
A New Integration Approach to support the Development of
Build-time Micro Frontend Architecture Applications
Fernando Rodrigues de Moraes
São Paulo State University – UNESP

Rio Claro, Brazil; and
VR Software
Limeira, Brazil

fr.moraes@unesp.br

Frank José Affonso
São Paulo State University – UNESP

Rio Claro, Brazil
f.affonso@unesp.br

ABSTRACT
The Micro Frontend Architecture (MFA) is an innovative, scalable,
and flexible architectural model supporting frontend software de-
velopment. Despite the advantages of this architectural model, tech-
nologies that depend on packaging applications in compile time
benefit from MFA using a build-time approach by splitting Micro
Frontend Applications (MFApps) in packages, which makes this
application incapable of performing a runtime interpretation of
other MFApps. This paper introduces a new integration approach
to support the development of build-time MFApps to overcome lim-
itations related to the coupling of these applications. The proposed
approach employs the concept of remote component rendering
and the Backend for Frontend pattern to solve continuous delivery
issues, provide runtime integration, and help teams scale their de-
velopment process of MFApps. As a result, we observed that our
integration approach enables the developers to work with MFA in
a build-time approach as a runtime integration of MFApps.

CCS CONCEPTS
• Software and its engineering→ Software creation and man-
agement; Designing software;

KEYWORDS
Micro Frontend, Integration Approach, Build-time

1 INTRODUCTION
The Micro Frontend Architecture (MFA) is a microservices-inspired
architecture for frontend applications, which enables this type of
application to be developed and deployed independently. MFA is
an innovative, scalable, and flexible architectural model that aims
to support the development of web, desktop, and mobile appli-
cations. This architectural style facilitates efficient independent
creation, deployment, and maintenance of decoupled applications
for frontend [3, 8]. In this direction, it can be said that MFA has been
revealed as a feasible alternative, especially in web applications,
where it is possible to communicate with different micro applica-
tions hosted remotely and render them in runtime. Furthermore,
the integration of MFA in web applications is empowered, because
of their capacity to offer a dynamic frontend, capitalizing on the
functionalities of browser runtime interpretation [7, 11]. According
to a study conducted by Moraes et al. [11], the development of
MFApps can be guided by three integration approaches, namely:
build-time; frameworkless, and framework-based. In this article,

only the build-time approach will be addressed because of its nature
and development constraints.

Despite themultiple benefits thatMFA offers for the development
of frontend applications, the dependency of certain technologies in
compiled applications, which generates a coupling between bundle
applications known as Micro Frontend Applications (MFApps) has
hindered the adoption of this architectural style within the software
industry [8, 14, 17]. In short, the development of MFApps based
on the build-time approach makes the main application unable
to interpret other MFApps at runtime. Since mobile and desktop
applications are usually compiled in a final bundle application (i.e.
platform’s native applications), which demands a natural coupling
of MFApps in a build-time approach, teams avoid the adoption of
MFA in this scenario because the missing benefits from MFA as
decoupling, independent deploy, and fault isolation.

Based on the presented context, this paper presents a new inte-
gration approach to support the development of build-time MFApps
to minimize the impacts related to the aforementioned limitations.
The proposed approach, referred to from this point forward as RSBF
(Runtime Service-Based Frontend), is based on concepts of Remote
Component Rendering (RCR) associated with the Backend For Fron-
tend (BFF) pattern [16] to solve continuous delivery issues, provide
runtime integration, and help teams scale their development pro-
cess of MFApps. In short, the power of components/widgets remote
rendering provided by some frameworks or libraries (e.g., Remote
Flutter Widget [15], React Native Remote Components [9]) to help
teams adopt MFA with similar benefits in a build-time approach
as well. A component/widget remote rendering is a capability of
integrating remote responses (e.g., HTTP1, socket) and interpreting
as a portion of a User Interface (UI) in a frontend application, ren-
dering this UI at runtime. BFF is a microservice pattern that dictates
specific services to be developed oriented to frontend applications,
with easier-to-integrate backend responses that fit better to users
and with only required data [1, 16].

The remainder of this paper is organized as follows. Section 2
presents the background and related work. Section 3 provides a
description of our approach. Section 4 presents a case study to show
the applicability of the approach proposed in this paper. A brief
discussion of the results and limitations of our study is presented
in Section 5. Finally, Section 6 summarizes our conclusions and
perspectives for further research.

