
Multilingual Crowd-Based Requirements Engineering Using
Large Language Models

Arthur Pilone
arthurpilone@usp.br

Universidade de São Paulo
Brazil

Paulo Meirelles
paulormm@ime.usp.br

Universidade de São Paulo
Brazil

Fabio Kon
kon@ime.usp.br

Universidade de São Paulo
Brazil

Walid Maalej
walid.maalej@uni-hamburg.de

Universität Hamburg
Germany

ABSTRACT
A central challenge for ensuring the success of software projects is
to assure the convergence of developers’ and users’ views. While
the availability of large amounts of user data from social media,
app store reviews, and support channels bears many benefits, it still
remains unclear how software development teams can effectively
use this data. We present an LLM-powered approach called Deep-
erMatcher that helps agile teams use crowd-based requirements
engineering (CrowdRE) in their issue and task management. We are
currently implementing a command-line tool that enables develop-
ers to match issues with relevant user reviews. We validated our
approach on an existing English dataset from a well-known open-
source project. Additionally, to check how well DeeperMatcher
works for other languages, we conducted a single-case mechanism
experiment alongside developers of a local project that has issues
and user feedback in Brazilian Portuguese. Our preliminary analysis
indicates that the accuracy of our approach is highly dependent on
the text embedding method used. We discuss further refinements
needed for reliable crowd-based requirements engineering with
multilingual support.

KEYWORDS
Large Language Models, Foundation Models, Natural Language
Processing, Requirements Engineering, User Feedback Mining

1 INTRODUCTION
Two key principles of agile software development are (a) to structure
the work in short cycles, each with a set of tasks and issues to
be resolved within that cycle, and (b) to repeatedly collect and
prioritize feedback from the users and stakeholders [14]. To identify
and analyze requirements, agile methods mainly rely on the concept
of user stories, which forces development teams to think about
the users performing a given task. Each story describes how a
hypothetical user would use a relevant feature of the software
system and why [2, 10].

Although valuable for development teams and still considered
effective for capturing user requirements, writing user stories may
not be feasible for every situation and every type of requirement.
Moreover, having a skilled customer or a product owner write good
user stories is often far from reality for many software projects. It
is thus common to see teams just keeping track of the tasks to be

implemented and issues to be resolved [17, 18]. The convenience of
focusing on recording development and maintenance tasks comes
with the risk that the development tasks and the actual needs of
the users may drift apart.

This scenario may be even more challenging for smartphone
apps with large user bases [19]. A specific requirement related
to a specific group may never get to the development team due
to the absence of direct communication between developers and
users. It is not hard to see how the problem is exacerbated when it
comes to bug reporting. The vast range of operating systems, device
models, execution environments, and user contexts make the task
of accurately understanding how a given software product should
behave in every possible condition nearly unattainable [12, 13].

With thousands of user reviews and comments on app stores
and social media, prioritizing which comments should be analyzed
by the development team to capture the requirements is challeng-
ing and demands an unreasonable amount of manual effort. The
approach of tapping into the relevant information instilled in these
reviews and posts on social media has been named Crowd-Based
Requirements Engineering (CrowdRE) [6, 23]. This approach
has been studied before, especially alongside the use of machine
learning and natural language processing (NLP) [4, 15, 24], with a
variety of datasets, use-cases, and levels of automation accuracy
[12].

The rise of increasingly powerful large language models (LLMs)
opens the door to many new applications revolving around summa-
rizing, understanding, and generating natural language. The rapid
emergence of this technology fosters research on its possible use
cases in requirements engineering [3] and software engineering
in general [5]. To leverage the ever-evolving potential of LLMs
for crowd-based requirements engineering, we are developing an
automated approach for assisting development teams identify user
reviews corresponding to development tasks, or a lack thereof.

The remainder of the paper is structured as follows: In Section 2,
we propose a high-level architecture for an approach that leverages
LLMs to promote multilingual crowd-based requirements engineer-
ing. Section 3 then reports on our ongoing open-source implementa-
tion for the proposed system. In Section 4, we present a preliminary
evaluation for our implementation based on an available English
dataset and a new dataset collected from a Brazilian Portuguese

https://orcid.org/0009-0004-3899-4087
https://orcid.org/0000-0002-8923-2814
https://orcid.org/0000-0003-3888-7340
https://orcid.org/0000-0002-6899-4393


SBES’24, September 30 – October 04, 2024, Curitiba, PR Pilone et al.

project. We then discuss how our results point toward new direc-
tions to grow and evolve the proposed tool in Section 5. Finally, we
summarize our proposal and future directions in Section 6.

