
Terraform and AWS CDK: A Comparative Analysis of
Infrastructure Management Tools

João Frois1, Lucas Padrão1, Johnatan Oliveira2, Laerte Xavier1, Cleiton Tavares1
1Pontifical Catholic University of Minas Gerais (PUC-MG)

Belo Horizonte, MG, Brazil
2Federal University of Lavras (ICTIN-UFLA)

Lavras, MG, Brazil
{joao.victor.frois,padraorz}@gmail.com,johnatan.oliveira@ufla.br,{laertexavier,cleitontavares}@pucminas.br

ABSTRACT
Infrastructure as Code is a fundamental concept in DevOps that
automates infrastructure management processes using code. Sev-
eral tools, such as Terraform and CDK, support this environment.
Selecting the appropriate tool is crucial to a project’s success, yet
there is ambiguity about the circumstances in which developers
should choose between these tools. Therefore, this study aims to
compare Terraform and CDK across four aspects: abstraction, scala-
bility, maintainability, and performance. Our findings indicate that
each tool performs particularly well in specific scenarios. For in-
stance, Terraform is better suited for experienced teams focused
on rapid implementations, while CDK is more appropriate for less
experienced teams prioritizing resource efficiency during imple-
mentation.

KEYWORDS
AWS CDK, Terraform, DevOps, Infrastructure as Code

1 INTRODUCTION
A wide range of techniques and protocols created to support the re-
liable and effective delivery of software are included in the DevOps
culture [7]. The idea of automation is fundamental to this culture,
especially when it comes to using Infrastructure as Code (IaC).
IaC uses configuration files and code to manage infrastructure,
allowing cloud environments to quickly and securely deploy ap-
plications [9]. In order to achieve these aims, this approach uses
automated scripts [10]. In software engineering, effective manage-
ment of these environments is essential to guarantee scalability and
resource efficiency [3]. Previous research has evaluated the role of
IaC in the software development lifecycle [1, 3].

IaC is receiving more attention in a variety of scenarios, which
highlights how it could affect infrastructure management and soft-
ware distribution [5]. Numerous studies in this emerging sector
have found code smells that were introduced when creating IaC
scripts [1, 5, 11]. Other studies have suggested creative tools for in-
frastructure management [11] or investigated the usage of IaC tools
to accelerate the deployment of architectural models [13]. Given
the extensive use and progress in this field, there are few studies
in the literature concerning the relative effectiveness of different
infrastructure-as-code support tools.

Terraform is an open-source IaC tool allows users to define and
manage their data center infrastructure using a declarative config-
uration language. Terraform offering multiple service providers,

such as AWS, Azure, and Google Cloud Platform1. Its state mana-
gement capabilities and modularity make it a tool for large-scale
infrastructure deployments [6]. On the other hand, the AWS Cloud
Development Kit (CDK) is an open-source software development
platform that allows you to specify cloud architecture using well-
known programming languages. With CDK, developers may create
infrastructure using languages like TypeScript, Python, Java, and
C#, which offers a greater level of abstraction and integration with
AWS services2.

The choice of IaCmanagement tools is as important as the choice
of programming languages for software development, which differs
depending on certain scenarios. Research that compares different
provisioning and infrastructure management solutions should be
done, much as studies that compare programming languages [2,
12]. These kinds of studies can help designers determine which
tool is best suited for their particular uses. While the AWS Cloud
Development Kit (CDK) [15] abstracts infrastructure management
on the main cloud, Terraform is the most efficient tool for multi-
cloud deployments [6]. For developers to make wise decisions and
guarantee the success of projects in cloud environments, closing
this comparability gap is essential.

This research aims to provide a comparative analysis to evalu-
ate development using AWS CDK and Terraform. Our goals are
structured as follows: (i) assessing the infrastructure development
abstraction capabilities of non-experienced developers when using
both Terraform and CDK; (ii) evaluating the tools’ scalability and
maintainability for experienced developers; and (iii) analyzing the
performance of these tools in creating AWS infrastructure instances.
This paper presents the findings of our comparison between Ter-
raform and AWS CDK, detailing the differences between the two in
terms of performance, scalability, maintainability, and abstraction
capabilities. The study identifies scenarios in which each tool excels.
For instance, Terraform is effective for experienced teams seeking
quick implementations, whereas AWS CDK is better suited for less
experienced teams aiming to minimize computational resource
usage during implementation.

