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ABSTRACT
Self-Admitted Technical Debt (SATD) refers to a common practice in
software engineering involving developers explicitly documenting
and acknowledging technical debt within their projects. Identifying
SATD in various contexts is a key activity for effective technical
debt management and resolution. While previous research has fo-
cused on natural language processing techniques and specialized
models for SATD identification, this study explores the potential
of Large Language Models (LLMs) for this task. We compare the
performance of three LLMs - Claude 3 Haiku, GPT 3.5 turbo, and
Gemini 1.0 pro - against the generalization of the state-of-the-art
model designed for SATD identification. Additionally, we investi-
gate the impact of prompt engineering on the performance of LLMs
in this context. Our findings reveal that LLMs achieve competitive
results compared to the state-of-the-art model. However, when con-
sidering the Matthews Correlation Coefficient (MCC), we observe
that the LLM performance is less balanced, tending to score lower
than the state-of-the-art model across all four confusion matrix cat-
egories. Nevertheless, with a well-designed prompt, we conclude
that the models’ bias can be improved, resulting in a higher MCC
score.

CCS CONCEPTS
• Software and its engineering→Maintaining software; Soft-
ware evolution; Documentation; System administration; Software
maintenance tools.

KEYWORDS
Self-Admitted Technical Debt, Large Language Models, Prompt
Engineering

1 INTRODUCTION
In software engineering, the metaphorical concept of Technical
Debt (TD) refers to the future costs incurred in software devel-
opment due to sub-optimal solutions [10]. Such decisions often
stem from factors such as time constraints, inadequate software
quality, and flawed processes [25]. The identification and catego-
rization of technical debt have been largely studied in the literature.
Particularly, most previous papers have led to efforts to explicitly
document technical debt instances [14, 30, 32, 42] and to propose
techniques for characterizing technical debt based on how and why
it accrues [16, 27, 40].

The term Self-Admitted Technical Debt (SATD) gained formal
recognition in the software engineering literature in 2014 [32]. Ini-
tially, research primarily focused on SATD through code comments,
analyzing keyword patterns to identify TD admission [6, 32]. Over

time, researchers have observed that developers use different doc-
umentation methods, for example, issues and pull requests [23].
While much attention is still directed towards studying SATD in
code comments, recent investigations have delved into SATD in
issue tracking systems [22–24, 35, 41, 42, 44].

When examining SATD in issues, the initial step normally in-
volves identifying instances of TD admissions. Traditionally, re-
searchers have used issue labels to identify SATD in issues [41].
However, recent studies have shifted towards employing natural
language processing (NLP) algorithms for this purpose [22–24, 35].
The initial results suggest the potential to recognize Self-Admitted
Technical Debt even in the absence of explicit labels. This paves the
way to more flexible solutions for SATD management and enables
the exploration of the impact of explicitly acknowledging the debt
with a label.

However, current results also highlight a challenge: although
NLP-based models, particularly those leveraging transformers [35],
have been effective in identifying Self-Admitted Technical Debt,
they often experience a decline in accuracy when applied to data
from projects different from their training set. The necessity of
training the model and conducting fine-tuning on a per-project
basis may diminish its attractiveness for widespread adoption.

Concurrently, Large Language Models (LLMs) have gained sig-
nificant attention in both commercial and research contexts. For
instance, ChatGPT reached remarkable user adoption rates [37],
making LLMs well-known. Researchers also started to explore LLM
applications across various domains, including SATD [29]. Despite
this growing interest, LLMs have not yet shown positive results in
addressing technical debt, as indicated by previous studies related
to TD payment [29]. Nonetheless, observations of LLMs’ ability to
manage technical debt may become benchmarks over time, assess-
ing their performance in handling complex software engineering
tasks that require a deep understanding of the field’s practices and
reasoning capabilities.

Additionally, prompt engineering has also emerged in the lit-
erature as the process of crafting effective prompts for LLMs to
improve its outputs [17]. It involves designing the input prompts
to leverage the capabilities of the models and guide it towards pro-
ducing relevant and accurate responses [18]. In the context of this
study, we took advantage of prompt engineering to guide LLMs to
effectively identify instances of SATD in issues.