2 APPROACH
A common step for most Natural Language Processing (NLP) tasks
is to split the input text into tokens and assign a numeric repre-
sentation to each one of them. This numeric representation can
be condensed to an embedding, a list of floating point numbers
that stores semantic information relative to its corresponding to-
ken. Typical LLMs are based on the Transformer architecture [25],
which promotes the exchange of information between embeddings
of tokens from a single string. Interestingly, this interaction is heav-
ily connected to the concept of attention [11] and is the basic idea
behind most recent advances in NLP. As the models process text,
the embedding of a token is influenced by the embeddings of its
neighboring tokens, similar to how the meaning of a noun is in-
fluenced by the adjectives surrounding it. At the encoder output,
each embedding carries information that reflects the token context.
These final embeddings can be called contextualized embeddings. As
these embeddings strongly correlate with the token meanings [9],
we can try to measure the semantic similarity of two texts by the
proximity between their embeddings in their high-dimensional
vector space.

In this line, we propose a system that uses the contextualized
embeddings created by LLMs to measure the similarity of user
reviews and development issues and suggest matches of pairs that
might point to the same topic. Development teams that receive
large amounts of user feedback should be able to use our approach
to identify what issues in their issue tracker a user review may
correspond to. When the tool matches a user feedback item to a bug
report from the issue tracker, the developers should be confident
that the user is reporting something they are already aware of. On
the other hand, when the tool does not find a suitable match for
a user review, the development team should consider giving it a
further inspection and possibly creating a new issue or task.

Figure 1 depicts the main components of our approach. A guiding
principle in our design is to give developers the flexibility to switch
and modify components that are likely to change due to rapidly
evolving NLP techniques or specific team preferences.

One of the key functions of the approach is to extract and collect
issues and user reviews. The system architecture includes compo-
nents that interact with external APIs and crawlers to gather this
data. The components responsible for collecting user reviews and
developer issues follow a straightforward interface, ensuring that
future maintainers can easily implement classes to extract data
from new sources.

Besides, the abstractions created for issues and user feedback
must be generic enough to avoid coupling to specific platforms
and enable the desired flexibility. As the models used for review
classification and text embedding may only work with text in a sin-
gle language (English, for instance), we introduce a text-translator
component used after the system collects the data. This is vital to
support projects with reviews in multiple languages. However, the
need for this component depends entirely on the choices made by
the system maintainers.

Figure 1: Core components of the proposed architecture. In
a darker shade of gray, we highlight the components that
receive data from both user reviews and issues. Every com-
ponent depicted can be switched or adapted for the needs of
specific teams or projects.

Before embedding user reviews, a team of developers may choose
to filter those that might be irrelevant [24] or do not correspond to
any of the issue types maintained in the repository. For instance,
the teammight not be interested in reviews requesting new features
or simply praising the app. Accordingly, our architecture can also
include a component for classifying user feedback [12]. Similar to
the text translator, this component can be adapted depending on
the review types of interest to the development team.

The text embedder is the part of the system responsible for
receiving a text (i.e, a review or an issue) and returning a single
embedding used to compare it to other texts. We provide the text
to an LLM and use the contextualized embeddings it computes
to generate a single embedding for the given string. The system
creates an embedding for each review and developer issue. As this
component relies heavily on the specific LLM used, our architecture
also allows for changing it according to the project’s needs.

After computing the contextualized embeddings, the system
measures the distance between them to estimate the similarity
based on their proximity in the high-dimensional space [16] and
suggests possible matches. Since the metric used for computing
this distance is also subject to change, the system should support



Multilingual Crowd-Based Requirements Engineering Using Large Language Models SBES’24, September 30 – October 04, 2024, Curitiba, PR

different similarity thresholds as well as adjustments in the number
of issues suggested for each user review and vice versa.

