
Toward a Language-Agnostic Approach to Detect Test Smells
Publio Blenilio Tavares Silva

publioufc@alu.ufc.br
Federal University of Ceará

Quixadá, Brazil

Carla Bezerra
carlailane@ufc.br

Federal University of Ceará
Quixadá, Brazil

Ivan Machado
ivan.machado@ufba.br

Federal University of Bahia
Salvador, Brazil

ABSTRACT
Tests play a crucial role in software development by ensuring code
quality. However, test code can suffer from “smells” — poor imple-
mentation choices that hinder maintainability and evolution. Nu-
merous studies have addressed test smells in various programming
languages, proposing tools for detecting them in Java, C++, Scala,
and others. These tools employ techniques such as information
retrieval, metrics analysis, and abstract syntax tree (AST) parsing.
However, their focus on specific languages limits their generaliz-
ability and applicability to other languages and test frameworks.
This challenge is similar to issues found in code smell detection
and static code analysis. Therefore, this work proposes a language-
agnostic approach to detect test smells. Our approach leverages
AST parsing to extract relevant information from the test code,
followed by test smell detection based on this extracted data. This
method aims to facilitate the detection of test smells across vari-
ous programming languages and test frameworks, enhancing the
tool’s generalizability and usability. To check the viability of our
approach, we created a proof of concept using two test smells and
two different languages.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; General programming languages; • General and
reference → Empirical studies.

KEYWORDS
Test smell detection, language-agnostic

1 INTRODUCTION
One of the key practices to ensure the quality of code in software
development is testing [23]. It can be either manual tests that have
to be conducted by a human or automated tests consisting of test
scripts that provide repeatability and require less test effort [10].
In organizations that adopt continuous delivery, it is necessary to
create automated tests to shorten the time between the ideation of
a feature and its delivery to the final customers while ensuring its
quality [23].

However, as desirable as evolving the production code is, it is
equally important to evolve the test code to remain useful over time
[23]. Poorly implemented test code can cause undesirable extra
costs and effort [10]. Neglecting the importance of developing good
tests can be harmful since developers spend around one-quarter
of their time on engineering test code [5]. One of the factors that
can impact the capability to maintain and evolve test code is test
smells. Test smells are developers’ poor choices in implementing
test code [1]. These choices, among other things, can lead to a test
code that is hard to maintain and evolve [17].

Table 1: Test smell detection tools and their supported pro-
gramming languages [1]

Tool Supported Language

DARTS Java
DrTest Pharo

DTDetector Java
EletricTest Java
JNose Test Java
OraclePolish Java

PolDet Java
PraDeT Java
RAIDE Java
RTj Java

SoCRATES Scala
Taste Java

TeCReVis Java
TEDD Java

TeReDetect Java
TestEvoHound Java
TestHound Java
TestLint Smalltalk
TestQ C++, Java
TRex Java

TSDETECT Java

The initial catalog of test smells proposed by Deursen et al. [8]
consists of 11 test smells and their suggested refactorings. Since
then, numerous studies have addressed test smells by proposing
strategies to improve detection and refactoring in a range of pro-
gramming languages and platforms, with Java being the most com-
mon one [1]. However, many of these studies have focused on only
a few languages, which restricts the generalization of results to
other languages or frameworks. Table 1, adapted from Aljedaani
et al. [1], displays a list of test smell detection tools and their sup-
ported languages. As shown in the table, most tools support only
Java. Additionally, all tools support a single language except for
TestQ, which supports two languages.

Researchers have tackled similar problems in related fields like
code smell detection and static code analysis by proposing language-
agnostic approaches. For instance, Ducasse et al. [9] introduced a
language-independent and visual method for detecting code dupli-
cation. Although code smells and test smells are related concepts,
language-agnostic approaches to detecting code smells cannot be ef-
fectively scaled for detecting test smells. This is because test smells
are specific to test code and involve unique practices that general
detectors may not accurately identify. Schiewe et al. [21] focused
on static code analysis and presented a language-agnostic approach
to identify components. Their approach involves converting the

SBES’24, September 30 – October 04, 2024, Curitiba, PR Silva, Bezerra and Machado

source code into an intermediary format called a language-agnostic
abstract-syntax tree and using parsers to extract high-level infor-
mation.