In light of this context, our study aims to explore the performance
of LLMs in identifying instances of SATD documented in issues.
We believe that LLMs may be used as a more versatile and easier-to-
use approach compared to the state-of-the-art models specifically
designed for this task. To accomplish that we evaluated three LLMs,
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and four prompting techniques. In particular, we aim to address
the following research questions:

RQ1: How does the performance of LLMs compare to the
state-of-the-art models for SATD identification? By analyzing
and comparing the effectiveness of the models selected in this study
against the best-known model proposed in the literature, we aim
to determine whether LLMs can achieve comparable performance
in identifying SATD in software projects. With the motivation of
being able to leverage these easier-to-use, and versatile tools that
do not require training.

RQ2: What is the impact of prompt engineering on the
performance of LLMs in the task of SATD identification? By
employing four different prompt engineering strategies, we observe
their effect on the performance of LLMs in SATD identification. We
aim to identify not only the most effective prompt engineering ap-
proach for this task, but also, to understand the broader capabilities
and limitations of prompt engineering.

Structure of the paper. This study is organized as follows. Sec-
tion 2 introduces the background knowledge necessary for under-
standing the most used concepts in this paper. After that, Section 3
outlines the study design adopted to accomplish the research. Lastly,
Section 4 and Section 5 presents and delves into the interpretation
of this study’s findings, with Section 6 concluding the paper.

2 BACKGROUND
This section aims to provide an understanding of the foundational
concepts and context crucial to this study. It delves into the evo-
lution and significance of Technical Debt in Section 2.1. We also
introduce Large Language Models and Prompt Engineering in the
Sections 2.2 and 2.3, respectively.

2.1 Technical Debt
The concept of Technical Debt was first introduced by Cunningham
in 1992 [10], and its use quickly spread across both academic and
non-academic domains. In the early 2000s, Martin Fowler used the
term often through his blog posts [12, 13, 15], illustrating the trade-
off between initial productivity gains from disregarding sound de-
sign practices and the eventual decrease in productivity in a poorly
designed software environment. The academic exploration of Tech-
nical Debt began in the 2000s [9], leading to a formal definition
that recognized Technical Debt as a collection of design or imple-
mentation decisions that are beneficial in the short term but can
make future changes more costly [5]. This definition not only estab-
lished the field of study but also broadened the scope of TD beyond
source code, recognizing that concerns related to TD are present
throughout the entire software development cycle.

The progress of research around Technical Debt led to the topic
of how developers deal with a system’s debt and the emergence of
Self-Admitted Technical Debt [32] as a field focused on the explicit
documentation of TD instances. Early studies on SATD aimed to
identify debt through source code comments as a means of docu-
mentation [6, 32]. These studies followed a list of commonly used
keywords to describe Self-Admitted Technical Debt in code com-
ments and confirmed that this was a common practice in the soft-
ware industry. With this confirmation, research began to focus
on comprehending TD [34], identifying it [22], and understanding

how it was introduced [41] and paid [26]. Figure 1 demonstrates
an instance of SATD documented in microsoft/vscode [31]. In
this example, it documents a functionality that works, but due to it
being implemented in a sub-optional way it needs refactoring.

Recently, the field then expanded to explore other means of doc-
umenting SATD, with recent studies delving into Self-Admitted
Technical Debt in issues [22, 24, 29, 35]. Some studies have also
aimed to understand where to document each type of TD and have
investigated the interplay between different means of documenta-
tion [23, 43].

2.2 Large Language Models
Large Language Models (LLMs) are systems capable of processing
natural language to generate human-like responses. The term Large
refers to the billions of tokens used to train these models. The
success of ChatGPT, a commercially available LLM, has drawn
attention to the area. These models have continued to grow in size,
and unexpected abilities have begun to emerge [38], enhancing the
perception of the models’ intelligence, performance, and viability.

This development has marked a "paradigm shift" [11] in Natu-
ral Language Processing (NLP) systems, transitioning from being
primarily built for specific tasks to being built on a LLM base or
"foundational" model. Instead of each task having a statistically
optimized model, such as separate systems for SATD identification
and categorization, LLMs have paved the way for language-related
tasks to be built on top of the same underlying deep learning model,
optimized through fine-tuning, prompt engineering, or other ap-
proaches that enhance the model’s understanding of the task.