1Hypertext Transfer Protocol

https://orcid.org/0009-0004-8631-9385
https://orcid.org/0000-0002-5784-6248

SBES’24, September 30 – October 04, 2024, Curitiba, PR Fernando R. de Moraes, and Frank J. Affonso

2 BACKGROUND AND RELATEDWORK
This section presents the background (i.e., concepts and definitions)
and related work that contributed to the development of our pro-
posal. Initially, concepts of micro frontends and their development
approaches are reported. Next, a general view of the main issues
(i.e., BFF and RCR) that integrate our proposal is addressed. Finally,
related work on our proposal is presented.

Micro frontends. MFA is a modern architectural style based
on microservice principles. In this architecture, an application (i.e.,
Desktop, Web, or Mobile) is developed as a collection of indepen-
dent frontend applications (i.e., MFApps), each representing a spe-
cific part of the business domain. Each part of the UI is treated
as a separate component or page, which can be developed, tested,
deployed, and containerized independently. This modular organi-
zation enables small autonomous teams, with different technology
skills (i.e., technology stacks and implementation pipelines) to work
independently. This feature reduces dependency between teams,
increases governance, and simplifies business complexity. Addi-
tionally, the MFA has the potential to encourage innovation and
optimize application maintenance activity in the future [4, 11, 13].
Figure 1 illustrates the organization and layout of MFApps. As seen
in (A), teams can be organized to work in three layers (i.e., frontend,
backend, and database), where each column represents a develop-
ment team working in full-stack mode. The layout decisions are
represented in (B), which can be based on two options: horizon-
tal, which enables multiple micro frontends per page; and vertical,
which enables one micro frontend per page.

MFApp 1
(Team A)

Footer

Header

MFApp 2
(Team B)

Team A:
DC1

Footer

Header

Team A:
DC2

Team B: DC1

Footer

Header

Team B: DC2

Team A (MFApp 1) Team B (MFApp 2)

Horizontal split Vertical split

Micro Frontend
Application

M
is

si
on

 A

M
is

si
on

 C

M
is

si
on

 B

Frontend

Backend

Database

(A) Micro frontend

(B) Split

Legend MFApp:DC: Domain Components Micro Frontend Application

Team A Team B Team C

Figure 1: MFApps organization and layout

As reported in Section 1, an MFApp can be developed according
to guidelines of three integration approaches: build-time, frame-
workless, and framework-based [11]. Build-time is the simplest
approach to the architectural implementation of micro frontends
because it enables the development of MFApps as packages [17].
Frameworkless is a type of approach that does not require frame-
works for the development of MFApps [5]. Framework-based is

a pragmatic and successful approach that follows guidelines es-
tablished within an architectural framework used to implement
integration between MFApps [7].

Remote Component Rendering. RCR refers to the ability of
a frontend technology to interpret remote data (e.g., HTTP and
socket) and dynamically render UIs during runtime execution. This
feature enables teams to write UI code (e.g., components, widgets)
directly in the backend and promotes data-oriented customization
of UI and faster changes to frontend applications since only the
backend has to be deployed. In parallel, when MFApps are built
using the BFF pattern, combining these concepts suggests that
an optimized and integrated UI model design will be delivered to
consuming applications. Since web applications can rely on other
supported runtime integration approaches based on web compo-
nents, iFrames, and module federation, RCR becomes suited to
architectures developed using a build-time integration approach.
Among the aforementioned technologies, iFrame has been used
most to enable runtime rendering in desktop and mobile applica-
tions. In short, the iFrame does not render the components natively,
causing performance degradation, usability, and accessibility prob-
lems arising from technology limitations, resulting in low adoption
by the scientific community and practitioners [6, 18]. Finally, it
is worth highlighting that this concept is an integral part of the
proposal presented in this paper. To do so, scientific evidence was
gathered [2, 10], compiled, and associated with the professional
experience of the authors of this paper.

Backend for Frontend. BFF is a design pattern for developing
backend services to satisfy frontend needs with a more optimized
communication interface, providing custom-specific queries and
responses to be integrated by a frontend application [12, 16]. This
pattern facilitates integration between the backend and frontend ap-
plications and expands possibilities for data or interfaces visualized
by the users because the backend is closer to user data. For instance,
the backend can determine (e.g., user location, preferences) what
will be sent to the frontend application. This strategy is largely used
by companies in different use cases in the industry aiming to solve
problems in frontend communication with microservices and to
deliver a better user experience by providing a customized interface
based on data [1]. Based on this context, the BFF showcases a plug-
gable pattern for MFA because it promotes vertical full-stack teams,
runtime rendering, and easier frontend integration. Moreover, the
adoption of this pattern may reduce bottlenecks on development in-
tegration and teams’ cross-system implementation concerns, since
a frontend developer in a vertical full-stack position would maintain
an abstracted service layered on top of other microservices guided
to frontend instead of directly maintaining the backend.