Hence, the current study aims to tackle the challenge of language-
agnostic detection of test smells. To achieve this goal, we introduce
an approach that leverages the language-agnostic abstract-syntax
tree outlined by Schiewe et al. [21] to extract pertinent details
about tests, such as their names, test asserts, and assert messages,
using parsers. Additionally, we establish language-agnostic test
smell detectors that utilize the extracted information from these
parsers. To check the viability of this approach, we developed a
proof of concept that detects the test smells Assertion Roulette and
Duplicate Assert in test code written in Java and JavaScript.

The structure of the work is as follows: Section 2 introduces the
concepts and related work relevant to this study. Section 3 outlines
the research objectives and the methodologies employed to conduct
the study. Section 4 presents the findings of the study. In Section
5, the implications of the study findings are discussed. Section 6
explores potential threats to validity of the study. Finally, Section 7
summarizes the findings and outlines avenues for future research.

2 BACKGROUND
2.1 Test smells
The concept of code smells, akin to test smells, denotes sub-optimal
coding practices leading to potential issues inmaintainability.While
not indicative of functional failure, they signal potential quality
problems [17]. Test smells, like code smells, highlight sub-optimal
engineering decisions in test code, impacting maintainability and
evolution, crucial in environments like continuous delivery [23].

Studies, including the seminal work by Deursen et al. [8], in-
troduced a catalog of 11 test smells with associated refactorings.
This catalog has expanded over time, incorporating new test smells,
including language-specific ones [1]. Additionally, research has
yielded various tools for detecting test smells in different program-
ming languages like Java, C++, Smalltalk, and Scala, though mostly
focused on Java [1].

2.2 Test smell detection techniques
The literature presents several techniques for identifying test smells.
Notable among these are Metrics, Rules/Heuristics, Information
Retrieval, and Dynamic Tainting methodologies.

Metrics: Measure symptom impact using structural and seman-
tic metrics, defining thresholds to identify smells. Tools like those
by Van Rompaey et al. [24] detect General Fixture and Eager Test
using metrics like Number of Objects Used in setup.

Rules/Heuristic: Supplement metrics with predefined patterns
in source code. For instance, Assertion Roulette is detected by exam-
ining assertion statements. TSDETECT [18] employs this technique
applied to the AST, excelling in detection and popularity.

Information Retrieval: Extract and normalize test code in-
formation, applying preprocessing steps and machine learning to
discern textual features. Tools such as those proposed by Lambiase
et al. [15] leverage this technique effectively.

Dynamic Tainting: Monitor code during execution, analyzing
runtime data with predefined taint values. This technique is used
in the work of Zhang et al. [28].

Rules/Heuristic-based detection is common due to well-defined
rules, while Metrics-based detection is less frequent due to metric
limitations. Dynamic-based detection is used for test dependency
and rotten green tests. Information Retrieval techniques are utilized
but may suffer from feature absence.

2.3 Related Work
Taniguchi et al. [22] introduces JTDog1, a Gradle plugin designed
to detect dynamic smells in test code, including rotten green tests,
flaky tests, and dependent tests. Unlike static smell detection, dy-
namic smell detection requires dynamic analysis and additional
information such as test execution and coverage data. JTDog aims
to address the reduced portability of dynamic smell detection tools
by integrating them into the Gradle build tool, making it more acces-
sible and user-friendly. The effectiveness of JTDog is demonstrated
by its successful application to 150 projects on GitHub, where it
accurately detected dynamic smells in a significant portion of the
projects.