The remainder of this paper is organized as follows. Section 2
present the related work. Section 3 describes the research method.
Sections 4 shows the results and discuss the insights. Section 5 out-
lines the threats to validity and their mitigations. Finally, Section 6
provides the conclusions and future work.

1https://www.terraform.io/
2https://aws.amazon.com/en/cdk/

https://www.terraform.io/
https://aws.amazon.com/en/cdk/


SBES’24, September 30 – October 04, 2024, Curitiba, PR Frois et al.

2 RELATEDWORK
Using the Argon and Ansible tools, Sandobalín et al. [13] com-
pares two IaC approaches: i) code-centric and ii) model-driven. To
solve the absence of information on the performance comparison
of various technologies, they assess each based on its efficacy and
convenience of use. According to their findings, there isn’t a sin-
gle strategy that is always better; instead, the best instrument for
a given task will depend on its particular requirements. Our re-
search, which differs from theirs, looks at abstraction, scalability,
maintainability, and performance from the angles of AWS CDK and
Terraform.

Dalla Palma et al. [4] uses Ansible to discover and catalog soft-
ware quality metrics in IaC. They identified 46 metrics are defined
and categorized into three categories: (i) portable object-oriented
metrics for Ansible and IaC; (ii) portable metrics from earlier IaC
studies to Ansible; and (iii) metrics pertaining to Ansible best and
worst practices. Their findings demonstrate that IaC quality may be
effectively assessed using software code quality metrics, including
the detection of code smells. Even though this study was made
specifically for Ansible, it is still a useful resource since it provides
an example of how to evaluate IaC metrics and lays the groundwork
for future assessments with other tools, like as Terraform and CDK.

Gupta et al. [6] assess how well the Hadoop architecture can be
implemented in a cloud environment with the use of Ansible and
Terraform technologies. Using these IaC tools, they put automation
scripts into place and ran load tests to assess the architecture’s
performance and scalability. The outcomes showed that the tech-
nologies made it possible to install the Hadoop architecture quickly,
effectively, and scalable. Their research, in contrast to ours, employs
a combination of various infrastructure technologies rather than
comparing them side by side.

Sokolowski and Salvaneschi [14] discuss methods for guarantee-
ing infrastructure dependability. They provide ProTI, an automated
testing tool that acts as a fuzzer for Pulumi3. ProTI is based on unit
testing. This tool uses contemporary methods to evaluate IaC pro-
grams across various setups. Their findings demonstrate a decrease
in the amount of work that must be done by hand and an increase
in trust in the output of the automated testing tool, which offers
quick and thorough infrastructure feedback. Their research and
ours are related, since both deal with the automation of infrastruc-
tures. Instead of concentrating on Pulumi, our study examines AWS
CDK and Terraform, offering insights into the functionality and
performance of these particular tools.

While previous research offers insightful information about a
range of IaC tools and procedures, a thorough comparison of AWS
CDK and Terraform is still lacking in the literature. By analyzing
these tools from a variety of angles, our research seeks to close this
gap and provide developers with useful advice on which tool would
be best for their particular requirements.

3 RESEARCH METHOD
This study draws on both qualitative and quantitative approaches.
To perform this, two controlled experiments were conducted to
apply specific interventions and collect quantitative metrics, such

3IaC automation platform, allowing customers to design, deploy, and manage infras-
tructure across various clouds.

as execution time and computational resource consumption of the
tools. In addition, interviews were conducted with IaC experts to
explore the evaluated tools in depth. The primary goal of these
methods is to describe and compare the tools based on four key
aspects: i) abstraction capacity, ii) scalability, iii) maintainability,
and iv) performance. Practical experiments were performed us-
ing real-world use cases, allowing for an evaluation of the tools’
efficiency in realistic scenarios. These experiments aimed to iden-
tify the differences between the tools and assess their efficiency
across various aspects. The combination of these methods provides
a detailed analysis of the tools’ performance, facilitating informed
decision-making regarding themost appropriate choice for different
scenarios.