As related work, to the best of our knowledge, there is no
solution regarding the design of MFApps based on a build-time
approach that supports the integration of other MFApps at runtime.
Thus, we present in this section relevant studies that have addressed
some type of investigation related to the build-time approach to
MFA. Next, a description of each study is addressed.

Stefanovska & Trajkovik [17] conducted a study to evaluate code
reuse in an MFA. In short, this study can be summarized in two
phases: the decomposition of a frontend application; and the case
reuse by integrating the decomposed components in a new MFApp.
In the same direction as Jackson [8], the aforementioned authors

A Runtime Service-based Solution to support the Development of Build-time MFA Applications SBES’24, September 30 – October 04, 2024, Curitiba, PR

mentioned that the build-time integration approach is limited be-
cause it is necessary to re-compile and release every single MFAppp
to release a change to any individual part of the final application.

The development of MFApps in Single-Page Applications (SPA)
was investigated in the study by Pavlenko et al. [13]. To do so, the
aforementioned authors conducted a case study focused on the
domain of online courses, which investigated the applicability of
microservices architecture in the design and frontend development
of a web application. The evidence of this study revealed that the
main drawback of the build-time approach is the compilation time
of an application because all the MFApps should be recompiled if
one of them is changed.

Despite these relevant initiatives, there is no similar proposal to
ours, which can deal with the development of MFApps based on
the build-time integration approach and the MFApp integration at
runtime. In summary, these initiatives were constrained to adhering
to established integration approaches because of apprehension for
issues that have already been overcome by the inherent features
of MFA. Therefore, it can be said that our proposal bypasses the
limitations of the build-time integration approach, making it behave
similarly to the integration approaches at runtime.

3 THE PROPOSED APPROACH
As reported in Section 2, MFA requires that MFApps be decoupled
and integrated at runtime to enable the full benefits and capabilities
of the MFA architectural style. Drawing a parallel between inte-
gration approaches, applications based on a build-time approach
are considered easier to implement than those based on a runtime
approach, since the application code is grouped at compile-time,
but comes with the cost of the limitations mentioned in Section 1.
According to evidence reported in the study conducted by Moraes
et al. [11], the development of MFApps based on compiled technolo-
gies presents limitations regarding continuous software delivery,
which restricts several benefits of theMFA architectural style. In par-
allel, this study revealed that the developers are restricted/limited
by developing MFApps for mobile applications (e.g., Android and
IOS) or Desktop native based on compiled technologies because
there is no alternative to deliver the final application. Based on this
context, the integration approach proposed in this paper combines
the rendering capabilities of remote components with the BFF pat-
tern to support the development of MFApps based on the build-time
integration approach. This combination enables the development
of this type of application to overcome the natural limitations im-
posed by development based on compiled technologies, making
it behave similarly to the development of technologies based on
runtime. The Figure 2 illustrates a layered architectural view of the
RSBF integration approach.

Regarding the architectural model, the proposed approach was
organized into three layers interconnected by two distinct gateway
services, the first for RSBF services and the second for microservices.
As illustrated in top layer, the development of MFApps can adopt
different division strategies. Although only the vertical and horizon-
tal divisions have been depicted in this figure, the hybrid division,
which combines the previous two, can also be used. According to our
proposal, the frontend team should be responsible for developing
MFApps and RSBF services (intermediate layer), integrating both

(...)

RSBF 1 RSBF 2 RSBF 3 RSBF N(...)

MFApp1
(Team A)

Footer

Header

MFApp2
(Team B)

MFApp1 and MFApp2

Frontend
Team

Backend
Team

Backend
Team

Backend
Team

Backend
Team

RSBF 4

Microservice
API Gateway

RSBF
API Gateway

Team C: DC1

Footer

Header

Team C: DC2

MFApp3

Ve
rt

ic
al

 M
FA

pp

H
orizontal M

FA
pp

MS 1 MS 2 MS 3 MS N

Legend
MFApp:

MS: Microservice
Micro Frontend Application

RSBF: Runtime Service-Based Frontend
DC: Domain Components

Figure 2: An architectural view of the RSBF approach

through an “RSBF API Gateway”. API Gateway is a design pattern
for microservice architecture, which creates a gateway between
services and the frontend application. In this sense, developers must
create a specific API gateway for each frontend, encapsulating the
RSBF services for each MFApp. This abstraction enables the fron-
tend team greater flexibility when making changes to their RSBF
services, making deployment independent of the backend teams
and enabling faster delivery of frontend changes. By employing this
strategy, the developers can inject remote code in a frontend so that
it can be interpreted and rendered into a user interface, thereby en-
abling the development of MFApps with runtime integration. Thus,
development teams can operate in full-stack mode, abstracting the
backend (i.e., microservices, APIs, and databases) and maintaining
only their services (i.e., RSBF) for frontend applications. Finally, in
the lower layer the development of microservices that will make
up an application (MS-1 to MN-N) takes place by the backend team.
RSBF services utilize the “Microservice API Gateway” to access
the microservices within this layer.

