY.

[6] Boni Garcia. 2017. Mastering Software Testing with JUnit 5: Comprehensive guide
to develop high quality Java applications. Packt Publishing Ltd, Birmingham, UK.

[7] Ronaldo Rubens Gesse Júnior. 2023. Mineração de Repositórios para análise de
ciclos de software. Capstone project (Bachelor of Computer Science), São Paulo

https://github.com/higoramario/software-lifecycle-msr
https://github.com/higoramario/software-lifecycle-msr
https://www.netguru.com/blog/comparison-ror-vs-hanami
https://www.netguru.com/blog/comparison-ror-vs-hanami
https://doi.org/10.1016/j.infsof.2020.106274


Mining repositories to analyze the lifecycle of frameworks and libraries SBES’24, September 30 – October 04, 2024, Curitiba, PR

State University, School of Sciences. https://hdl.handle.net/11449/251494
[8] Ahmed E Hassan. 2008. The road ahead for mining software repositories. In

Proceedings of the 2008 Frontiers of Software Maintenance (Beijing, China) (FoSM
2008). IEEE, Piscataway, NJ, 48–57.

[9] André Hora and Marco Tulio Valente. 2015. apiwave: Keeping track of API
popularity and migration. In Proceedings of the 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME’15). IEEE, Piscataway, NJ, 321–
323.

[10] Ralph E Johnson. 1997. Frameworks=(components + patterns). Commun. ACM
40, 10 (1997), 39–42.

[11] Ralph E Johnson and Brian Foote. 1988. Designing reusable classes. Journal of
Object-Oriented Programming 1, 2 (1988), 22–35.

[12] Seung-Pyo Jun, Hyoung Sun Yoo, and San Choi. 2018. Ten years of research
change using Google Trends: From the perspective of big data utilizations and
applications. Technological Forecasting and Social Change 130 (2018), 69–87.
https://doi.org/10.1016/j.techfore.2017.11.009

[13] Yana Momchilova Mileva, Valentin Dallmeier, and Andreas Zeller. 2010. Mining
API popularity. In Proceedings of the 5th International Academic and Industrial
Conference: Testing – Practice and Research Techniques (TAIC PART 2010). Springer-
Verlag, Berlin, Germany, 173–180.

[14] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. 2017. Experience paper:
a study on behavioral backward incompatibilities of Java software libraries. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA ’17). ACM, New York, NY, 215–225.

[15] Suhaib Mujahid, Diego Elias Costa, Rabe Abdalkareem, and Emad Shihab. 2023.
Where to Go Now? Finding Alternatives for Declining Packages in the npm
Ecosystem. In Proceedings of the 2023 38th IEEE/ACM International Conference
on Automated Software Engineering (Luxembourg, Luxembourg) (ASE’23). IEEE,
Piscataway, NJ, 1628–1639. https://doi.org/10.1109/ASE56229.2023.00119

[16] Suhaib Mujahid, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, Mo-
hamed Aymen Saied, and Bram Adams. 2022. Toward Using Package Centrality
Trend to Identify Packages in Decline. IEEE Transactions on Engineering Manage-
ment 69, 6 (2022), 3618–3632. https://doi.org/10.1109/TEM.2021.3122012

[17] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping through
hoops: why do Java developers struggle with cryptography APIs?. In Proceedings
of the 38th International Conference on Software Engineering (Austin, Texas) (ICSE
’16). ACM, New York, NY, 935–946. https://doi.org/10.1145/2884781.2884790

[18] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How do developers
react to API deprecation? The case of a Smalltalk ecosystem. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering (FSE’12). ACM, New York, NY, 1–11.

[19] Martin P Robillard and Robert DeLine. 2011. A field study of API learning
obstacles. Empirical Software Engineering 16 (2011), 703–732.

[20] Shilpy Sharma, David A Swayne, and Charlie Obimbo. 2016. Trend analysis and
change point techniques: a survey. Energy, Ecology and Environment 1 (2016),
123–130.

[21] Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. PyDriller: Python
framework for mining software repositories. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE’18). ACM, New York, NY,
908––911. https://doi.org/10.1145/3236024.3264598

[22] Chengwei Xiao, Jiaqi Ye, Rui Máximo Esteves, and Chunming Rong. 2016. Using
Spearman’s correlation coefficients for exploratory data analysis on big dataset.
Concurrency and Computation: Practice and Experience 28, 14 (2016), 3866–3878.

[23] Hao Zhong and Zhendong Su. 2013. Detecting API documentation errors. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications (Indianapolis, IN) (OOPSLA ’13).
ACM, New York, NY, USA, 803—-816. https://doi.org/10.1145/2509136.2509523

https://hdl.handle.net/11449/251494
https://doi.org/10.1016/j.techfore.2017.11.009
https://doi.org/10.1109/ASE56229.2023.00119
https://doi.org/10.1109/TEM.2021.3122012
https://doi.org/10.1145/2884781.2884790
https://doi.org/10.1145/3236024.3264598
https://doi.org/10.1145/2509136.2509523

	Abstract
	1 Introduction
	2 Methodology
	2.1 Frameworks and libraries
	2.2 Data collection procedure
	2.3 Evaluation metrics
	2.4 Analysis procedures

	3 Preliminary results
	3.1 Quantitative analysis
	3.2 Qualitative analysis

	4 Related work
	5 Conclusions and next steps
	5.1 Future work

	References