Another guiding principle of our proposed approach is to sup-
port the requirements engineering process while maintaining a
human in the loop [1]. While leveraging LLMs, we aim to miti-
gate the risk of fully relying on the inherently imperfect nature
of artificial intelligence predictions in the software development
process. Future extensions to our architecture should be cautious
to avoid introducing imprecise results that could jeopardize the
development of software products and their users.

3 IMPLEMENTATION
We are developing an open-source tool following the design de-
cisions proposed in the previous section. Our system, nicknamed
DeeperMatcher, is based on the text embedding approach of Deep-
Matcher [7]. It is a command-line interface written in Python and is
available at the GitLab repository https://gitlab.com/ArthurPilone/
deepermatcher.

Currently, the system includes an issue collector for public Git-
Lab repositories and stubs for other crawlers and collectors in-
herited and adapted from the DeepMatcher replication package.
We initially chose GitLab due to its widespread adoption for host-
ing open-source projects and because it hosts the sample project
used for our preliminary evaluation. We anticipate implementing
extensions for these components in the near future. For our imple-
mentation of issue collectors, we follow the findings from Haering
et al. [7] and use only the issue titles for textual embedding, as they
have been shown to adequately summarize the issue content.

To support languages other than English, we implemented a sim-
ple text-translator component using the googletrans API, which
is built on Google Translate. This component can translate text
between any two languages supported by the API. DeeperMatcher
currently translates issues to English during collection and trans-
lates user reviews after they are entered in the command-line inter-
face. This class can be replaced with other text-translator compo-
nents if users prefer to use alternative translation service.

Similar to DeepMatcher, we used the classifier from Stanik et al.
[24] to classify user reviews into three classes: “Irrelevant”, “Fea-
ture Request”, or “Bug Report”. Using their replication package,
we trained a simple classifier built on the DistilBERT [22] model
from the Transformers Python library. If desired, a user of Deeper
Matcher can filter reviews to only match bug reports.

For the text embedding process, DeeperMatcher currently fea-
tures two approaches. The first mirrors DeepMatcher. We feed the
input text to a DistilBERTmodel, which tokenizes it and generates a
numeric embedding for each token. The model adjusts each token’s
embedding based on the embeddings of neighboring tokens, so
that every embedding also carries information about the context
in which the token appears. Next, we use the SpaCy [8] part-of-
speech (POS) tagger to identify tokens related to nouns and use the
pytokenizations module to align the tokens from the SpaCy and
DistilBERT models. Finally, we collect the contextualized embed-
dings generated by DistilBERT for the tokens that the SpaCy model
identified as nouns. To create a single embedding for the entire text,
we compute the average of the embeddings of all tokens in the text.

The second embedding approach uses the SentenceTransformers
[21] Python library. The model, “all-MiniLM-L6-v2,” and the li-
brary are both designed to compute a single meaningful embedding
for a given text string, thus providing an equivalent approach to
the text embedding process used in DeepMatcher.

Following the approach from DeepMatcher, we use cosine simi-
larity to quantify the similarity between issue and review embed-
dings. The user may specify a similarity threshold, and the number
of matches DeeperMatcher should suggest for each user review.

The next step in developing DeeperMatcher is to incorporate
new approaches for text embeddings using newer LLMs. Notably,
we will adapt the current system to facilitate the transition be-
tween text embedding methods and introduce new options beyond
those currently available. Additionally, the tool will receive us-
ability improvements soon, including new options for outputting
results, new data collectors, and the suggestion of issue titles when
DeeperMatcher does not find a matching entry for a given review.

4 PRELIMINARY EVALUATION
Trust should define the relationship between the proposed tool and
the teams using it. If DeeperMatcher does not suggest an existing
issue for a user review, the developer must be able to trust the
system and assume that there is no relevant issue in their issue
tracker. However, if DeeperMatcher frequently fails to suggest
an existing issue for a matching review, the developer may lose
trust in the tool, diminishing its value. Therefore, it is crucial that
the system consistently identifies pairs of inputs that describe a
common feature or problem. We refer to this property as reliability.

4.1 Evaluation Goal
Our evaluation investigates how well the approach works in its cur-
rent implementation and identifies potential areas for improvement.
We focus on answering the following question:

• How reliable are the matches suggested by DeeperMatcher
for English and other languages?