Moreover, the largest publicly available models have been fine-
tuned to provide the most human-like answers possible. With the
vast amount of data they possess, they can respond accurately to a
wide range of topics. This ability to generalize and adapt to different
contexts and areas is evident in scientific publications spanning
various fields, from psychiatry [21] to finance [20]. Fine-tuned
and easily accessible models like OpenAI’s ChatGPT [2], Google’s
Gemini [19] and Anthropic’s Claude 3 models [4], have, like many
others, enabled automatizing tasks that would otherwise require
human evaluation, including classification tasks [7].

2.3 Prompt Engineering
Prompt engineering is an emerging field that explores the impor-
tance of constructing well-defined prompts to enhance the per-
formance of large language models (LLMs). Although the field is
not yet fully consolidated, its effect and importance have been dis-
cussed in recent literature [3, 17, 18, 28, 33, 36, 39]. By bridging the
gap between the intention behind the prompt and the machine’s
actions, well-engineered prompts help overcome the complexity of
human communication. Since the task of identifying SATD involves
recognizing patterns that are not always explicit, reasoning and
knowledge of software engineering theory and practice, crafting a
prompt that fully encapsulates the context is a important step of
using LLMs as a research tool.

In this context, we use the definition of a prompt being a collec-
tion of data and instructions that aim to guide a language model
towards a desired output [18]. A prompt typically consists of four
elements: (1) The instruction that guides the model’s behavior; (2)
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Figure 1: SATD instance in the VSCode repository

The template guiding the model’s output; (3) The input data that
the model should process; (4) The context given, aiming to guide
the model’s understanding;

Prompt engineering offers a wide array of strategies to optimize
the effectiveness of prompts in various ways. These strategies range
from providingmore context in a specificmanner to teach themodel
how to act, to specifying how the model should respond in an
effort to encourage reasoning. Several studies have systematically
classified and categorized these strategies [17, 33]. For the purpose
of this research, we selected a subset of these strategies to employ
and analyze, focusing on those that are most relevant to the task
of identifying SATD using LLMs and would not need to be crafted
towards a single, specific, software project since we are pursuing a
generalizable approach. The prompts used are as follows:

• Zero-shot prompt: A prompt that provides no examples or
additional context.

• Think step-by-step prompt: A prompt that encourages the
model to reason in multiple steps.

• Few-shot prompt: A prompt supplemented with a few exam-
ples to guide the response.

• Chain-of-Thought prompt: A prompt that explicitly sequences
thoughts logically.

3 STUDY DESIGN
In this section, we outline the key components of our study’s de-
sign, detailing our methodology and data. We discuss the selection
criteria for models and datasets, provide an overview of our prompt
engineering strategies and describe the evaluation metrics used to
measure the efficacy of the models.

Model Selection. To conduct the analysis of LLMs’ performance
in identifying SATD, our study begins with the selection of models
and prompts. We based our selection on the Multitask Multi-Modal

Language Understanding Benchmark (MMLU) [1], ensuring com-
patibility within our budget constraints. Consequently, we chose
Claude 3 Haiku, Google Gemini 1.0 Pro, and gpt-3.5-turbo-0125 as
our models.

Dataset. To assess the efficacy of our selected models, we adopted
a appropriate dataset. To compare our approach with existing ones,
we adopted the dataset employed in evaluating the generaliza-
tion capacity of the current state-of-the-art identification model
described in Skryseth et al. [35]. These datasets are composed of
issues mined from publicly available repositories. They were catego-
rized as either "TD" or "Not_TD" based on the presence or absence
of a label containing the term "debt". The adopted dataset include
issues from the repositories outlined in Table 1.

Repository Total Issues TD Issues Not_TD Issues

UBC Thunderbolts 847 538 309
Apache Traffic 616 362 254
Owncloud 1,200 553 647
VA Gov 6,000 2,457 3,543

Table 1: Summary of datasets used for analysis

In total we analyse 8,663 issues, 3,910 being classified as TD and
4,753 issues being classified as not TD.

Prompt Engineering Considering the classifications and elements
that compose a prompt defined in Section 2.3, we engineered four
prompts. The output’s template and the input data have limited
room for change, so we focus on optimizing the instructions given
to the model and the context provided to inform its understanding.
Initially, we tested each model’s ability to identify SATD using a
zero-shot prompt, as shown in Figure 2.
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Does the i s s u e be l l ow shou ld have a " S e l f Admit ted Te chn i c a l Debt "
l a b e l ?