3.1 Goal and Research Questions
To achieve the specific goals defined for this study, the following
Research Questions (RQs) are assessed:
• RQ1: How CDK and Terraform compare in terms of abstraction
capability in creating IaC’s?

• RQ2: How Terraform and CDK compare in terms of scalability
and maintainability?

• RQ3:Which tool enables the creation of infrastructure resources
on AWS with the shorter execution time?

• RQ4:Which tool consumes the most computational resources,
such as CPU and memory, during the resource creation?
Figure 1 shows the main steps of the studies designed to answer

the RQs. Study 1 evaluates the abstraction capacity of the tools in
relation to developers with less experience (RQ1). Study 2 assesses
scalability and maintainability based on insights from experts in
the field (RQ2). Finally, Study 3 examines the performance of the
tools in creating resources on AWS, addressing RQs 3 and 4.

Figure 1: Study Steps



Terraform and AWS CDK: A Comparative Analysis of Infrastructure Management Tools SBES’24, September 30 – October 04, 2024, Curitiba, PR

3.2 Study 1: Evaluation of Tool Abstraction
The experiment to evaluate the abstraction capacity of AWS CDK
and Terraform in the creation of infrastructure was conducted with
30 students coursing at least one discipline from the sixth period of
the Software Engineering in PUC-MG. The stages of the experiment
are described as follows:

Participant Selection— Students were chosen according to their
course of study, with a concentration on those who had finished
the fourth period, guaranteeing a minimal but adequate level of
understanding of the tools assessed.

Introductory Class – Students were randomly divided into two
groups, each receiving an introductory class on either Terraform
or AWS CDK. These classes covered fundamental concepts, basic
syntax, and specific functionalities of each tool.

Questionnaire Application – A questionnaire was conducted via
Microsoft Forms, including a consent form, eight demographic
questions, 10 questions about the tools (easy, medium, and difficult),
and a feedback field. To classify the questions, we sought input
from three developers in our network.

Result Analysis – Statistical differences in student responses re-
garding AWS CDK and Terraform were analyzed. Given that our
data on students’ performance do not follow a normal distribution,
the Mann-Whitney test [8] is appropriate for assessing the differ-
ences between the groups. This is a non-parametric test comparing
medians of two samples, with a significance level of 0.05.

Pilot Study –A pilot studywas conducted in September 2023 with
23 fifth-period students who did not participate in the main study.
Feedback from this pilot was used to refine the introductory classes
and questionnaires. Adjustments included changes to code snippets
to prevent external consultations and a more detailed exploration
of concepts such as the implementation flow of each tool.
3.3 Study 2: Evaluation of Tools Scalability and

Maintainability
To evaluate the scalability and maintainability of AWS CDK and
Terraform in IaC projects, we conducted interviews with three
experts. This method provides valuable insights from experienced
professionals. Each stage of the interview process is described as
follows:

Questionnaire Preparation – A detailed interview guide was pre-
pared, focusing on scalability and maintainability. Questions aimed
to capture expert views on topics such as: "How would you eval-
uate the scalability of Terraform and CDK in large infrastructure
projects? What are the main challenges?" and "In terms of mainta-
inability, what are the best practices for organizing and managing
Terraform code over time? And for CDK?" A total of 12 questions
were structured for the interviews.

Participant Selection – Three experts were selected through the
authors’ professional network, chosen for their relevant experience
with both tools.

Interview Conduction – Interviews were conducted in October
2023 via Google Meet, depending on participants’ availability. The
sessions were recorded with participants’ consent for later analysis,
ensuring anonymity and allowing them to withdraw at any time.
Each interview lasted approximately 40 minutes.