Wang et al. [26] aimed to address the existing gap in understand-
ing test smells in dynamically typed languages like Python. They
curated a list of 17 diverse test smells and identified 18 additional
Python-specific test smells through empirical analysis. They devel-
oped PYNose, a PyCharm plugin, to detect these smells in Python
projects utilizing the standard Unittest framework. An empirical
study on 248 Python projects revealed that test smells are prevalent,
with most projects and test suites exhibiting at least one smell. The
paper provides valuable insights into the prevalence and detection
of test smells in Python code, offering researchers and practitioners
a tool to improve the quality of test code.

Peruma et al. [18] proposed the TSDETECT tool that uses rules
as a technique for detecting test smells. These rules are applied
not directly to the source code but to an AST generated from the
source code. By applying these rules, it is identified whether there
are test smells in the code and which test smells exist. The tool
was validated with a benchmark containing 65 unit test files for 19
different types of test smells. The results demonstrated that the tool
has high accuracy, achieving average precision and recall above
95%. Furthermore, in the work of Aljedaani et al. [1], the tool is
mentioned as one of the most popular ones, having a high number
of forks in its GitHub project.

Ducasse et al. [9] discusses the prevalent issue of duplicated code
in software systems, attributing its occurrence to factors such as
time constraints, performance evaluation criteria, and efficiency
considerations. Despite its commonality, code duplication is widely
regarded as a bad practice due to its detrimental effects on main-
tenance, code size, and design quality. While techniques and tools
for detecting duplicated code exist, the need for language-specific
parsers hinders their practical application in industrial contexts.
The authors propose a language-independent approach for ana-
lyzing duplication based on string matching, textual reports, and
scatter plot visualizations. The effectiveness of this approach is
demonstrated through case studies conducted in different program-
ming languages.

Rakić et al. [19] introduces the Set of Software Quality Static
Analyzers (SSQSA), a framework comprising various static analysis

1https://plugins.gradle.org/plugin/com.github.m-tanigt.jtdog

https://plugins.gradle.org/plugin/com.github.m-tanigt.jtdog

Toward a Language-Agnostic Approach to Detect Test Smells SBES’24, September 30 – October 04, 2024, Curitiba, PR

tools to improve software quality. A key feature of these tools is
their language independence, allowing them to be applied uniformly
to software systems written in different programming languages.
This characteristic enhances the generality and applicability of the
tools, enabling consistent analysis across diverse software products.
The framework utilizes an enriched Concrete Syntax Tree (eCST) as
an intermediate representation of source code to achieve language
independence. Currently, SSQSA supports six programming lan-
guages, including Java, C#, and COBOL, with the capability to easily
add support for new languages. The paper details the framework’s
architecture, focusing on the eCST Generator component for gener-
ating language-independent representations. It also describes three
fully functional tools developed within the framework: SMIILE
for software metrics, SNEIPL for software network extraction, and
SSCA for software structure change analysis. Emphasis is placed
on SNEIPL, which is in intensive development.

Schiewe et al. [21] employed advancing static code analysis to
meet the demands of modern software development, emphasiz-
ing its key role in automating tasks like code reviews, security
assessments, and error detection. The authors highlight the in-
adequacies of traditional methods in recognizing high-level com-
ponents and architectural issues due to their focus on low-level
constructs and lack of platform independence. To tackle these chal-
lenges, the study proposes a two-step approach: first, parsing code
into a Language-Agnostic Abstract-Syntax Tree (LAAST), and then
employing Relative Static Structure Analyzers (ReSSA) to iden-
tify specific component types using generalized parsers. Based on
the platform and system-specific requirements, these parsers can
be tailored for better precision. Evaluating microservice testbeds,
DeathStarBench, and TrainTicket demonstrates promising results
in identifying components across diverse structures.

In our research, we draw insights from various related works.
While Taniguchi et al. [22], Wang et al. [26] and Peruma et al. [18]
focus on Java and Python code, we aimed to adopt a language-
agnostic approach. Similarly, Ducasse et al. [9], Rakić et al. [19],
and Schiewe et al. [21] have developed language-agnostic method-
ologies, albeit primarily for code smell detection and static code
analysis. In our study, we introduce a language-agnostic approach
tailored specifically for detecting test smells, leveraging the same
language-agnostic AST utilized in the work of Schiewe et al. [21].