Your answer shou ld be " YES " or "NO " .
i s s u e {

" t i t l e " : { i s s u e _ t i t l e }
" body " : { i s sue_body }

}

Figure 2: Zero-Shot Prompt

We subsequently crafted the prompts based on methodologies
detailed in prior studies [17, 33]. We began with the straightfor-
ward "think step-by-step" strategy, which has demonstrated its
effectiveness in enhancing model performance on reasoning tasks
by explicitly guiding the model to reason through each step of the
answer. The resulting prompt is illustrated in Figure 3.

Does the i s s u e be l l ow shou ld have a " S e l f Admit ted Te chn i c a l Debt "
l a b e l ? Think s tep −by− s t e p

i s s u e t e x t {
{ i s s u e }

}
Your answer shou ld s t a r t with " YES " or "NO " .

Figure 3: Think Step-by-Step Prompt

We also employed the "Few-shot Learning" strategy. To achieve
this, we selected a balanced set of examples from the GitHub Tech-
nical Debt Dataset [35] which was used to train the state of the art
model to identify SATD but are not included in the issues used to
test the models’ performance, ensuring an equal number of SATD
and non-SATD examples to avoid biasing the LLMs. The SATD
examples were extracted for the reason of clearly stating the ad-
mission of technical debt in either code duplication or sub-optimal
implementation due to time pressure. The non-SATD examples
encompass a question and a feature request, both not related to
Technical Debts. The resulting prompt is shown in Figure 4.

The last strategy we employed was "Chain-of-thought reason-
ing" (CoT). Describing the exact steps to identify SATD is a complex
task, and these steps might be subjective. To ensure that we were
instructing the model properly, we first described anything related
to explicitly discussing something that would fit the formal defini-
tion of Self-Admitted Technical Debt in the software engineering
literature[32]. Additionally, we listed keywords that were found
to be the most common in issue descriptions[23] and keywords
generally used to describe technical debt[32], to inform the model
about the common elements in issue descriptions. The final result
is shown in Figure 5.

Evaluation Metrics. To be able to compare the performance of
each model in our analysis we used the F1-score, precision, recall,
and the Matthews Correlation Coefficient (MCC) metric. The F1-
score is the harmonic mean of precision and recall, providing a
measure of a model’s performance. Equation 1 represents the F1-
score formula. Precision represents the proportion of true positive
predictions among all positive predictions, and it’s formula is shown
on Equation 2. Recall represents the proportion of true positive
predictions among all actual positive instances, Equation 3 shows
the formula for calculating it. Lastly, the MCC metric is a reliable
metric for binary classification [8], producing a high score only if
the prediction obtained good results in all four confusion matrix

Does the i s s u e below shou ld have a " S e l f Admit ted Te chn i c a l Debt "
l a b e l ?
Examples :
SATD I s s u e { {
" I wrote up the p o l l i n g s o l u t i o n r e a l l y qu i c k l y when I was l a t e
f o r work and never went back to f i x i t . I n s t e a d o f s av ing message
IDs or keep ing t r a c k o f the t e x t o f the p o l l a s one v a r i a b l e , i t
s a v e s a new copy o f the p o l l every t ime someone adds or removes

a vo te . Th i s i s h o r r i b l e and I 'm embar ras sed t h a t I haven ' t f i x e d
i t ye t "

} }
Answer : YES

Non−SATD I s s u e { {
" # ## Sea rch b e f o r e a sk ing

− [X] I have s e a r ched the YOLOv5 [ i s s u e s ] ( h t t p s : / / g i t hub . com /
u l t r a l y t i c s / yo lov5 / i s s u e s ) and [ d i s c u s s i o n s ] ( h t t p s : / / g i t hub . com /
u l t r a l y t i c s / yo lov5 / d i s c u s s i o n s ) and found no s i m i l a r q u e s t i o n s .