DeeperMatcher builds upon the DeepMatcher proof of concept.
Therefore, it is expected that DeeperMatcher functions properly
with the issues and reviews used to validate the original proof. A
fundamental principle in the development of DeeperMatcher was
to ensure its applicability to data compatible with DeepMatcher.

Using the command-line interface of DeeperMatcher, it is easy
to verify that the new architecture produces matches equivalent to
those from the DeepMatcher proof of concept. Figure 2 illustrates
an example where DeeperMatcher results coincide with those from
DeepMatcher. We anticipate that the text embedding generation
in DeeperMatcher will improve and be easily adjustable. There-
fore, our evaluation does not focus on the direct characteristics of
the numeric values created for the text embeddings. Instead, we
concentrate on assessing the reliability of DeeperMatcher as a tool.

4.2 Data Acquisition
To compare the performance of DeeperMatcher with its predeces-
sor, we use the same data that was used to evaluate DeepMatcher.
This allows us to observe changes in the matches suggested by
both systems. We utilized data from Haering et al. [7], which in-
cludes English-written issues and reviews from two large-scale

https://gitlab.com/ArthurPilone/deepermatcher
https://gitlab.com/ArthurPilone/deepermatcher


SBES’24, September 30 – October 04, 2024, Curitiba, PR Pilone et al.

Figure 2: Screenshot of matches identified by DeeperMatcher
when prompted with a review from Table III of the Deep-
Matcher proof of concept [7].

open-source projects: the VLC media player and the Signal messag-
ing app. We selected data from these projects for our comparison.

Additionally, to evaluate the reliability of DeeperMatcher with
data in languages other than English, we collected 574 issues and
69 user reviews in Brazilian Portuguese from the medium-scale
project BikeSP [20]. The BikeSP app developers manually associated
each review with the corresponding issue when the user comment
referred to something identifiable solely by its text. Out of the
69 reviews, only 23 had a corresponding development issue. Our
replication package also includes the reviews and issues from this
project.

4.3 Evaluation Methodology
First, we test whether the text embedder implementation derived
from DeepMatcher produces results equivalent to those of the orig-
inal prototype. We provide 100 randomly selected user reviews
from the Signal Messenger app data to DeeperMatcher and ver-
ify if the three issues suggested by the tool match those listed by
DeepMatcher for the same input.

Next, we focus on the main part of our evaluation. We conduct
a single-case mechanism experiment [26] to study how Deeper
Matcher performs on data from the BikeSP and VLC projects and
how variations in input affect the results. Using the command-line
interface (CLI) of DeeperMatcher, we set the source of issues to the
repository for the desired project and instruct the tool to translate
user feedback from Brazilian Portuguese to English. We also disable
the minimum similarity threshold and configure the system to
provide five candidates for matching issues for each review.

We enter the reviews one by one and analyze the results indi-
vidually. For reviews where the Brazilian developers identified a
matching issue, we count how frequently DeeperMatcher lists the
issue the developers had in mind. This procedure is repeated twice
for each user review from the Brazilian project: first using the text
embedding method from DeepMatcher and then using our newer
text embedding method based on SentenceTransformers.

Finally, we conduct a qualitative analysis by selecting issues
from the VLC and BikeSP projects and inserting corresponding or
newly created reviews. We observe how the matches suggested by
DeeperMatcher vary with different text embedding methods.

4.4 Quantitative Results
Our test suite confirmed that our implementation is consistent
with the original proof of concept from which it was derived. For
all 100 reviews sampled from the Signal app data, DeeperMatcher
consistently suggested the same three issues as DeepMatcher.

However, when tested with the text embedding method derived
from DeepMatcher, DeeperMatcher struggled with most reviews.
Out of 29 reviews where the Brazilian developers had identified a
matching issue, only three (13.0%)were included by DeeperMatcher
in its list of the five most similar issues. In these cases, the mean
similarity value for the correct issue was 81%, with two issues listed
as the 5th most similar and one as the 2nd most relevant.

In contrast, results improved significantly with the newer em-
bedding method. Using the LLM from the SentenceTransformers
library, DeeperMatcher correctly suggested the issue for 13 out of
23 (56.5%) reviews. Notably, most of these matches had a similarity
value of less than 80%, indicating effective but modest alignment.

These results demonstrate that the accuracy of matches is highly
dependent on the text embedding method used. They also suggest
that further improvements to DeeperMatcher may be needed to
achieve higher prediction reliability.