Based on the presented context, it can be said that MFApps based
on the RSBF approach provide an abstraction layer when using BFF
concepts, making teams specialize inmaintaining frontend-oriented
applications by knowing the communication interface between the
frontend and the backend. Therefore, the proposed integration ap-
proach can provide several benefits for the development of MFApps
based on the build-time approach, facilitating its adoption for those
interested in MFA development with compiled technologies. Next,
a brief description of these benefits is addressed:

SBES’24, September 30 – October 04, 2024, Curitiba, PR Fernando R. de Moraes, and Frank J. Affonso

• Optimizedmaintenance. Specific services designed forMFApps
become easier to maintain, since both (frontend and back-
end) were designed to “speak the same language”. Stated
differently, the backend was designed specifically to satisfy
the individual needs of the frontend.

• Promoted full stack teams. The architectural style of micro
frontends favors the organization of development teams in
full stack mode because developers work from the design of
the BFF service to the frontend of an MFApp.

• Easy integration. The development of BFF services tends to
minimize integration efforts between such services and an
MFApp. In summary, these services should be developed
to deliver specific data to the frontend, which will then be
responsible for incorporating this data into a designated
portion of the user interface.

• Service-oriented data capabilities. Based on data, services can
perform transformations in the user interface and provide
data-oriented capabilities directly in the backend; and

• Faster software delivery. A compiled frontend application
must be fully deployed to make changes to user interfaces.
By following the proposed approach, it is possible to make
changes to the user interfaces independently while imple-
menting the backend service.

Figure 3 illustrates a comparison between the integration ap-
proaches, build-time, runtime, and RSBF. It can be observed that in
the build-time approach, applications (App element) are naturally
coupled when built with the PackageManager (PM element) forming
a single package, significantly harming the advantages of MFA [8].
At runtime, applications can be served in different runtime appli-
cations and interpreted independently, becoming fully decoupled,
enabling independent deployment and development of MFApps.
Based on this context, it can be said that build-time using RSBF is an
approach for compiled applications where runtime interpretation
is still required. To accomplish this, MFApps are bundled during
the build process, while the UI portion is served by independent
microservices. Thus, following BFF concepts and applying RCR
capability, these RSBF applications are integrated and empower
the front-end application with runtime interpretation, delivering a
new UI interpreted at runtime to the client (i.e., mobile or Desktop
applications).

4 CASE STUDY
To evaluate the applicability, strengths, and weaknesses of our
integration approach, this section presents a case study that we
conducted in the mobile application course platform domain, which
will be referred to from this point forward as AppCourse. Our inter-
est is to show that the proposed integration approach can support
the development of MFApps based on compiled technologies, over-
coming the limitations mentioned in Sections 1 and 3.

As subject application of our empirical analysis, we selected
an application aimed at course management, as illustrated in Fig-
ure 4. This application provides its students with a set of courses
organized into several modules, each with specific content and can
be present in more than one course. As courses are offered remotely,
students can enroll in multiple courses simultaneously. Further-
more, as courses can have intersecting modules, the student can

B
ui

ld
 &

D
ep

lo
y

R
ep

os
ito

ry
A

pp
lic

at
io

n
C

lie
nt

PM

App

PM

App

Build-time Integration Runtime Integration RSBF Integration

R
SB

F

RSBF:
Composed ApplicationLegend MFApps

Runtime Service-Based FrontendPM: Package ManagerApp: Applications

Figure 3: Comparative between integration approaches

take advantage of modules so as not to take the same module more
than once. Next, we outlined a concise description of our empirical
techniques employed for this case study.

Empirical research strategy. Concerning the development
of the AppCourse application2, the Flutter3 framework was used
as frontend technology together with the RFW library4, which is
responsible for remote interpretation of the RSBF-based UI. In this
direction, it is worth highlighting that the technological choice
can directly influence the limitations of the approach proposed in
this paper, particularly regarding the ability to render application
components remotely.

