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ABSTRACT
Test smells are coding issues that typically arise from inadequate
practices, a lack of knowledge about effective testing, or deadline
pressures to complete projects. The presence of test smells can
negatively impact the maintainability and reliability of software.
While there are tools that use advanced static analysis or machine
learning techniques to detect test smells, these tools often require
effort to be used. This study aims to evaluate the capability of Large
Language Models (LLMs) in automatically detecting test smells.
We evaluated ChatGPT-4, Mistral Large, and Gemini Advanced
using 30 types of test smells across codebases in seven different
programming languages collected from the literature. ChatGPT-4
identified 21 types of test smells. Gemini Advanced identified 17
types, while Mistral Large detected 15 types of test smells. The
LLMs demonstrated potential as a valuable tool in identifying test
smells.
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1 INTRODUCTION
The testing phase in software development is an important process
to ensure the quality, functionality, and security of systems [31].
Researchers have coined the term test smells to describe potential
design problems in test code, analogous to the code smells found
in poorly designed source code [4, 33]. These symptoms can cause
tests to exhibit erratic behavior, such as flakiness, false positives, and
false negatives, compromising software quality due to their limited
defect-catching capabilities. Despite the concept of test smells not
being new, some studies have shown that they are prevalent in both
open-source and industry projects, and they negatively impact code
maintenance and understanding activities [3, 22, 34]. van Deursen
et al. [33] and Meszaros [19] defined catalogs of test smells along
with their refactoring actions.

There are various types of test smells, which can be character-
ized by code duplication (Duplicated Assert) [22], complexity in
conditional structures, lack of documentation of assertions (Asser-
tion Roulette), non-deterministic execution behavior [20], among
others. Test smells can condition future difficulties in the mainte-
nance process [28], as the incidence of test smells in the code base
will impair the comprehensibility of the implemented structures as
the software evolves [12, 13]. Listing 1 presents an example of the
Magic Numbers test smell that occurs when a test method contains
inexplicable and undocumented numeric values as parameters or

values for identifiers. The numbers 15.5D, 15 and 30 are magic
numbers, since there is no indication of their semantics.

1 @Test
2 pu b l i c vo id t e s tGe tLoca lT imeAsCa l enda r ( ) {
3 Ca lendar l o c a lT ime = c a l c . ge tLoca lT imeAsCa lendar (

B igDec imal . va lueOf ( 1 5 . 5D) , Ca l endar . g e t I n s t a n c e ( ) ) ;
4 a s s e r t E q u a l s ( 1 5 , l o c a lT ime . g e t ( Ca l endar . HOUR_OF_DAY) ) ;
5 a s s e r t E q u a l s ( 3 0 , l o c a lT ime . g e t ( Ca l endar . MINUTE ) ) ;
6 }

Listing 1: Example code withMagic Numbers Test.

Recent studies [14, 21, 23, 27, 30] have investigated the impact
of test smells [5] and how these indicators of poor coding affect
the comprehension and quality of software [31]. Existing tools that
detect test smells often rely on advanced static analysis or machine
learning techniques, which can be complex to implement and ex-
tend with new smells, as well as support multiple languages [2].
Moreover, these tools require effort to use. Only a few provide
explanations and suggestions for code improvements.

Artificial Intelligence (AI) techniques, particularly Large Lan-
guage Models (LLMs), offer the potential to improve the test review
process [35]. LLMs have revolutionized natural language process-
ing, demonstrating remarkable performance across various tasks,
including question answering, machine translation, and text gen-
eration [35]. These models have also impacted various domains
within software engineering [10], expanding the possibilities of in-
tegrating natural language analysis capabilities to enhance source
code analysis, including detecting test smells. However, to the best
of our knowledge, no study so far indicates to what extent LLMs
can help detect test smells.