3 PROPOSED APPROACH (AROMALIA)
3.1 Goal
Our primary objective is to introduce a language-agnostic approach
for detecting test smells, henceforth known as AromaLIA. This ap-
proach has three key requirements: (i) it should be adaptable to
accommodate various languages or frameworks as needed, (ii) the
process for detecting test smells must remain consistent across dif-
ferent languages and test frameworks. This ensures that the imple-
mentation of the test smell detection process remains unchanged
when incorporating a new language, and (iii) any components
within the final approach that are specific to a particular language
should be designed for extensibility, allowing for integration with
as many languages as possible.

3.2 Study Steps
This section describes the steps of the study to support research.

Step 1: Analysis of similar studies to select the techniques
to be used.We searched related works in the literature with two
main focuses:

• Works dealing with test-smell detection. From these
works, we could identify which techniques can be used for
test smell detection.

• Works proposing language-agnostic code analysis solu-
tions. From these works, we could identify which techniques
can be used to create language-agnostic code analysis so-
lutions. Additionally, we could identify intersections with
what was identified in the previous topic.

We found several works addressing the detection of test smells
[3, 4, 6, 7, 11–16, 18, 20, 25, 28]. These works use some of the test
smell detection techniques described in Section 2.2. We also found
some studies dealing with solutions for language-independent code
analysis [9, 21]. These studies addressed issues such as language-
independent code smell detection and language-independent static
code analysis. From the analysis of these studies, we identified an
intersection between the works of Peruma et al. [18] and Schiewe
et al. [21] regarding the two focuses mentioned earlier, which is
their use of abstract syntax trees (ASTs) for detecting test smells
and performing static code analysis, respectively. Schiewe et al.
[21] extends this by employing a language-agnostic AST to achieve
broader applicability across different programming languages.

Based on the studies, we decided to use the same strategy as
the work of Peruma et al. [18] with the use of rules to identify
test smells from an AST generated from the source code. However,
we opted to use the same type of language-agnostic AST used in
Schiewe et al. [21] so that the final solution for test smell detection
would also be language-independent. These choices satisfy the
first requirement described in Section 3.1, as the chosen AST, in
addition to being language-agnostic, was based on Mozilla’s rust-
code-analysis crate [2], which already supports various languages
such as Java, JavaScript, TypeScript, Python, Go, and Rust, and can
be extended to other languages.

Step 2: Code architecture design to meet requirements.
Next, we designed a solution combining features from both stud-

ies of Peruma et al. [18] and Schiewe et al. [21]. Figure 1 shows a
high-level architecture of the proposed solution.

As Figure 1 shows, the first step of the solution involves using the
LAAST parser to convert the source code into a language-agnostic
AST. Next, the AST is used by an AST Test Extractor, a component
responsible for extracting relevant information about the tests from
the AST and providing them in a standardized format.

An important point to highlight is that each language’s tests
follow a specific structure. Moreover, sometimes, within the same
language, the test structure can vary depending on the testing
framework used. Therefore, there will be an implementation of the
AST Test Extractor component for each language or framework for
which test smell detection is desired. However, the extracted test
data format will always follow the same interface.

After extracting relevant test data from the AST into a stan-
dardized format, the data is passed to Test Smell Detectors. These
components detect whether a given test exhibits a certain test smell.

SBES’24, September 30 – October 04, 2024, Curitiba, PR Silva, Bezerra and Machado

Figure 1: High-level architecture of the proposed solution

Hence, the Test Smell Detector component will be implemented
for each test smell desired to be detected. An important point is
that implementing a Test Smell Detector will be language-agnostic
because the previous step ensures that the test data received by the
Test Smell Detector will always be in a standardized format.

With this architecture, we can meet requirements 2 and 3 de-
scribed in Section 3.1, as the implementation of test smell detection
will be consistent regardless of the language in which the tests were
written, and step two, which requires specific implementation for
each language/framework, was designed to allow extension to as
many languages as possible.