Result Analysis – The recordings and responses were subjected
to qualitative analysis, with the coding process inspired by the

principles of Grounded Theory, to identify trends and patterns
related to the tools’ scalability and maintainability.
3.4 Study 3: Performance Evaluation of the

Tools in Resource Creation
In order to assess Terraform’s and AWS CDK’s effectiveness in
generating infrastructure resources on AWS, we established a con-
text that included resource-service interactions as well as common
IaC management constraints and obstacles. We developed scripts
in both tools to provide resources on AWS within the Free Tier
limitations based on this situation. Table 1 list the resources used
in this study.

We developed the scripts using the standard structures and mod-
ules recommended by the official sources of each tool4,5, ensuring
a fair and unbiased evaluation. To maintain the experiment within
the AWS Free Tier limits, some modifications were made to the
resource configurations. For example, the EC2 instance type was
adjusted to T2.micro with Ubuntu 20.04, 1 CPU, and 1 GiB RAM. Ad-
ditionally, a controlled environment was created using code, with
five EC2 instances to execute the test cases.

During the experiment, we collected the following metrics: com-
putational resource usage, assessing memory and CPU usage to
evaluate the impact of the tools on computational components,
and execution time, averaged from five executions to create the
infrastructure elements, recorded in tenths of a second. Multiple
executions help avoid incorrect measurements, allowing us to accu-
rately evaluate the efficiency of each tool in creating IaC resources.
4 RESULTS
4.1 Study 1: Evaluation of Tool Abstraction
In order to assess the abstraction capability of IaC tools, an experi-
ment was conducted with novice developers. Specifically, the aim
is to address the RQ1: How do CDK and Terraform compare in terms
of abstraction capability in creating IaC’s?

For the experiment, 30 students from the sixth semester of a
Software Engineering course were selected and randomly divided
into two groups, resulting in 14 for CDK and 16 for Terraform.
Among them, 21 had no previous experience with IaC. Regarding
professional experience, four students had less than one year, 18
had one to three years, five had more than three years, and three
had no experience in the technology field. In the Terraform group,
16 students rated their familiarity with the tool as 1 on a scale of 1 to
5, indicating limited knowledge. In the CDK group, three out of 14
students rated their familiarity level as 2. This uniformity in initial
assessments suggests that the students had similar knowledge levels
regarding the tools before the experiment.

Figure 2 presents the assertiveness index (score) from the applied
questionnaire, composed by 10 questions answered by 30 partici-
pants. Figure 2 (left), the scores obtained by Terraform participants
vary significantly, with the highest score reaching 8 and the lowest
score being 2, resulting in an average score of 4.56 and a median
score of 4. Figure 2 (right), the scores of CDK participants also
show significant variation, with the highest score reaching 9 and
the lowest score being 3, resulting in an average score of 6 and a
median score of 6.
4https://registry.terraform.io/providers/hashicorp/aws/latest/docs
5https://docs.aws.amazon.com/cdk/api/v2/

https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://docs.aws.amazon.com/cdk/api/v2/


SBES’24, September 30 – October 04, 2024, Curitiba, PR Frois et al.

Table 1: AWS Resources

Service Name Service Description Service Acronym
Elastic Compute Cloud Scalable virtual machines in the cloud. EC2
Simple Storage Service Scalable and durable object storage. S3
Elastic Container Registry Container registration for ECS. ECR
Relational Database Service Managed relational database service. RDS
Simple Notification Service Messaging service for distributed applications. SNS
Virtual Private Cloud Isolated cloud network for hosting resources. VPC

Figure 2: Terraform (left) and AWS CDK (right)

The Terraform group showed a median closer to the average,
suggesting more consistent performance. On the other hand, CDK
group achieved the same average and median scores. In the Mann-
Whitney test applied to the total scores, the statistic was 64, and
the p-value was approximately 0.048. Since this value is less than
the conventional threshold of 0.05, it is concluded that there is a
subtle difference between the median total scores of students for
each tool.