4.5 Qualitative Results
We noted and investigated some interesting patterns as we exper-
imented with the embedding method inspired by DeepMatcher.
Although many suggestions did not correspond exactly to the is-
sue representing the implementation of a new feature, they often
included issues describing fixes or extensions related to the fea-
ture. For instance, as illustrated in Figure 3, DeeperMatcher did
not identify the issue describing the creation of a new screen for
the app. However, it suggested another issue with high similarity
(86%) that described a problem with the screen.

Figure 3: Suggested issues for a review requesting a new app
screen: Although the issue related to the creation of the new
screen is not listed, the first suggested match is a fix for a
problem with the existing screen.

Furthermore, we observed that the original text embedding
method performed poorly when user reviews were considerably
longer than the corresponding issue summary. The additional text
created noise that interfered with its contextualized embedding and
increased the distance to the embedding of the related issue.

To analyze the relationship between feedback length and ac-
curacy of the match, we experimented with forging user reviews



Multilingual Crowd-Based Requirements Engineering Using Large Language Models SBES’24, September 30 – October 04, 2024, Curitiba, PR

of different lengths describing requests and reports for problems
present in the issue database. For the issue “Impedir início de viagem
se economia de bateria estiver ligada” [“Stop users from starting a
trip if the battery saver is on”], the review “Não existe uma maneira
de impedir que eu inicie uma viagem se eu estiver com economia
de bateria?” [“Isn’t there a way to stop me from starting a trip if I
have the battery saver on?”] leads to match with an 83.1% similarity
score, but “Por que não me impedem de iniciar uma viagem se
sabem que eu estou com economia de bateria?” [“Why don’t they
stop me from starting a trip if they know I have the battery saver
on?”] does not lead to a satisfying match.

Surprisingly, this problem is not exclusive to translated issues.
In the VLC dataset, we observed that the issue “Audio cuts off on
Android” is the third suggestion DeeperMatcher provides when
prompted with the review “The audio keeps cutting off,” with an 80%
similarity rating. However, altering the review text to “I don’t under-
stand why the audio keeps getting cut off” causes DeeperMatcher
not to list the corresponding issue among the first ten matches.

Repeating these two tests with the newer embedding method,
we observe signs of improvement. Although the examples in Por-
tuguese yield the same results for the SentenceTransformers em-
bedder, we were unable to create a user review containing both
“audio” and “cuts off” without DeeperMatcher suggesting “Audio
cuts off on Android” as a matching issue.

Our evaluation shows that DeeperMatcher is still unreliable
in its current state. Further improvements are necessary before
the tool can be applied in practice. It appears that the older text em-
bedding approach performed poorly with the Brazilian Portuguese
data, failing to identify the relevant issues manually identified by
the developers. Additionally, we have identified a new potential
point of failure in how DeeperMatcher handles longer user reviews.

5 DISCUSSION
From our preliminary evaluation, we conclude that several possible
improvements to DeeperMatcher should be explored before it can
deliver reliable matches for any project in any language. Our re-
sults are somewhat less favorable than those reported by Haering
et al. [7]. However, this does not contradict the findings from pre-
vious work, nor does it necessarily indicate degraded performance
with the new system architecture. Nevertheless, we reflect on our
evaluation results to identify potential improvement points for
DeeperMatcher and its architecture.

First, our methodology differs from that used to evaluate the
DeepMatcher proof of concept. While its authors focused primarily
on identifying matches with bug reports, we expanded the scope
to include reviews and issues related to new features. Additionally,
our evaluation method diverges critically from DeepMatcher’s ap-
proach. By having access to the development team, we collected
precise information on which issues were created in response to
each user review. This valuable data allowed us to conduct a more
rigorous evaluation. Instead of merely counting matches consid-
ered relevant by coders, we quantified exact matches identified by
individuals actively involved in the project.

Additionally, we should reflect on the differences between the
new data we are using and the datasets used for the DeepMatcher
evaluation. Setting aside the language aspect, the project analyzed

in our study is critically distinct from those in the DeepMatcher
evaluation. Although the number of issues from the Bike SP project
is comparable to that of the VLC project, the issues from the Brazil-
ian team include not only feature requests and bug reports but also
management tasks. Moreover, these issues are frequently interre-
lated, as features implemented by the team are often expanded or
require new fixes. This high interconnectivity increases the similar-
ity among different issues in the repository, making it challenging
for the review embeddings to be distinctly closer to a single issue.