As illustrated in Figure 4, the AppCourse application is fully
compliant with the same architectural organization presented in
Figure 2. For space and scope reasons, only elements related to the
approach proposed in this paper will be detailed in this section. At
the bottom, the development of the microservices that will be part
of the AppCourse application (e.g., MS-Course and MS-User) is il-
lustrated, which will be accessed by the application’s RSBF services
via API Gateway. Here, it is worth highlighting the communication
between the backend and frontend teams to align needs and stan-
dardize APIS (i.e., input and output parameters). Therefore, it can
be stated that the responsibility for developing RSBF services that
deliver UI source code in blob format (i.e., binary data) via HTTP
requests lies with the frontend team. It is worth highlighting that
the choice of blob is because this format is ideal for moving files
between APIs and MFApps. From an operational viewpoint, it can
be said that it is up to an MFApp to request to consume data from
one (or more) API(s) and render the result on the screen. The source
code listing numbered from 1 to 30 exemplifies the integration be-
tween Home RSBF service and MFApps. For instance, the HomePage
class, referenced by the Balloon (1), is a Flutter component of the
Home MFApp, rendering the initial screen after user authentication.
This MFApp queries the Home RSBF service, which returns the con-
tent of the mentioned page based on the data retrieved from the
equivalent microservice.
2https://github.com/fernandormoraes/the-bob-project/tree/main/bob_mobile
3 https://flutter.dev
4https://pub.dev/packages/rfw

https://github.com/fernandormoraes/the-bob-project/tree/main/bob_mobile
https://flutter.dev
https://pub.dev/packages/rfw

A Runtime Service-based Solution to support the Development of Build-time MFA Applications SBES’24, September 30 – October 04, 2024, Curitiba, PR

RSBF
Course

RSBF
Home

Frontend
Team

API
Gateway

RSBF
API

Gateway

Vertical MFApp

(...)RSBF
Content

MFApp
Course

MFApp
Content

MFApp
Home

(...)

Backend
Team

Backend
Team

MS-Course MS-User

(...)

1. class HomePage extends StatefulWidget {
2. @override
3. State<HomePage> createState() => _HomePageState();
4. }
5.
6. class _HomePageState extends State<HomePage> {
7. final Runtime _runtime = Runtime();
8. final DynamicContent _data = DynamicContent();
9. static const LibraryName coreName = LibraryName(<String>['core', 'widgets']);
10. static const LibraryName coreMaterial = LibraryName(<String>['core', 'material']);
11. static const LibraryName mainName = LibraryName(<String>['main']);
12.
13. @override
14. void initState() {
15. _runtime.update(coreName, createCoreWidgets());
16. _runtime.update(coreMaterial, createMaterialWidgets());
17.
18.
19. HomeService(dio: Dio()).getCourses().then((blobData) {
20. _runtime.update(mainName, parseLibraryFile(blobData));
21. });
22. super.initState();
23. }
24.
25. @override
26. Widget build(BuildContext context) => RemoteWidget(
27. runtime: _runtime,
28. data: _data,
29. widget: const FullyQualifiedWidgetName(mainName, 'root'));
30. }

(6)

(1)

Frontend
and

Backend
Team

Horizontal MFApp

For Beginners

(2)

(4)

(5)

(3)

Legend MFApp: MS: MicroserviceMicro Frontend Application RSBF: Runtime Service-Based Frontend

Figure 4: Overview of RSBF integration approach

By examining the source code of the mentioned figure, Bal-
loons 1 to 5 illustrate the execution sequence, emphasizing the
key steps for implementing the approach outlined in this paper
(see Section 3) and demonstrated in this case study. In (1) a class
called HomePage is declared, which inherits from a predefined class
from the Flutter framework called StatefulWidget. This Flutter
class defines methods for executing components that contain state
(i.e. changes in screen rendering). As can be seen in Line 3, this
class contains the createState method that must be overridden
to return an instance of State<T>.

In (2), _HomePageState is declared as a private class5 at Line 6.
In short, this class represents the state of screen rendering, in-
heriting from the pre-defined State<T> class, where T represents
a generic type. Here, HomePage is the class that instantiates the
_HomePageState screen state in the createStatemethod call (see
Line 3). Subsequently, in Lines 7 to 11, the objects of the RFW li-
brary (e.g., Runtime, DynamicContent, LibraryName) are declared
and instantiated to render the remote components.

As can be seen in (3), initState (Line 14) is the method in-
herited from the State class (Line 6), which must be called at the
beginning of the rendering of a UI component. To do so, this method
was overridden so that _HomePageState can request data from the
RSBF services and render the new state on the screen with the UI
returned from the service. The private attribute named _runtime
is responsible for building the library of Core and Material compo-
nents provided by the RFW library (see Lines 9 and 10). Regarding
these component libraries, other ones can also be used according
to developers’ customization.
5 In Flutter, a class or attribute private must be declared with “_” character at begin.