### Ques t ion

Why i s i t s e t l i k e t h i s ?
hyp [ ' box ' ] ∗= 3 / n l # s c a l e to l a y e r s
hyp [ ' c l s ' ] ∗= nc / 80 ∗ 3 / n l # s c a l e to c l a s s e s and l a y e r s
hyp [ ' obj ' ] ∗= ( imgsz / 6 4 0 ) ∗ ∗ 2 ∗ 3 / n l # s c a l e to image
s i z e and l a y e r s

d e f a u l t hyp [ ' box ' ] : hyp [ ' c l s ' ] : hyp [ ' obj ' ] = 1 : 1 : 1
i f my da t a nc i s 3 , hyp [ ' box ' ] : hyp [ ' c l s ' ] : hyp [ ' obj ' ] = 1 :
3 / 8 0 : 1 ? ? ? ?

### Add i t i o n a l

_No re sponse_ "
} }
Answer : NO

i s s u e { {
" Log i c f o r man ipu l a t i ng r e s ou r c e path ( and pa th s g en e r a l l y ,
f o r t h a t ma t t e r ) i s s c a t t e r e d and d u p l i c a t e d a l l over the
a p p l i c a t i o n . Th i s needs to be t r a c k e d and u n i f i e d i n t o a s e t
o f s t anda rd gene ra l −purpose path u t i l i t i e s . "

} }
Answer : YES

i s s u e { {
" There ' s o f t e n con fu s i on whenever d a y l i g h t s a v i n g s changes ,
because peop l e f o r g e t to change t h e i r t imezone on the web s i t e .
We can d e t e c t when the browser ' s t imezone i s d i f f e r e n t from the
t imezone on the p l aye r ' s p r o f i l e . In t h a t case , we can prompt the
use r i f they want to change t h e i r p r o f i l e t imezone . "
} }
Awnser : NO

Does the i s s u e below shou ld have a " S e l f Admit ted Te chn i c a l Debt "
l a b e l ? YOUR ANSWER SHOULD BE JUST " YES " OR "NO " .
i s s u e t e x t { {

{ i s s u e }
} }

Figure 4: Few-shot Prompt

categories (true positives - TP, false negatives - FP, true negatives
- TN, and false positives - FP). The formula for MCC is shown on
Equation 4

The formulas for each metric are as follows:

𝐹1 = 2 · precision · recall
precision + recall

(1)

precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

𝑀𝐶𝐶 =
𝑇𝑃 +𝑇𝑁 − 𝐹𝑃 − 𝐹𝑁√︁

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁 ) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁 )
(4)
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Analyze the g iven i s s u e d e s c r i p t i o n to i d e n t i f y the p r e s ence o f
S e l f − admi t t ed t e c h n i c a l deb t ( SATD) . Fo l low th e s e s t e p s to
de t e rmine i f SATD i s p r e s e n t :

S t ep 1 : I d e n t i f y any ment ions o f s h o r t c u t s , workarounds , or
temporary s o l u t i o n s in the i s s u e d e s c r i p t i o n . These may i n d i c a t e
the p r e s ence o f SATD .

S t ep 2 : Look f o r ph r a s e s t h a t s ugge s t the imp l emen ta t i on i s
incomple te , subopt ima l , or r e q u i r e s f u t u r e r e f a c t o r i n g . Examples
i n c l u d e " typo " , " l e a k " , " f l a k y " , " unnece s sa ry " , " per formance " , "
c h e c k s t y l e " , " s p e l l i n g " , " unused " , " c l eanup " , " cove rage " , "TODO" ,
" FIXME " , " hack " , " not i d e a l " , " needs improvement " or s i m i l a r
e x p r e s s i o n s .

S t ep 3 : Check i f the i s s u e d e s c r i p t i o n acknowledges any de s i gn or
a r c h i t e c t u r a l l i m i t a t i o n s t h a t may i n cu r t e c h n i c a l deb t in the
f u t u r e .

S t ep 4 : Determine i f the i s s u e d e s c r i p t i o n ment ions any t ime
c o n s t r a i n t s , p r e s s u r e to d e l i v e r , p r i o r i t i z a t i o n o f speed over
q u a l i t y or i f the i s s u e d e s c r i p t i o n d i s c u s s e s any compromises made
in the implementa t ion , such as us ing a l e s s e f f i c i e n t a lgo r i thm ,

hardcod ing va lue s , or s k i pp i ng ne c e s s a r y v a l i d a t i o n s , which may
l e a d to SATD .