CDK Terraform
Easy 0.643 0.75

Medium 0.714 0.479
Hard 0.482 0.219

Figure 3: Performance Comparison between Tools in Per-
centage

Figure 3 shows the relationships between participants’ average
familiarity with the respective tool and their percentage of correct
answers at each difficulty level. For easy questions, Terraform par-
ticipants achieved a 75% accuracy rate, compared to CDK’s 64.3%.
For medium questions, Terraform’s accuracy rate was 47.9%, while

CDK’s was 71.4%. For hard questions, Terraform’s accuracy was
21.9%, and CDK’s was 48.2%.

The Mann-Whitney statistic in the tests conducted on simple
questions was 85.0, with a p-value of 0.0695. There are no statisti-
cally significant differences in the students’ scores for easy ques-
tions between the two groups (Terraform and CDK) as this value
above the traditional threshold of 0.05. With a p-value of 0.0677, the
absence of significant difference remained in the medium questions.
On the other hand, for the difficult questions, the 95% confidence
level p-value was much smaller than 0.05 (0.0028), demonstrating
a statistically significant difference in the students’ performance
between the CDK and Terraform groups.

The findings suggest that CDK has a less steep learning curve
than Terraform, despite its goal of offering a higher level of abs-
traction in the creation of IaC. Particularly to its programmatic na-
ture, CDK gets more comprehensible as task complexity increases,
whereas Terraform seems more conceptually approachable for sim-
pler projects. Thus, in keeping with its goal of abstracting comple-
xity and promoting practical use, CDK offers a smoother learning
curve for more complicated applications, whereas Terraform may
be more appropriate for lesser jobs.

4.2 Study 2: Evaluation of Tools Scalability and
Maintainability

Three specialists with extensive experience and AWS certifications
were interviewed to evaluate the tools’ scalability and maintainabi-
lity. With each participant’s permission, the interviews were cap-
tured on video via Google Meet. The goal of this study is to answer
RQ2:What is the scalability and maintainability comparison between
Terraform and CDK?

The interviews aimed to understand how IaC tools handle com-
plex projects regarding scalability (managing expanding infras-
tructures) and maintainability (ease of modifying, updating, and
understanding infrastructure code over time). Insights from in-
dustry experts were sought to compare these two critical aspects,
identifying trends, patterns, and distinct characteristics of each tool
in large-scale scenarios. The main conclusions and trends observed
in the experts’ responses are discussed as follows.

Terraform Advantages and Disadvantages – Experts noted that
Terraform facilitates the configuration of hybrid environments (us-
ing different cloud providers) but has limitations regarding state
management and teamwork strategies. For instance, Interviewee 1
pointed out:

The main advantage of Terraform is its compatibility with
multiple clouds. The issue of state poses a challenge in larger
teams.



Terraform and AWS CDK: A Comparative Analysis of Infrastructure Management Tools SBES’24, September 30 – October 04, 2024, Curitiba, PR

CDK Advantages and Disadvantages – Experts evaluated CDK as
easier for developing AWS resources, especially for novice develo-
pers, but it inherits CloudFormation’s limitation in state reading.
For instance, Interviewee 3 argued:

CDK is advantageous for beginners, but inherits challenges
from CloudFormation regarding state reading.

Scalability – Both tools suffer from challenges in code organiza-
tion and modularization, with inconsistent resource usage leading
to state management issues. Interviewee 2 stated:

The main challenges revolve around organized project ex-
pansion. With both tools, modularization practices simplify
expansion. However, disorganized implementation without
a clear pattern can become problematic. Specifically, in Ter-
raform, managing state can be difficult for teams with multi-
ple people responsible for the infrastructure, as parallel tasks
can cause conflicts.

Maintainability –Code organization is crucial for both tools, with
best practices such as modularization and separating resources into
repositories. Interviewee 3 emphasized:

The guarantee of maintainability requires well-separated
scopes. Separating projects for each service or into distinct
directories is beneficial. Dividing environments into accounts
can also be advantageous. In the DevOps culture, it’s crucial
that people understand their tasks and share this knowledge.