In this paper, we evaluate the capability of LLMs in the automatic
detection of test smells. We evaluated ChatGPT-4, Mistral Large,
and Gemini Advanced. These models were tested on 30 types of test
smells across codebases in seven different programming languages,
which were collected from the existing literature [1]. ChatGPT-4
detected 21 types of test smells. Gemini Advanced identified 17
types, while Mistral Large detected 15 types of test smells. The
results indicate that LLMs demonstrate efficiency in detecting test
smells. ChatGPT-4, in particular, can identify 70% of the test smell
types in the code, suggesting that LLMs could be a valuable tool
in enhancing the quality of software by identifying and mitigating
test smells. The LLMs demonstrated potential as valuable tools to
be integrated into IDEs for the detection of test smells. Their pro-
cessing capabilities enable the detection and explanation of various
types of test smells and offer suggestions for code improvements.
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2 METHODOLOGY
2.1 Research Questions
Our goal is to evaluate ChatGPT-4, Gemini Advanced 1.5, and Mis-
tral Large concerning detecting test smells from the point of view of
researchers in the context of test smells cataloged in the literature.
We address the following research questions:

RQ1 To what extent can ChatGPT-4 detect test smells?
RQ2 To what extent can Gemini Advanced detect test smells?
RQ3 To what extent can Mistral Large detect test smells?

We compare the output of each LLM with the test smells presented
in the catalog [1].

2.2 Planning
The Open Catalog of test smells [1] provides a dataset of 127 formal
and informal sources, featuring various types of test smells, iden-
tified by name, Also Known as (AKA) when available, conceptual
definition, and code examples, as well as citations of references for
further literature review. The catalog consists of six categories of
test smells: Code Related, Dependencies, Design Related, Issues in
Test Steps, Test Execution – behavior, and Test Semantic – logic.

We evaluated a set of 30 test smells from the catalog [1]. Each
test smell is illustrated with at least one small example, some of
which are extracted from real projects [9, 11, 30]. In eleven cases,
there are ⟨code snippets⟩ of unit tests implemented using the
JUnit framework. Three cases correspond to complete programs
along with the test class. In four cases, the examples consist solely
of the test class. Meanwhile, in the remaining twelve cases, the
examples are snippets of individual methods or functions. Some
types (i.e., Assertion Roulette, Duplicate Assert, Exception Handling,
and Test Code Duplication) were considered due to their frequent
occurrence in popular open-source projects [30].

For the queries, we use zero-shot prompting [7, 16, 24], which
refers to a query scenario in which the machine learning model re-
ceives a task for which it has not been explicitly trained to perform.
The model uses the general understanding of the submitted query
and the pre-existing knowledge to perform the task without any
additional adjustments or specific examples related to the task in
question. We use the following prompt in each LLM with default
parameters:

• Consider the following ⟨language⟩ test case. Does it have
any test smells? ⟨code snippet⟩

We evaluate test smells in the following ⟨language⟩: C#, Java,
JavaScript, Python, Ruby, Smalltalk and TTCN-3. The consultation
with the LLMs occurred in May 2024.

3 RESULTS
The LLMs showed promising results in identifying test smells in
source code. ChatGPT-4 demonstrated the best performance in
detecting test smells, successfully identifying 21 out of 30 types,
with the misses being the Bad Comment Rate, Duplicated Code
In Conditional, Duplicate Statements, Irrelevant Information and
Overcommented Test test smells. It partially detects the Badly Used
Fixture, Constant Actual Parameter Value, Exception Handling, and
Two For The Price Of One test smells. The Gemini detect 17 test
smells and three partially detects, while Mistral detect 15 test smells

and five partially detects. At least one LLM can detect 25 out of
30 test smells. The Overcommented Test smell in Smalltalk and the
Duplicated Code In Conditional in TTCN-3 are not detected by the
evaluated LLMs in our study.

Table 1 presents the detailed performance of LLMs in identi-
fying the different types of test smell, with highlights for correct
identifications (✓), partial correct identifications (�), errors (×),
language, and lines of code (LOC). Partial hits are characterized
when the LLM returns information related to the definition of the
test smell but identifies it as a different type of test smell, which
has a similar definition, or when the presented information is too
simple, without details for the example presented.

4 DISCUSSION
4.1 Number of Attempts
Due to the probabilistic nature of their processing, the models can
produce varied responses to the same query, even when the same
prompt is applied [25]. For the test smells not identified in the
first submission, we execute two additional attempts (2𝑛𝑑 and 3𝑟𝑑 )
for each specific example, using a unique chat session for each
round with the same prompt. When the LLM succeeded on the
second attempt, a third attempt was not necessary. The types of
test smells that were detected on the first query attempt were not
subjected to additional attempts. All correct responses obtained in
the outputs were reviewed by two authors to formally record the
performance of each LLM. In the additional attempts (2𝑛𝑑 and 3𝑟𝑑 ),
no feedback was provided on the results presented, all additional
attempts were made by resetting the conversation window, and
applying the same prompt. Table 2 presents the overall summary
of the attempts executed on ChatGPT-4, Gemini Advanced, and
Mistral Large.