HomeService is the class responsible for receiving the instance
of a library called Dio6 so that HTTP requests can be achieved (4).
For instance, this class requests an RSBF service by calling the
getCoursesmethod, which returns data in blob format in blobData
parameter (see Line 19). Then, the update method (Line 20) of the
Runtime class (see declaration in Line 7) is called, receiving two
parameters. The first is a LibraryName object (i.e., mainName object
– see Line 11) and the second is the return from the parseLibrary-
File function, which deserializes the returned code into blobData
parameter and interprets it to be rendered. It is worth mentioning
that this function belongs to the RFW library.

In (5), RemoteWidget is a component of the RFW library that
receives an object from the Runtime class on Line 27 (see declaration
on Line 7), an object from the DynamicContent class on Line 28
(see declaration on Line 8), and an instance of a component used to
reference the component library that will be rendered on Line 29.
The buildmethod, inherited from the State class, returns a Widget
component to be rendered on the screen. To do so, this method was
overridden so that it returns a RemoteWidget component, so the
return to be rendered on screen becomes the interpreted remote
component. The screen illustrated in (6) represents the remote
component already rendered for the end user.

Based on the content presented in this section, it can be said
that the approach proposed in this paper was implemented in this
case study through the relationship between the HomePage compo-
nent (1), which instantiates the RFW library objects (see Lines 7
to 11), and the interpretation of the request’s response made by
HomeService (4) to RSBF services, rendering a UI code snippet at
6https://pub.dev/packages/dio

https://pub.dev/packages/dio

SBES’24, September 30 – October 04, 2024, Curitiba, PR Fernando R. de Moraes, and Frank J. Affonso

runtime. In short, this relationship was detailed in three steps (i.e.,
3, 4, and 5). In (3) and (4) the state of the HomePage component was
initialized and a request for an RSBF was called (Line 19), returning
a blob file for interpretation of the returned code (Line 20). The
update of the component state for an interpreted UI in the com-
ponent rendering occurs in (5) by calling the build method with a
return from a RemoteWidget. Next, we briefly discuss the results
and limitations of the proposed new integration approach and the
case study conducted in this paper.

5 DISCUSSION OF RESULTS
This section provides a summary of the main findings and discusses
the relevance of the study. The investigation presented a novel in-
tegration approach surrounding MFA, which surpassed the known
limitations on build-time implementations of the aforementioned
architecture.

As evidenced by the case study presented in Section 4, it can be
stated that the novel integration approach proposed in this paper is
a promising alternative for overcoming the inherent limitations of
compiled applications when adopting MFA. In short, our approach
employs runtime rendering capabilities to address the shortcom-
ings of the build-time approach, enabling the adoption of principles
analogous to those employed in runtime integration approaches
for MFA. Because of this feature, we can infer that applications
developed using compiled technologies can also benefit from the
principles of MFA [11]. To achieve this, the proposed approach pro-
vides a means of decoupling these compiled applications, thereby
enabling independent deployment and the isolation of failures. Con-
sequently, the benefits gained from the use of RSBF in conjunction
with MFA are enhanced, with previously coupled MFApps now
consuming UI code from decoupled RSBFs that are deployed and
isolated as microservices.

With regards to the final application, the integration of a fron-
tend application with RSBF simplifies the process of modifying the
user interface, eliminating the need for recompiling and redeploy-
ing the application. This is a noteworthy feature, particularly for
applications that are required to be deployed in application stores
(e.g., Play Store, App Store, Microsoft Store). Given that these stores
have a review process that may result in delays in time to market,
the approach proposed in this paper can effectively addresses this
challenge by enabling direct changes to the UI in RSBF.

Concerning the limitations, it is important to note that the ap-
proach proposed in this paper relies on RCR capabilities. There-
fore, it is recommended to conduct a thorough analysis of each
technology, such as the frontend framework, to identify potential
limitations. Our case study revealed that the RFW library for Flutter
presented some limitations concerning UI rendering. For instance,
this library does not provide the capability to create animations,
page transitions, or drag-and-drop components. Nevertheless, it is
possible to overcome these limitations using pre-built components
(e.g., reusing components already created on the frontend side),
since the RFW library can interpret the pre-built component con-
sumed from a remote source. A preliminary investigation into the
impact of our approach on application performance suggests that it
may have a slightly negative effect. In a build-time application, it is

possible to rely on immutable components or widgets. In contrast,
when using RCR, the components are rendered at runtime.