S t ep 5 : Cons ide r i f the i s s u e d e s c r i p t i o n i n d i c a t e s any planned or
r e q u i r e d r e f a c t o r i n g , code c leanup , or per formance o p t im i z a t i o n s

in the f u t u r e .

Based on the p r e s ence or absence o f the above i n d i c a t o r s , conc lude
whether the i s s u e c on t a i n s S e l f − admi t t ed t e c h n i c a l deb t or not .

P rov i d e a d e t a i l e d a n a l y s i s o f each i d e n t i f i e d i n s t a n c e o f SATD ,
i n c l u d i n g the r e l e v a n t e x c e r p t from the i s s u e , an e x p l a n a t i o n o f
why i t i s c on s i d e r e d SATD , and any a d d i t i o n a l c on t e x t or i n s i g h t s .

S t a r t your answer with " YES " or "NO " .

i s s u e t e x t { {
{ i s s u e }

} }

Figure 5: Chain-of-Thought Prompt

4 RESULTS
In this section, we present the findings of our study, detailing the
performance of various combinations of models and prompts in
identifying SATD. We provide an overview of the results for each
research question, discuss the impact of different prompt engineer-
ing strategies, and compare the models using the evaluation metrics
detailed in Section 3.

RQ1: How does the performance of LLMs compare to the
state-of-the-art models for SATD identification?

To answer RQ1, we used the same dataset used to test the state-
of-the-art generalization performance. We’ve identified this model
as "Skryseth" in Table 2, referring to the author of the paper related
to the state-of-the-art model.

Table 2: Comparison between models and state of the art

Skryseth Claude GPT Gemini
F1 Score 0.66 0.68 0.48 0.61
Precision 0.74 0.45 0.57 0.57
Recall 0.54 0.88 0.42 0.67
MCC 0.39 0.15 0.08 0.12

As shown in Table 2, Claude 3 achieved the best performance
among the LLMs, with an F1 score of 0.68, which is comparable
to the state-of-the-art model by Skryseth (0.66). However, it is
important to note that Skryseth’s model demonstrates higher pre-
cision (0.74) and MCC (0.39) compared to Claude 3 (0.45 and 0.15,

respectively). This indicates that while Claude 3 has a similar over-
all performance, the state-of-the-art model is more precise in its
predictions and generates less false positives.

Additionally, when examining the recall metric, we observe that
LLMs tend to have higher recall values. Claude 3, in particular,
achieves a recall of 0.88, which is 34 percentage points higher than
Skryseth’s model (0.54). This suggests that LLMs may be biased
towards providing positive results, leading to a higher recall but
relatively lower precision.

GPT 3.5 turbo and Gemini 1.0 pro had lower F1 scores of 0.48
and 0.61, respectively, indicating that their performance in identi-
fying SATD is not as strong as Claude 3 Haiku or Skryseth. The
MCC scores for these models were also lower, suggesting that their
predictions are less balanced.

Summary

Claude 3 achieved performance comparable to the state-
of-the-art model Skryseth, but with lower precision and
MCC, indicating a tendency towards more false positives.

RQ2: What is the impact of prompt engineering on the
performance of LLMs in the task of SATD identification?

To answer RQ2, we averaged out the performance of each prompt
across every dataset per model. We used the MCC metric to com-
pare the performance of each prompt/model, since it produces a
high score only if the prediction obtained good results in all four
confusion matrix categories. With that, we are able to better tell
when a prompt was able to prune a model’s bias towards an answer
and give a more balanced result.

Table 3: MCC Scores per prompt

Claude GPT Gemini
Zero-shot 0.15 0.08 0.12
Think step-by-step 0.11 0.06 0.13
Few-shot 0.21 0.07 0.15
Chain-of-thought 0.04 0.09 0.10

Table 3 highlights that in each model there was at least one
engineered prompt that showed better performance than the zero-
shot prompt. This improvement was especially notable in Claude,
where the best prompt (Few-shot) achieved a 40% increase in MCC
score from the original prompt. However, it is important to note
that not all engineered prompts outperformed the original prompt.
For instance, the worse prompt performance in Claude represented
a 73% decrease in performance when compared to the zero-shot
prompt.