In response to our RQ1, the results of the analysis confirm that
ChatGPT-4 demonstrated the best detection performance over 3
attempts, identifying 26 out of 30 examples in total. ChatGPT-4 was
unable to detect the Duplicated Code in Conditional and Overcom-
mented Test test smells, and only partially detected the Constant
Actual Parameter Value and Two for the Price of One test smells. The
results regarding the performance of Gemini Advanced address our
RQ2, in which we highlight that the LLM identified 17 types of
test smells on the first query attempt. In additional attempts (2𝑛𝑑
and 3𝑟𝑑 ), Gemini Advanced showed improvement by identifying
seven more types of the 13 that were not correctly identified in
the first attempt. Table 3 presents the attempts for the test smells
re-evaluated in Gemini Advanced.

Mistral Large had the weakest performance in the test smell
detection process, and in response to our RQ3, we observed that
the LLM correctly detected only 15 types of test smells on the first
query attempt. In the additional attempts (2𝑛𝑑 and 3𝑟𝑑 ), the LLM
was able to identify six more types of test smells that were previ-
ously undetected, specifically: Expected Exceptions And Verification,
Hidden Test Call, Obscure Test, Plate Spinning, Self-Test, and The First
And Last Rites.

All LLMs do not detect the Duplicated Code In Conditional test
smell (see Listing 2) in 3 attempts. ChatGPT detected other types of
issues in the functions checkSomething and checkSomethingElse,
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Table 1: LLMs performance summary.

ID Test Smell Language LOC ChatGPT-4 Gemini Advanced Mistral Large
1 Anonymous Test Java 4 ✓ ✓ ✓
2 Assertion Roulette Python 20 ✓ � ✓
3 Asynchronous Test Java 17 ✓ ✓ ✓
4 Bad Comment Rate TTCN-3 52 × × ✓
5 Badly Used Fixture Java 24 � � ✓
6 Constant Actual Parameter Value TTCN-3 13 � × �
7 Context Logic In Production Code Java 7 ✓ ✓ ✓
8 Duplicate Assert Java 24 ✓ ✓ ✓
9 Duplicated Code In Conditional TTCN-3 22 × × ×
10 Duplicate Statements TTCN-3 9 × ✓ ✓
11 Empty Test Java 5 ✓ ✓ ✓
12 Exception Handling Java 30 � ✓ ×
13 Expected Exceptions And Verification Java 8 ✓ ✓ ×
14 Fire And Forget Ruby 22 ✓ ✓ �
15 Hard-Coded Test Data Java 9 ✓ × ✓
16 Hidden Test Call C# 17 ✓ ✓ �
11 Irrelevant Information Java 11 × × �
18 Long Test Ruby 41 ✓ ✓ ✓
19 Magic Number Test Java 6 ✓ × ✓
20 Obscure Test Ruby 18 ✓ × ×
21 Overcommented Test Smalltalk 21 × × ×
22 Overspecified Tests Java 30 ✓ ✓ ✓
23 Plate Spinning JavaScript 50 ✓ ✓ �
24 Redundant Print Java 9 ✓ ✓ ✓
25 Self Important Test Data Ruby 67 ✓ ✓ ×
26 Self-Test Java 13 ✓ × ×
27 Sensitive Equality Java 12 ✓ � ×
28 Test Code Duplication Python 18 ✓ ✓ ✓
29 The First And Last Rites Java 13 ✓ ✓ ✓
30 Two For The Price Of One Java 13 � × ×

Total 21 17 15
✓hits � partial hits × errors

Table 2: Number of test smells identified per attempt for each
LLM.

LLM 1𝑠𝑡 2𝑛𝑑 3𝑟𝑑 Total
ChatGPT-4 21/30 3/9 2/6 26/30
Gemini Advanced 17/30 5/13 2/8 24/30
Mistral Large 15/30 5/15 1/10 21/30

for example, Magic Numbers, Multiple Exit Points, External Depen-
dencies and Implicit Else Condition. In each attempt, the ChatGPT
output shows little variation in responses.