Learning Curve – CDK has a shorter learning curve, but learning
Terraform is essential due to its wider industry usage. Interviewee
1 stated:

For individuals entering the industry, CDK offers a shorter
learning curve, as it uses languages familiar from college,
making the code more readable. However, Terraform’s lan-
guage is also easy to learn. In the long run, individuals will
likely need to use Terraform for other cloud environments,
as it is the most widely used IaC tool.

Ease of Finding Support – Terraform has more support due to its
longer presence in the industry and established user community.
Interviewee 1 expressed:

Terraform, being older with numerous versions, forums, and
a community of experts, makes it easier for you to find res-
olutions. On the other hand, CDK, being newer, is still in a
testing phase. People are beginning to have initial doubts
and limitations, encountering the first problems, and the first
forums are emerging.

Based on the interviews, we identified that Terraform is more
suitable for multi-cloud environments, though it requires special
attention to state management and team collaboration. Conversely,
CDK is preferred for novice developers working with AWS, despite

its state management limitations inherited from CloudFormation.
For both tools, a modular approach is essential for effective scala-
bility. Maintainability heavily depends on proper organization and
modularization of the code. These insights reinforce the importance
of choosing the right tool aligned with specific project needs and
the team’s skills.

4.3 Study 3: Performance Evaluation of the
Tools in Resource Creation

To assess the performance of the tools in creating infrastructure
resources onAWS, we conducted an experiment to evaluate runtime.
This experiment aims to answer RQ3:Which tool enables the creation
of infrastructure resources on AWS with the shorter execution time?

Figure 4 shows the total time spent to create each infrastruc-
ture runner. CDK, represented by the darker line, consistently had
a longer execution time in all cases compared to Terraform, re-
presented by the lighter line. Therefore, Terraform demonstrated
significantly faster performance in creating resources. This is an
important factor for organizations that seek efficient and quick
resource provisioning.

To evaluate the tools’ performance in creating IaC resources,
another experiment was conducted to assess metrics related to the
utilization of computational resources. This experiment aims to
answer RQ4: Which tool consumes more computational resources,
such as CPU and memory, during the creation of resources?

Figure 5(left) shows the average CPU usage for each tool. Ter-
raform consistently maintained higher CPU consumption through-
out the execution period. This behavior can be explained by the
operation of the tools, with Terraform performing all state com-
parisons locally on the machine where it is executed. In contrast,
CDK consumes less CPU because it leverages AWS infrastructure
for part of the processing.

Figure 5 (right) presents the average memory usage for each tool.
Unlike CPU consumption, memory usage varies throughout the
execution period. These variations can be attributed to the mana-
gement of the tools’ state files: Terraform manipulates and creates
these files locally, while CDK stores them in the CloudFormation
stack structure. This explains why different tools show variations
in resource consumption at different stages of the process.

Comparing Terraform and CDK reveals a perceptible difference
in resource usage. Terraform requires more local CPU, while CDK
consistently consumes less throughout the entire process. Regard-
ing memory, Terraform consumes less initially but increases its
usage as the process progresses, eventually surpassing the con-
sumption of CDK, which starts higher. Teams aiming to optimize
their local resources may benefit from using CDK, given these
differences.

5 THREATS TO VALIDITY
This section presents and discusses the potential threats to the
validity of this study, categorized as internal, external, and construct
threats [16].

Internal threats relate to potential failures in data collection,
particularly when creating IaCs on AWS. To mitigate this threat,
the resource creation process was carried out five times, calculating
the average execution time to increase the reliability of the results.



SBES’24, September 30 – October 04, 2024, Curitiba, PR Frois et al.

Figure 4: Runtime of each scenario for each of the tools.

Figure 5: Average CPU and Memory usage

External threats concern the generalization of results. In Study 1,
a diverse sample of participants with varying levels of knowledge
and experience was sought to ensure comprehensive representati-
vity. In Study 2, interviewees were selected based on their proven
experience and AWS certification to capture insights from qualified
professionals. Additionally, to address developers’ hesitation to dis-
cuss inappropriate practices at their companies during interviews,
an environment was provided that encouraged participants to share
real-world scenarios of tool usage, allowing for a more authentic
and detailed expression of their experiences.