6 FINAL REMARKS AND FUTUREWORK
According to the investigation conducted byMoraes et al. [11], there
are several research gaps related to MFApps development, namely:
(i) establishment of solid and complete concepts; (ii) management
of the development of MFApps; and (iii) frameworks for decision-
making regarding the adoption of this architectural style. Therefore,
it can be said that establishing any initiative on this research topic
is a non-trivial and challenging activity, especially when there is
no literature support to denote guiding parameters for this type of
work. Therefore, aiming to contribute to this research topic, this
paper presented an integration approach called RSBF, developed
based on BFF services and the RCR concept. This approach enables
build-time MFApps development (i.e., compiled technologies) to
behave similarly to runtime MFApps development. Although build-
time is an integration approach that has limitations that violate
the MFA principles (see Sections 1 and 3), applications targeted at
native platforms (e.g., Mobile, Desktop) depend on their packaging
at build-time. This feature reinforces the interest of the scientific
community and practitioners in directing their efforts to promote
advances in this area of research (i.e., integration approach).

Although the approach proposed in this paper has been pre-
viously evaluated through a case study, it is worth highlighting
that the work in progress is accomplished by researchers who have
been investigated in this research area, as well as professionals with
relevant experience in this development area (i.e., MFA). Regarding
future work on the integration approach proposed in this paper, at
least two activities are intended: (i) conducting further case studies
or proofs of concepts to fully evaluate the proposed approach, in-
cluding different software domains and different technologies for
component rendering and UI interpretation; (ii) instantiate our ap-
proach in other programming languages and frontend frameworks
in order to evaluate its applicability and behavior in relation to
its main purpose; and (iii) evaluation of the behavior of the pro-
posed approach in a broader development and execution scenario.
Therefore, based on the content presented in this paper, a positive
research scenario can be idealized, since it is envisaged that the
proposed approach can become an effective contribution to the
software engineering area as a feasible alternative for problems
related to the development of MFApps for applications that require
the build-time approach (e.g., Mobile and Desktop).

ACKNOWLEDGMENTS
This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES).

REFERENCES
[1] Amr S. Abdelfattah and Tomás Cerný. 2023. Filling The Gaps in Microservice

Frontend Communication: Case for New Frontend Patterns. In Proceedings of the
13th International Conference on Cloud Computing and Services Science, CLOSER
2023, Prague, Czech Republic, April 26-28, 2023, Maarten van Steen and Claus Pahl
(Eds.). SCITEPRESS, Prague, Czech Republic, 184–193. https://doi.org/10.5220/
0011812500003488

[2] Markus Ast and Martin Gaedke. 2017. Self-contained web components through
serverless computing. In Proceedings of the 2nd International Workshop on Server-
less Computing (Las Vegas, Nevada) (WoSC ’17). Association for Computing
Machinery, New York, NY, USA, 28–33. https://doi.org/10.1145/3154847.3154849

https://doi.org/10.5220/0011812500003488
https://doi.org/10.5220/0011812500003488
https://doi.org/10.1145/3154847.3154849

A Runtime Service-based Solution to support the Development of Build-time MFA Applications SBES’24, September 30 – October 04, 2024, Curitiba, PR

[3] Yan Bian, DechaoMa, Qing Zou, andWeirui Yue. 2022. AMulti-way Access Portal
Website Construction Scheme. In The 5th International Conference on Artificial
Intelligence and Big Data, ICAIBD 2022. Institute of Electrical and Electronics
Engineers Inc., Chengdu, China, 589 – 592. https://doi.org/10.1109/ICAIBD55127.
2022.9820236

[4] Fabian Bühler, Johanna Barzen, Lukas Harzenetter, Frank Leymann, and Philipp
Wundrack. 2022. Combining the Best of Two Worlds: Microservices and Micro
Frontends as Basis for a New Plugin Architecture. Communications in Computer
and Information Science 1603 CCIS (2022), 3 – 23. https://doi.org/10.1007/978-3-
031-18304-1_1

[5] Frameworkless. 2024. Frameworkless movement. on-line. Avaliable: https:
//www.frameworklessmovement.org, acessed on July 26, 2024.

[6] E. Garcia-Lopez, A. Garcia-Cabot, A. Castillo-Martinez, A. Gutierrez-Escolar,
J.A. Medina, J.M. Gutierrez-Martinez, , and J.J. Martinez-Herraiz. 2014. Mobile
Usability: An Experiment to CheckWhether Current Mobile Devices are Ready to
Support Frames and iFrames. In Information Systems Development: Transforming
Organisations and Society through Information Systems (ISD2014 Proceedings),
V. Strahonja, N. Vrček., D. Plantak Vukovac, C. Barry, M. Lang, H. Linger, and
C. Schneider (Eds.). Information Systems Development: Transforming Organisa-
tions and Society through Information Systems (ISD2014 Proceedings), Varaždin,
Croatia: Faculty of Organization and Informatics, 234–241.