1 f u n c t i o n checkSomething ( in f l o a t p1 , i n f l o a t p2 ) r e t u r n
boo lean {

2 i f ( p1 < 0 . 0 ) {
3 r e t u r n f a l s e ;
4 } i f ( p2 >= 7 . 0 ) {
5 r e t u r n f a l s e ;
6 } . . .
7 }
8 f u n c t i o n checkSometh ingE l s e ( i n f l o a t p1 ) runs on

ExampleComponent {
9 var c h a r s t r i n g r e s u l t ;
10 i f ( p1 > 0 ) {
11 r e s u l t : = " foo " ;
12 pt . send ( r e s u l t ) ;

13 } e l s e {
14 r e s u l t : = " bar " ;
15 pt . send ( r e s u l t ) ;
16 }
17 }

Listing 2: Example code with Duplicated Code In Conditional.

Table 3: Gemini attempts.

Test Smell 1𝑠𝑡 2𝑛𝑑 3𝑟𝑑

Assertion Roulette � × ✓

Bad Comment Rate × � ✓

Badly Used Fixture � ✓

Constant Actual Parameter Value × × ×
Duplicated Code In Conditional × × ×
Hard-Coded Test Data × ✓

Irrelevant Information × × ×
Magic Number Test × ✓

Obscure Test × ✓

Overcommented Test × × ×
Self-Test × × ×
Sensitive Equality � ✓

Two For The Price Of One × × ×
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4.2 Detecting Test Smells
Six test smells are detected by only one LLM in the first attempt:
Bad Comment Rate (Mistral), Badly Used Fixture (Mistral), Exception
Handling (Gemini), Obscure Test (ChatGPT), Self-Test (ChatGPT)
and Sensitive Equality (ChatGPT), as presented in Table 1. Four test
smells are not detected by any LLM (the Constant Actual Parameter
Value, Duplicated Code In Conditional, Overcommented Test, and Two
For The Price Of One test smells).

LLMs also suggest other test smells in the code snippets eval-
uated. Some responses from the LLMs did not exactly match the
label of the test smell recorded in the catalog [1] but provided re-
lated and coherent explanations. For instance, the Anonymous Test
smell occurs when a test whose name is meaningless as it does not
express the purpose of the test in the current context [1]. Consider
the example presented in Listing 3. ChatGPT-4 yields the following
output considering it as the Inadequate Test Method Name test
smell:

• “The name of the test method, test1, is not descriptive.
It does not convey what aspect of the LoginPage.login
method it is testing. Good test names should describe the
purpose of the test and the specific behavior or scenario
being tested.”

Since the test smells definitions are similar, we consider that the
ChatGPT-4 answer is correct. In some cases, LLMs also suggest
refactorings to remove test smells, such as providing better names.
ChatGPT-4 also indicates other problems in the test case. For exam-
ple, it indicates that the test case does not have assertions.

1 @Test
2 pu b l i c vo id t e s t 1 ( ) {
3 LoginPage . l o g i n ( " u s e r " , " password " ) ;
4 }

Listing 3: Example code with Anonymous Test.

The Assertion Roulette test smell occurs when a test method has
multiple non-documented assertions. It is not possible to under-
stand the reason for the failure of the test [1]. Listing 4 presents
part of the code snippet containing this test smell. ChatGPT-4 and
Mistral detected this test smell on the first attempt, while Gemini
provided a partially correct response, indicating that there is an
“Assertion Overload” in the code example. Mistral correctly yields
the following explanation:

• “Lack of Assertion Messages: The test case does not provide
any custom assertion messages. This can make it harder
to understand why a test failed when it does. Providing
meaningful assertion messages can make the test results
more readable.”

In the first two attempts, Gemini does not complain about excessive
assertions. However, in the third attempt, it identifies the test smell:

• “Excessive Assertion: The test asserts multiple things at once
(mileage, fullFuel, isValidAirLineCode). This violates
the one assertion per test principle, making it harder to
pinpoint the cause of a failure.”

1 c l a s s T e s t F l i g h t ( u n i t t e s t . Tes tCase ) :
2 de f t e s t _ f l i g h t ( s e l f ) :
3 f l i g h t = F l i g h t ( ' 2569 ' , 1 0 0 0 )
4 s e l f . a s s e r t E q u a l ( f l i g h t . mi leage , 1 0 0 0 )
5 s e l f . a s s e r t T r u e ( f l i g h t . f u l l F u e l )

6 s e l f . a s s e r t T r u e ( f l i g h t . i sV a l i dA i r L i n eCod e ( ) )

Listing 4: Example code with Assertion Roulette.