Construct threats are identified in Study 3, relating to the unifor-
mity of resources, which may constrain the depth of the analysis.
To mitigate this limitation, a variety of different resources were
implemented to cover multiple infrastructures. This intensifies the
experimental analysis and simplifies accessibility for replicating the
experiment, as creating more complex structures can incur costs
on AWS. This limitation is acknowledged, and it is suggested that
future studies include variations in resource characteristics to allow
for a broader and more representative analysis.

6 CONCLUSION
This study compared Terraform and CDK in managing IaC on AWS,
evaluating aspects such as abstraction capability, scalability, main-
tainability, and performance. CDK proved to be more accessible for
beginners with a programmatic structure that facilitates complex
tasks, while Terraform, though accessible, presents challenges in
more complex scenarios. Both tools require a modular approach in
large projects; Terraform faces difficulties in team management for
larger teams, while CDK demands careful organization. Terraform
is faster in resource creation but consumes more CPU resources,
whereas CDK is more resource-efficient. The choice between them
depends on the project’s needs and the team’s familiarity.

As future work, we intend to explore two main lines of research.
The first is the expansion of the current study to examine the effi-
ciency of IaC tools in more complex scenarios, analyzing projects
that integrate multiple services and dependencies. This will provide
a deeper understanding of the capabilities and limitations of these
tools in managing complex infrastructures. The second line of re-
search proposes a broader comparative study, including IaC tools
such as Ansible, Chef, Puppet, and CloudFormation, in addition to
Terraform and CDK. Such a comparative analysis would enhance
the understanding of the characteristics, efficiency, and limitations
of these tools, assisting development and operations teams in mak-
ing more informed choices and revealing innovation opportunities
in the IaC area.

REPLICATION PACKAGE
The replication package for this study is available at https://doi.org/
10.5281/zenodo.11479674.

https://doi.org/10.5281/zenodo.11479674
https://doi.org/10.5281/zenodo.11479674


Terraform and AWS CDK: A Comparative Analysis of Infrastructure Management Tools SBES’24, September 30 – October 04, 2024, Curitiba, PR

REFERENCES
[1] Juncal Alonso, Radosław Piliszek, and Matija Cankar. 2023. Embracing IaC

Through the DevSecOps Philosophy: Concepts, Challenges, and a Reference
Framework. IEEE Software 40, 1 (2023), 56–62. https://doi.org/10.1109/MS.2022.
3212194

[2] Justus Bogner and Manuel Merkel. 2022. To Type or Not to Type? A Systematic
Comparison of the Software Quality of JavaScript and TypeScript Applications
on GitHub. In 2022 IEEE/ACM 19th International Conference on Mining Software
Repositories (MSR). 658–669. https://doi.org/10.1145/3524842.3528454

[3] David Chappell. 2008. A Short Introduction to Cloud Platforms: An Enterprise-
Oriented View. Technical Report. David Chappell & Associates. http://www.
davidchappell.com/CloudPlatforms--Chappell.pdf

[4] Stefano Dalla Palma, Dario Di Nucci, Fabio Palomba, and Damian Andrew Tam-
burri. 2020. Toward a catalog of software quality metrics for infrastructure code.
Journal of Systems and Software 170 (2020), 110726. https://doi.org/10.1016/j.jss.
2020.110726

[5] MIchele Guerriero, Martin Garriga, Damian A. Tamburri, and Fabio Palomba.
2019. Adoption, Support, and Challenges of Infrastructure-as-Code: Insights
from Industry. In 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME). 580–589. https://doi.org/10.1109/ICSME.2019.00092

[6] Manu Gupta, Mandepudi Nobel Chowdary, Sankeerth Bussa, and Chennupati Ku-
mar Chowdary. 2021. Deploying Hadoop Architecture Using Ansible and Ter-
raform. In 2021 5th International Conference on Information Systems and Computer
Networks (ISCON). 1–6. https://doi.org/10.1109/ISCON52037.2021.9702299

[7] Gene Kim, Jez Humble, Patrick Debois, and John Willis. 2018. Manual de DevOps:
como obter agilidade, confiabilidade e segurança em organizações tecnológicas (1a
ed. ed.). Editora Alta Books, Rio de Janeiro. 427 pages.