It is also worth noting that each model benefited differently
from prompt engineering. Claude 3 showed the most significant
improvement (40%), while GPT and Gemini had more modest gains
of 12.5% and 25%, respectively, from their original prompts to their
best-performing engineered prompts.
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Summary

Prompt engineering significantly enhanced model perfor-
mance, with Claude 3 showing the most improvement
(40%), followed by Gemini (25%) and GPT (12.5%). How-
ever, the effectiveness of prompts varied widely.

5 DISCUSSION
In this section, we interpret the results of our study, examining
the performance of LLMs in identifying SATD and evaluating the
influence of prompt engineering. We discuss the comparative per-
formance of the models, analyze the impact of different prompting
strategies, and situate our findings within the broader context of
existing research.

RQ1: How does the performance of LLMs compare to the
state-of-the-art models for SATD identification?

Our study reveals that among the evaluated LLMs, Claude 3
demonstrated the highest performance in identifying SATD, with
an F1 score of 0.68, comparable to the state-of-the-art model by
Skryseth, which achieved an F1 score of 0.66. However, the state-
of-the-art model showed higher precision (0.74) and MCC (0.39)
compared to Claude 3’s precision of 0.45 and MCC of 0.15. This
indicates that Claude 3, while performing well in general, tends
to generate more false positives than the state-of-the-art model.
Other models, GPT 3.5 turbo and Gemini 1.0 pro, exhibited lower
overall performance, with F1 scores of 0.48 and 0.61, respectively.
Overall, Claude 3’s competitive F1 score demonstrates the potential
of LLMs as general-purpose models that can adapt to SATD identi-
fication without domain-specific training which could be seen as a
alternative for models specifically designed for SATD identification.

RQ2: What is the impact of prompt engineering on the
performance of LLMs in the task of SATD identification?

The study also shows that prompt engineering substantially
impacts the performance of LLMs in the task of SATD identifica-
tion, particularly, the Few-shot prompt was the most effective. For
instance, Claude 3 had a 40% increase in performance. GPT and
Gemini also benefited from prompt engineering, though to a lesser
extent, with improvements of 12.5% and 25%, respectively, when
looking at the best prompt for each one. Not all engineered prompts
were beneficial, with some even reducing the model’s performance.

In general, our findings align with recent studies exploring the
potential of LLMs in software engineering tasks [29]. The com-
parable performance of Claude 3 to the state-of-the-art model in
SATD identification supports the notion that LLMs can be effective
in this domain. However, the lower precision and MCC scores of
LLMs compared to the state-of-the-art model are consistent with
observations from previous studies, which have highlighted the
limitations of LLMs in independently resolving SATD [29].

The varying impact of prompt engineering on LLM performance
in our study resonates with the growing body of literature empha-
sizing the importance of crafting effective prompts [17, 18]. Our
results demonstrate that well-designed prompts can enhance LLM
performance in SATD identification, but the effectiveness of specific
prompt engineering strategies may vary across different models.

6 CONCLUSION AND FUTUREWORK
In this study, we explored the potential of LLMs for identifying
SATD and compared their performance against a state-of-the-art
model specifically designed for this task. Our findings demonstrate
that LLMs, particularly Claude 3 Haiku, can achieve competitive
results in SATD identification. However, the performance of LLMs
varies depending on the specific model and the prompt used, em-
phasizing the importance of prompt engineering in optimizing their
effectiveness.

The impact of prompt engineering on the performance of LLMs
in SATD identification was evident from our experiments. Different
prompts led to varying levels of performance for each model, with
the Few-shot prompt yielding the most balanced predictions across
all models. This highlights the need for careful prompt design and
experimentation to find the most effective prompt for a given model
and task.

Our study contributes to the growing body of research on the
application of LLMs in software engineering tasks, specifically in
the context of SATD identification. The findings suggest that LLMs
have the potential to be valuable tools for managing and addressing
technical debt in software projects. However, further research is
needed to fully understand the capabilities and limitations of LLMs
in this domain and to develop best practices for prompt engineering.

Future work could explore the use of LLMs for other aspects of
technical debt management, such as prioritization, payment and
its documentation. Additionally, investigating the interpretability
and explainability of LLMs in the context of SATD identification
could provide valuable insights for practitioners and researchers
alike. As a final note, the replication package with all our data is
publicly available at: https://zenodo.org/records/11406252
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