The Exception Handling smell occurs when a test method ex-
plicitly passes or fails and is dependent on the production method
throwing an exception. Developers should utilize JUnit’s exception
handling to automatically pass/fail the test instead of writing cus-
tom exception handling code or throwing an exception. Listing 5
presents part of the code snippet containing this test smell. Gemini
correctly detects it in the first attempt:

• “Lack of Error Handling Assertions: The test does not verify
the correct handling of error conditions or exceptional cases,
which can leave gaps in test coverage.”

ChatGPT-4 partially detects the problem in the Assert.fail but it
does not provide a good explanation:

• “Assertion Messages: The test uses
Assert.fail(e.getMessage()); within a try-catch
block to handle exceptions, which is a valid approach, but
the test assertions themselves do not include custom failure
messages. This could make it harder to diagnose issues
because the output will not explain what the expected logic
or outcome was supposed to be, only that the expected and
actual values did not match.”

However, it correctly identifies the test smell in the third attempt:
• “Error Handling in Tests: The use of try-catch block
with Assert.fail() inside the catch is a valid tech-
nique for ensuring exceptions are not expected. How-
ever, this could be improved by using @Test(expected =
CalculationException.class) if the intention was to as-
sert that an exception should not be thrown. If the test’s
intention is to handle an unexpected exception, then it is
generally set up correctly.”

Mistral does not explain any issues related to Assert.fail in three
attempts.

1 @Test
2 pu b l i c vo id r e a lC a s e ( ) {
3 Po in t p34 = new Po in t ( " 34 " , . . . ) ; . . .
4 t r y {
5 a . compute ( ) ;
6 } c a t ch ( C a l c u l a t i o nE x c e p t i o n e ) {
7 As s e r t . f a i l ( e . ge tMessage ( ) ) ;
8 } . . .
9 }

Listing 5: Example code with Exception Handling.

4.3 Programming Languages
The accuracy rate of the LLMs for detecting different types of test
smells across various programming languages was evaluated based
on the results presented in Table 4. Seventeen code examples sub-
mitted to the LLMs are written in Java. ChatGPT-4 stands out by
correctly identifying 13 (76%) of the 17 types of test smells ana-
lyzed. For other languages, such as C#, JavaScript, Python, Ruby,
and TTCN-3, the LLMs demonstrated varying degrees of success.
For C#, ChatGPT-4 and Gemini Advanced detected the Hidden Test
Call test smell, respectively. In Python, Mistral Large and ChatGPT-
4 achieved a 100% detection rate (2/2), while Gemini Advanced
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correctly identified 1 out of 2 test smells. For JavaScript, Mistral
Large is unable to identify the type of smell in the example, but
ChatGPT and Gemini were successful. For Ruby, ChatGPT-4, Gem-
ini Advanced, and Mistral Large identified 4/4, 3/4, and 1/4 test
smells, respectively. For the TTCN-3 language, ChatGPT-4 failed
to identify the Bad Comment Rate, Duplicated Code In Conditional,
Duplicate Statements test smells on the first attempt. The model
achieved only a partial success for the Constant Actual Parameter
Value test smell, indicating “Similar test data” for the function f
that sends messages with almost identical data in two cases, but it
was not specific about the use of parameters in the test.

All three models failed to detect the Overcommented Test smell in
three attempts. No LLM was able to identify the issue of excessive
comments in Smalltalk, which obscure the code and divert attention
from the purpose of the test. The responses either did not reference
problems related to comments or diverged from the definition of
the submitted test smell type, indicating a detection error. But
they detected other issues, such as the Mystery Guest, Conditional
Complexity, Test Dependencies, and Eager Test smells.

Table 4: Number of test smells identified by programming
language for each LLM.

Language GPT-4 Gemini Advanced Mistral Large
C# 1/1 1/1 0/1
Java 13/17 10/17 10/17

JavaScript 1/1 1/1 0/1
Python 2/2 1/2 2/2
Ruby 4/4 3/4 1/4

Smalltalk 0/1 0/1 0/1
TTCN-3 0/4 1/4 2/4

4.4 Metamorphic Testing
Metamorphic testing (MT) is an active area of research focused on
improvingmodel robustness [6]. This testing approach involves gen-
erating new data samples (code) by applying metamorphic transfor-
mations to the original validation or testing data. The modifications
applied to the code snippets are controlled to maintain semantic and
behavioral equivalence with the original code, while developing
modifications in their Abstract Syntax Trees (ASTs), considering
the restructuring of variables, parameters, and methods, as well as
the removal of comments. The purpose of this methodology is to
test the resilience of models, allowing the identification of hidden
faults that may not be apparent in the original evaluation.