Therefore, we argue that DeeperMatcher can exhibit variable
performance depending on the issue repository. Implementing ad-
ditional pre-processing or pre-selection steps between issue collec-
tion and its use for suggestions may be crucial for achieving more
accurate matches.

Improvement 1

It might be necessary to cluster issues based on the com-
mon features they refer to or to exclude issues that might
be excessively technical or irrelevant to what users can
review. This step could be achieved through manual filtering
by the development team (e.g., by adding an additional issue
field) or by integrating a new dedicated component into the
architecture of DeeperMatcher.

When checking the influence of review length on the resulting
text embedding, we observe a limitation inherent to contextualized
embeddings and LLMs in general. As newer and more powerful
LLMs are developed, their high-dimensional textual embeddings
tend to improve the matching metrics significantly. The improve-
ment in results after we changed the text embedding highlights
how more recent embedders can mitigate this problem. Therefore,
we conclude that constantly updating the models used for the text
embedding process should enhance the matching performance.

Improvement 2

Switching DistilBERT for the original BERT or a larger model
like Meta’s Llama3 should be a straightforward upgrade due
to our proposed architecture. Additionally, leveraging our
system’s adaptability to include LLMs specifically built
for clustering similar texts, such as those from Sentence
Transformers, can further improve the text embedding pro-
cess.

Another way tomitigate the problemwith imprecise embeddings
in longer texts is to add a pre-processing step before the embedding
process. The goal is to select only the most relevant parts of the
review or issue text, thereby preemptively de-noising the text.

Improvement 3

Using another review processing component [12], one might
delineate the most essential parts of each review. Alter-
natively, a review processing component could cluster re-
views or issues before DeeperMatcher searches for matches.



SBES’24, September 30 – October 04, 2024, Curitiba, PR Pilone et al.

Unsurprisingly, translating the input text before creating the
embedding negatively impacts the matching performance. The
translation process can introduce slight changes in meaning, as
different nuances may be ignored or lost. Feeding longer text entries
to the translator increases the likelihood of these linguistic losses
affecting the embedding. The added noise from translations also
contributes to why DeeperMatcher struggled with the Brazilian
Portuguese dataset. In addition to being in a different language, our
reviews were, on average, longer than those in the DeepMatcher
evaluation dataset, averaging 38 words per review compared to 33
in the original dataset [7].

Improvement 4

By incorporating text embedding methods that work
directly with the languages used by developers and their
users, such as Brazilian Portuguese in our sample project,
the need for a text translator component could be eliminated.
Reducing this complexity might enhance the performance of
DeeperMatcher.

When comparing the results with our approach, clear evidence
supports one of our core design choices: many identified improve-
ments can be implemented without major restructuring of Deeper
Matcher, thanks to the easy interoperability of its fundamental
components, particularly the text translator and the text embedder.

We can take this discussion further by reflecting on the impor-
tance of continuous research in areas as rapidly evolving as LLMs
and their applications in software engineering. Our results demon-
strate how higher expectations and more advanced models can
render recently presented solutions nearly obsolete. Therefore, con-
tinuous adaptability should be a guiding principle in designing
systems based on LLMs.

6 CONCLUSION
We presented the design, implementation, and preliminary eval-
uation of DeeperMatcher, an innovative system leveraging the
growing capabilities of LLMs for crowd-based requirements engi-
neering. This system utilizes text embeddings created by LLMs to
achieve a previously unfeasible task: matching relevant feedback
from large volumes of user data to corresponding issues in the issue
tracker. Its extensible architecture supports various models and the
specific matching preferences of development teams.

DeeperMatcher is being developed as an open-source command-
line utility that enables developers to identify matches between
issues and user reviews. We conducted a single-case mechanism
experiment with a medium-scale real-world project to evaluate its
matching reliability. Our preliminary results indicate that further
modifications are needed to provide reliable assistance to develop-
ment teams globally. We specifically highlighted the need for an
embedding based on a more powerful LLM than DistilBERT and for
a filtering or pre-processing step [12] of issues before embedding.
Our work underscores the importance of ongoing research into the
effective use of LLMs for software and requirements engineering

scenarios. Researchers should continuously revisit and reevalu-
ate recent work involving LLMs as newer models and techniques
emerge.