[8] Patrick E. McKnight and Julius Najab. 2022. Mann–Whitney U Test. The SAGE
Encyclopedia of Research Design (2022). https://api.semanticscholar.org/CorpusID:

118856424
[9] Chris Parnin, Akond Rahman, and Laurie Williams. 2019. The Seven Sins:

Security Smells in Infrastructure as Code Scripts. 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering (ICSE) (2019), 164–175. https:
//doi.org/10.1109/ICSE.2019.00033

[10] Jagdish Chandra Patni, Souradeep Banerjee, and Devyanshi Tiwari. 2020. Infras-
tructure as a Code (IaC) to Software Defined Infrastructure using Azure Resource
Manager (ARM). In 2020 International Conference on Computational Performance
Evaluation (ComPE). 575–578. https://doi.org/10.1109/ComPE49325.2020.9200030

[11] Akond Rahman, Rezvan Mahdavi-Hezaveh, and Laurie Williams. 2019. A system-
atic mapping study of infrastructure as code research. Information and Software
Technology 108 (2019), 65–77. https://doi.org/10.1016/j.infsof.2018.12.004

[12] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. A
Large Scale Study of Programming Languages and Code Quality in Github. In Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (Hong Kong, China) (FSE 2014). Association for Computing Ma-
chinery, New York, NY, USA, 155–165. https://doi.org/10.1145/2635868.2635922

[13] Julio Sandobalín, Emilio Insfran, and Silvia Abrahão. 2020. On the Effectiveness
of Tools to Support Infrastructure as Code: Model-Driven Versus Code-Centric.
IEEE Access 8 (2020), 17734–17761. https://doi.org/10.1109/ACCESS.2020.2966597

[14] Daniel Sokolowski and Guido Salvaneschi. 2023. Towards Reliable Infrastructure
as Code. In 2023 IEEE 20th International Conference on Software Architecture
Companion (ICSA-C). 318–321. https://doi.org/10.1109/ICSA-C57050.2023.00072

[15] Werner Vogels. acessado em 03 de março de 2023. Werner Vogels on the AWS
Cloud Development Kit (AWS CDK). https://youtu.be/AYYTrDaEwLs

[16] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

https://doi.org/10.1109/MS.2022.3212194
https://doi.org/10.1109/MS.2022.3212194
https://doi.org/10.1145/3524842.3528454
http://www.davidchappell.com/CloudPlatforms--Chappell.pdf
http://www.davidchappell.com/CloudPlatforms--Chappell.pdf
https://doi.org/10.1016/j.jss.2020.110726
https://doi.org/10.1016/j.jss.2020.110726
https://doi.org/10.1109/ICSME.2019.00092
https://doi.org/10.1109/ISCON52037.2021.9702299
https://api.semanticscholar.org/CorpusID:118856424
https://api.semanticscholar.org/CorpusID:118856424
https://doi.org/10.1109/ICSE.2019.00033
https://doi.org/10.1109/ICSE.2019.00033
https://doi.org/10.1109/ComPE49325.2020.9200030
https://doi.org/10.1016/j.infsof.2018.12.004
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1109/ACCESS.2020.2966597
https://doi.org/10.1109/ICSA-C57050.2023.00072
https://youtu.be/AYYTrDaEwLs

	Abstract
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Goal and Research Questions
	3.2 Study 1: Evaluation of Tool Abstraction
	3.3 Study 2: Evaluation of Tools Scalability and Maintainability
	3.4 Study 3: Performance Evaluation of the Tools in Resource Creation

	4 Results
	4.1 Study 1: Evaluation of Tool Abstraction
	4.2 Study 2: Evaluation of Tools Scalability and Maintainability
	4.3 Study 3: Performance Evaluation of the Tools in Resource Creation

	5 Threats to Validity
	6 Conclusion
	References