We select 10 test smells of different sizes and languages. The
selected examples are syntactically modified to be submitted in
new queries to the LLMs. For example, we changed variable names,
method names, some numeric parameters, and declared strings. The
modification made to the original code (Listing 6) of the Context
Logic In Production Code test smell is presented in Listing 7.

1 pu b l i c s t a t i c vo id SaveToDatabase ( Customer
customerToWri te ) {

2 i f ( AreWeTesting )
3 WriteWithMockDatabase ( customerToWri te ) ;
4 e l s e
5 Write ( customerToWri te ) ;

6 }

Listing 6: Original code.

1 pu b l i c s t a t i c vo id TestBD ( Customer customerTW ) {
2 i f ( makingTest )
3 WriteWithMockDatabase ( customerTW ) ;
4 e l s e
5 Write ( customerTW ) ;
6 }

Listing 7: Listing 6 modified for the metamorphic test.

Table 5 presents the performance of themodels. ChatGPT-4 again
achieved the best performance, correctly identifying all examples,
even for the Duplicate Statements test smell that was detected in
the second attempt in the original code. The MT allowed Mistral to
correctly detect the test smell Plate Spinning, which had previously
been detected only partially, as the LLM did not indicate that the
test could fail before the calls were completed. After the submission
of the MT code, the model identifies that the test can fail due to the
unpredictability of external requests.

Gemini correctly detects 4 out of 10 test smells in the MT. It
fails to detect the Duplicate Statements test smell, not being able to
identify the repeated structures. The LLM highlights other issues
such as “Obscure Intent”, “Conditional Test Logic”, and “Potential
Assertion Roulette”, but it does not emphasize problems related to
the repetition of structures in the original code. Gemini occasionally
misidentified certain types of test smells. The LLM presented the
General Fixture test smell as the answer for the Long Test and The
First And Last Rites test smells that were identified in the original
code. The confusion between the types The First And Last Rites and
General Fixturemay have been caused by the similarity between the
definitions of both types. As both types involve problems with the
occurrence of recurring structures, the LLM may have interpreted
them as synonymous types of smells.
4.5 Threats to Validity
There are some threats to validity that could impact the results
and interpretations [25]. The test smells may be part of the LLMs
training data. We conducted metamorphic testing to reduce this
threat to validity. The way prompts are structured may influence
the responses, potentially making them more general for types that
require specific explanations. This could affect the accuracy and
specificity of the test smell detection. We use a simple prompt. It is
not always an easy task to check whether the LLM output is aligned
with the test smell definition. We checked each answer with two
authors of the paper.

Most test smells are evaluated using a single test case example.
The limited number of examples per test smell could affect the ro-
bustness of the findings. Additionally, some examples are separated
from the original class context, which might not fully represent
real-world scenarios. The study focused on a specific set of test
smells and evaluated examples primarily in Java, with fewer ex-
amples from other languages. This limited diversity may affect the
generalizability of the findings to other programming languages
and test smell types. Moreover, the study’s findings might not apply
to other codebases or test cases not represented in the catalog. The
reproducibility of the study results is dependent on the consistent
behavior of LLMs, which may vary with updates or changes in the
models.
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Table 5: Metamorphic Testing summary.

ChatGPT-4 Gemini Advanced Mistral Large
Test Smell Original MT Original MT Original MT
Anonymous Test ✓ ✓ ✓ � ✓ ✓
Asynchronous Test ✓ ✓ ✓ ✓ ✓ ✓
Context Logic In Production Code ✓ ✓ ✓ ✓ ✓ ✓
Duplicate Statements × ✓ ✓ × ✓ ✓
Fire And Forget ✓ ✓ ✓ � � �
Hard-Coded Test Data ✓ ✓ × × ✓ ✓
Long Test ✓ ✓ ✓ � ✓ ✓
Plate Spinning ✓ ✓ ✓ ✓ � ✓
Test Code Duplication ✓ ✓ ✓ ✓ ✓ ✓
The First And Last Rites ✓ ✓ ✓ � × �

Total 9 10 9 4 7 8

5 RELATEDWORK
Pontillo et al. [23] proposed a method based on machine learning
(ML) to detect test smells, focusing on four specific test smells:
Eager Test, Mystery Guest, Resource Optimism, and Test Redundancy,
aiming to overcome the limitations of existing heuristic techniques.
The authors applied the ML approach to predict the likelihood of a
test case being affected by a specific smell. They will also compare
their method with established heuristic techniques.