7 ARTIFACTS AVAILABILITY
The replication package for this article is publicly available at https:
//zenodo.org/doi/10.5281/zenodo.11424209. We provide A) the
DeeperMatcher source code as used in our analysis; B) the data used
to train the classification model; and C) the data (from the projects)
used in our analysis. We compressed each directory from the project
repository, and they are available as zipped files. The README file
contains basic information on the repository structure.

ACKNOWLEDGMENTS
The authors of this paper have received financial support from
FAPESP under the research grant 2024/00957-8.

REFERENCES
[1] Jakob Smedegaard Andersen andWalidMaalej. 2024. Design Patterns forMachine

Learning-Based Systems With Humans in the Loop. IEEE Software 41, 4 (2024),
151–159. https://doi.org/10.1109/MS.2023.3340256

[2] Kent Beck and Cynthia Andres. 2004. Extreme programming explained: embrace
change. Addison-Wesley Professional.

[3] Markus Borg. 2024. Requirements Engineering and Large Language Models:
Insights From a Panel. IEEE Software 41, 2 (2024), 6–10.

[4] Rubens Ideron dos Santos, Eduard C. Groen, and Karina Villela. 2019. An
Overview of User Feedback Classification Approaches. In REFSQ Workshops.
https://api.semanticscholar.org/CorpusID:186206287

[5] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M Zhang. 2023. Large language models for software engineering:
Survey and open problems. arXiv preprint arXiv:2310.03533 (2023).

[6] Eduard C. Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Doerr, Emitza
Guzman, Mahmood Hosseini, Jordi Marco, Marc Oriol, Anna Perini, and Melanie
Stade. 2017. The Crowd in Requirements Engineering: The Landscape and
Challenges. IEEE Software 34, 2 (2017), 44–52. https://doi.org/10.1109/MS.2017.33

[7] Marlo Haering, Christoph Stanik, and Walid Maalej. 2021. Automatically Match-
ing Bug Reports With Related App Reviews. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). 970–981. https://doi.org/10.1109/
ICSE43902.2021.00092

[8] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, Adriane Boyd, et al.
2020. spaCy.

[9] Qilu Jiao and Shunyao Zhang. 2021. A Brief Survey of Word Embedding and
Its Recent Development. In 2021 IEEE 5th Advanced Information Technology,
Electronic and Automation Control Conference (IAEAC), Vol. 5. 1697–1701. https:
//doi.org/10.1109/IAEAC50856.2021.9390956

[10] Brendan Julian, James Noble, and Craig Anslow. 2019. Agile Practices in Practice:
Towards a Theory of Agile Adoption and Process Evolution. In Agile Processes in
Software Engineering and Extreme Programming. Springer International Publish-
ing, 3–18.

[11] Yoon Kim, Carl Denton, Luong Hoang, and Alexander M Rush. 2017. Structured
attention networks. arXiv preprint arXiv:1702.00887 (2017).

[12] Walid Maalej, Volodymyr Biryuk, Jialiang Wei, and Fabian Panse. 2024. On
the Automated Processing of User Feedback. In Handbook of Natural Language
Processing for Requirements Engineering, Alessio Ferrari and Gouri Deshpande
(Eds.). Springer.

[13] Daniel Martens and Walid Maalej. 2019. Extracting and Analyzing Context Infor-
mation in User-Support Conversations on Twitter. In 2019 IEEE 27th International
Requirements Engineering Conference (RE). 131–141. https://doi.org/10.1109/RE.
2019.00024

[14] Daniel Martens and Walid Maalej. 2019. Release Early, Release Often, and Watch
Your Users’ Emotions: Lessons From Emotional Patterns. IEEE Software 36, 5
(2019), 32–37. https://doi.org/10.1109/MS.2019.2923603

[15] Rohan Reddy Mekala, Asif Irfan, Eduard C. Groen, Adam Porter, and Mikael
Lindvall. 2021. Classifying User Requirements from Online Feedback in Small
Dataset Environments using Deep Learning. In 2021 IEEE 29th International
Requirements Engineering Conference (RE). 139–149. https://doi.org/10.1109/
RE51729.2021.00020