[7] Michael Geers. 2020. Micro frontends in action. Manning Publications, New York,
NY.

[8] Cam Jackson. 2019. Micro Frontends. on-line. Avaliable: https://martinfowler.
com/articles/micro-frontends.html, acessed on July 26, 2024.

[9] Sarath KCM. 2024. react-native-remote-components. on-line. Avaliable: https:
//github.com/sarathkcm/react-native-remote-components, acessed on July 26,
2024.

[10] Microsoft. 2024. Visual Studio App Center documentation. on-line. Avaliable:
https://learn.microsoft.com/en-us/appcenter/distribution/codepush/, acessed on

July 26, 2024.
[11] Fernando Rodrigues Moraes, Gabriel Nagassaki Campos, Nathalia Rodrigues

Almeida, and Frank José Affonso. 2024. Micro frontend-based Development:
Concepts, Motivations, Implementation Principles, and an Experience Report.
In Proceedings of the 26th International Conference on Enterprise Information
Systems. INSTICC, SciTePress, Angers, France, 175–184. https://doi.org/10.5220/
0012627300003690

[12] Sam Newman. 2015. Pattern: Backends For Frontends. on-line. Avaliable:
https://samnewman.io/patterns/architectural/bff/, acessed on July 26, 2024.

[13] Andrey Pavlenko, Nursultan Askarbekuly, Swati Megha, and Manuel Mazzara.
2020. Micro-frontends: Application of microservices to web front-ends. Journal
of Internet Services and Information Security 10, 2 (2020), 49 – 66. https://doi.org/
10.22667/JISIS.2020.05.31.049

[14] Severi Peltonen, Luca Mezzalira, and Davide Taibi. 2021. Motivations, benefits,
and issues for adopting Micro-Frontends: A Multivocal Literature Review. In-
formation and Software Technology 136 (2021), 106571. https://doi.org/10.1016/j.
infsof.2021.106571

[15] PUB.DEV. 2024. Remote Flutter Widgets. on-line. Avaliable: https://pub.dev/
packages/rfw, acessed on July 26, 2024, version rfw: 1.0.26.

[16] Chris Richardson. 2024. Variation: Backends for frontends. on-line. Avaliable:
https://microservices.io/patterns/apigateway.html, acessed on July 26, 2024.

[17] Emilija Stefanovska and Vladimir Trajkovik. 2022. Evaluating Micro Frontend
Approaches for Code Reusability. Communications in Computer and Information
Science 1740 CCIS (2022), 93 – 106. https://doi.org/10.1007/978-3-031-22792-9_8

[18] Guangliang Yang, Jeff Huang, and Guofei Gu. 2019. Iframes/Popups Are Dan-
gerous in Mobile WebView: Studying and Mitigating Differential Context Vul-
nerabilities. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 977–994. https://www.usenix.org/conference/
usenixsecurity19/presentation/yang-guangliang

https://doi.org/10.1109/ICAIBD55127.2022.9820236
https://doi.org/10.1109/ICAIBD55127.2022.9820236
https://doi.org/10.1007/978-3-031-18304-1_1
https://doi.org/10.1007/978-3-031-18304-1_1
https://www.frameworklessmovement.org
https://www.frameworklessmovement.org
https://martinfowler.com/articles/micro-frontends.html
https://martinfowler.com/articles/micro-frontends.html
https://github.com/sarathkcm/react-native-remote-components
https://github.com/sarathkcm/react-native-remote-components
https://learn.microsoft.com/en-us/appcenter/distribution/codepush/
https://doi.org/10.5220/0012627300003690
https://doi.org/10.5220/0012627300003690
https://samnewman.io/patterns/architectural/bff/
https://doi.org/10.22667/JISIS.2020.05.31.049
https://doi.org/10.22667/JISIS.2020.05.31.049
https://doi.org/10.1016/j.infsof.2021.106571
https://doi.org/10.1016/j.infsof.2021.106571
https://pub.dev/packages/rfw
https://pub.dev/packages/rfw
https://microservices.io/patterns/apigateway.html
https://doi.org/10.1007/978-3-031-22792-9_8
https://www.usenix.org/conference/usenixsecurity19/presentation/yang-guangliang
https://www.usenix.org/conference/usenixsecurity19/presentation/yang-guangliang

	Abstract
	1 Introduction
	2 Background and related work
	3 The proposed approach
	4 Case study
	5 Discussion of results
	6 Final remarks and future work
	Acknowledgments
	References