Soares et al. [29] aimed to investigate developers’ awareness
of test smells’ existence and acceptance of their refactorings in
submitted pull requests. The authors demonstrate that developers
are not always acquainted with the terminology of test smells but
recognize their effects and harmfulness when consulted. Soares
et al. [30] conducted a mixed-methods analysis involving 485 Java
projects, investigating the extent to which developers adopt JUnit
5 and its new features to enhance test code quality. The study
identified JUnit 5 features that can help remove test smells, such as
Assertion Roulette, Test Code Duplication, and Conditional Test Logic.

Aljedaani et al. [2] compiled a catalog of test smell detection
tools. Lambiase et al. [15] proposed an IntelliJ plugin called DARTS
(Detection and Refactoring of Test Smells) that detects the Eager
Test, General Fixture, and Lack of Cohesion of Test Methods test
smells. Another tool is the RTj framework by Martinez et al. [18]
that deals with Rotten Green Test Cases, which are tests that pass
despite having at least one unexecuted assertion. Although RTj’s
test smells are outside our scope, it offers refactoring actions limited
to substituting a failing assertion with a call to the failmethod and
adding a TODO comment to the problematic code. Santana et al. [26]
proposed RAIDE, which is an open-source, IDE-integrated tool that
addresses the Assertion Roulette and Duplicated Assert test smells
in Java projects.

De Bleser et al. [8] assessed the diffusion and perception of test
smells in SCALA projects, finding low diffusion of test smells across
SCALA test classes and that many developers struggle to correctly
identify most smells, despite recognizing design issues. Peruma et al.
[22] investigated test smells in open-source Android applications
and found that developers generally recognize the proposed smells
as bad programming practices in unit test files.

Junior et al. [13] investigated the causes of test smell introduc-
tion by developers, revealing that even experienced professionals
introduce test smells during their daily programming tasks despite

using standardized company practices. Another study by Spadini
et al. [32] examined the severity rating of four test smells and their
perceived impact on test suite maintainability. They found that
developers consider current detection rules for specific test smells
too strict and that the newly defined severity thresholds align with
participants’ perceptions of how test smells impact test suite main-
tainability. Yang et al. [36] identified and defined new test smell
types from software practitioners’ discussions on Stack Overflow
and developed a detector to identify these smells in real-world Java
projects. Through empirical evaluation and practical validation, the
study demonstrated the prevalence and impact of these test smells,
providing insights for improving test code quality.

In our work, we investigate the extent to which LLMs can be
useful for detecting test smells in the source code of software test
cases. ChatGPT-4 successfully detects 70% of the test smells, show-
ing promising results. In future work, we intend to evaluate to what
extent LLMs can help in refactoring test smells.
6 CONCLUSION
In this paper, we evaluated the potential of LLMs for detecting
test smells in source code. The LLMs demonstrated competence in
detecting various types of test smells, proving to be an important
auxiliary resource for software testing tasks. Notably, ChatGPT-4
achieved the highest overall accuracy rate of 70%. All data from this
work are available online [17]. The results indicate opportunities
to enhance tools for detecting test smells. By integrating LLMs into
the software development lifecycle, developers can more effectively
identify and address test smells. The automation of test smell detec-
tion using LLMs reduces the manual effort required in the testing
phase. Further research and development are needed to improve
the robustness and accuracy of LLMs in detecting a wider range of
test smells, particularly in less common programming languages
and more nuanced test smell types.

In future work, we intend to deepen the analysis of test smell
types by considering a larger number of examples in test cases
across various programming languages. This approach will allow
for a more robust evaluation of the performance of ChatGPT-4,
Mistral, and Gemini. Additionally, we plan to expand the review to
include code bases from open-source projects and to investigate the
potential of other LLMs, such as ChatGPT4-o, Claude, and Llama.
Gemini has a 1 million-token context window, which enables it to
evaluate larger programs.
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