[16] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

https://zenodo.org/doi/10.5281/zenodo.11424209
https://zenodo.org/doi/10.5281/zenodo.11424209
https://doi.org/10.1109/MS.2023.3340256
https://api.semanticscholar.org/CorpusID:186206287
https://doi.org/10.1109/MS.2017.33
https://doi.org/10.1109/ICSE43902.2021.00092
https://doi.org/10.1109/ICSE43902.2021.00092
https://doi.org/10.1109/IAEAC50856.2021.9390956
https://doi.org/10.1109/IAEAC50856.2021.9390956
https://doi.org/10.1109/RE.2019.00024
https://doi.org/10.1109/RE.2019.00024
https://doi.org/10.1109/MS.2019.2923603
https://doi.org/10.1109/RE51729.2021.00020
https://doi.org/10.1109/RE51729.2021.00020


Multilingual Crowd-Based Requirements Engineering Using Large Language Models SBES’24, September 30 – October 04, 2024, Curitiba, PR

[17] Lloyd Montgomery, Clara Lüders, and Walid Maalej. 2022. An alternative issue
tracking dataset of public Jira repositories. In Proceedings of the 19th International
Conference on Mining Software Repositories (Pittsburgh, Pennsylvania) (MSR ’22).
Association for Computing Machinery, New York, NY, USA, 73–77. https://doi.
org/10.1145/3524842.3528486

[18] Lloyd Montgomery, Clara Lüders, and Walid Maalej. 2024. Mining Issue Trackers:
Concepts and Techniques. In Handbook of Natural Language Processing for
Requirements Engineering, Alessio Ferrari and Gouri Deshpande (Eds.). Springer.
https://arxiv.org/abs/2403.05716

[19] Dennis Pagano and Walid Maalej. 2013. User feedback in the appstore: An em-
pirical study. In 2013 21st IEEE International Requirements Engineering Conference
(RE). 125–134. https://doi.org/10.1109/RE.2013.6636712

[20] Arthur Pilone, Lorenzo Bertin, Isabela Clementino Ponciano, Filipe Tress-
mann Velozo, Jonathas Castilho, Jorge Harrisonn, Guilherme Luiz Pereira de
Almeida, and Ana Yoon Faria de Lima. 2024. Projeto Piloto Bike SP. https:
//gitlab.com/interscity/bikesp/bikespapp

[21] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[22] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108 (2019).

[23] Remco Snijders, Fabiano Dalpiaz, Mahmood Hosseini, Alimohammad Shahri, and
Raian Ali. 2014. Crowd-centric Requirements Engineering. In 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing. 614–615. https:
//doi.org/10.1109/UCC.2014.96

[24] Christoph Stanik, Marlo Haering, and Walid Maalej. 2019. Classifying Multi-
lingual User Feedback using Traditional Machine Learning and Deep Learning.
In 2019 IEEE 27th International Requirements Engineering Conference Workshops
(REW). 220–226. https://doi.org/10.1109/REW.2019.00046

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[26] Roel J. Wieringa. 2014. Single-Case Mechanism Experiments. Springer Berlin
Heidelberg, Berlin, Heidelberg, 247–267. https://doi.org/10.1007/978-3-662-
43839-8_18

https://doi.org/10.1145/3524842.3528486
https://doi.org/10.1145/3524842.3528486
https://arxiv.org/abs/2403.05716
https://doi.org/10.1109/RE.2013.6636712
https://gitlab.com/interscity/bikesp/bikespapp
https://gitlab.com/interscity/bikesp/bikespapp
https://doi.org/10.1109/UCC.2014.96
https://doi.org/10.1109/UCC.2014.96
https://doi.org/10.1109/REW.2019.00046
https://doi.org/10.1007/978-3-662-43839-8_18
https://doi.org/10.1007/978-3-662-43839-8_18

	Abstract
	1 Introduction
	2 Approach
	3 Implementation
	4 Preliminary Evaluation
	4.1 Evaluation Goal
	4.2 Data Acquisition
	4.3 Evaluation Methodology
	4.4 Quantitative Results
	4.5 Qualitative Results

	5 Discussion
	6 Conclusion
	7 Artifacts Availability
	Acknowledgments
	References