4 PROOF OF CONCEPT OF AROMALIA
We created a POC implementing the architecture mentioned earlier
using the TypeScript language. The first step in creating the POC
was to define the types and interfaces described by the architecture
mentioned earlier. Listing 1 shows the interface of ASTTestExtrac-
tor. The interface contains only the extract method, which takes
the source code’s AST as input and returns a list of tests obtained
through the AST.

1 in te r face ASTTes tEx t r a c t o r {
2 e x t r a c t (a s t : ASTProgram) : Te s t [] ;
3 }

Listing 1: ASTTestExtractor interface

Listing 2 shows the type returned by the extract method of
ASTTestExtractor. The interface contains the test case name, its
assertions, and its annotations. Each assertion contains the actual
value, the expected value, the combinator used, and the assertion’s
explanation message. Depending on the type of combinator, some
of these values may be undefined. It is important to emphasize
that this type was specifically made for the context of this work.
This interface contains the information we need to detect the two
selected test smells. To detect other test smells, we will likely need
to expand this interface to accommodate data necessary for the
detection of other types of test smells.

Listing 3 shows the interface of TestSmellDetector. The interface
contains only the isPresent method, which takes a test in the format
specified in Listing 2 and returns a boolean value indicatingwhether
the received test contains a certain type of test smell or not.

We chose to apply the POC to two widely used programming
languages and testing frameworks, namely Java with JUnit and
JavaScript with Jest. The Java language was choosen because how
it is possible to see on Table 1 is the language supported by the

majority of the existing test smell detection tools and it can be
useful in the future to compare our tool with existing ones. On the
other hand, the JavaScript language was choosen because it is not a
language commonly approached in the test smell detection context
which brings some novelty. We also selected two test smells whose
detection process is relatively straightforward, namely Duplicate
Assert and Assertion Roulette. Detecting the Duplicate Assert test
smell involves searching for test cases with more than one asser-
tion statement with the same parameters. Detecting the Assertion
Roulette test smell involves searching for test cases with more than
one assertion statement, where at least one does not have a message
or explanation.

1 in te r face Tes t {
2 name : s t r i n g ;
3 a s s e r t s : T e s tA s s e r t [] ;
4 anno t a t i o n s ? : Te s tAnno ta t i on [] ;
5 }
6
7 in te r face Te s tA s s e r t {
8 l i t e r a l A c t u a l ? : s t r i n g ;
9 matcher ? : s t r i n g ;
10 l i t e r a l E x p e c t e d ? : s t r i n g ;
11 message ? : s t r i n g ;
12 }
13
14 in te r face Tes tAnno ta t i on {
15 name : s t r i n g ;
16 va lue ? : s t r i n g ;
17 }

Listing 2: Test interface

1 in te r face Te s t Sme l lD e t e c t o r {
2 i s P r e s e n t (t e s t : Te s t) : boolean
3 }

Listing 3: TestSmellDetector interface

To test the POC, we selected a simple example of the smells
Duplicate Assert and Assertion Roulette for Java and JavaScript.
The example of Duplicate Assert for Java and JavaScript can be seen
in Listing 4 and Listing 5, respectively. The example of Assertion
Roulette for Java and JavaScript can be seen in Listing 6 and Listing
7, respectively.

Something that becomes clear with these examples is what we
mentioned in Section 3: even though the test cases are the same in
both languages, the way the tests are structured varies significantly.
For example, in Java with JUnit, the name of a test case is defined
by the method’s name in the test class (Listing 4). In contrast, in
Java with Jest, the name of the test case is defined by the first
parameter of the test function (Listing 5). Another example is with

Toward a Language-Agnostic Approach to Detect Test Smells SBES’24, September 30 – October 04, 2024, Curitiba, PR

the assertions. In Java with JUnit, the expected value and the actual
value in an assert are generally defined as the first and second
parameters of an assert function (Listing 6). In contrast, in JavaScript
with Jest, the actual value is defined in the expect function, and
the expected value is defined in the toBe function or an equivalent
function that is chained to the expect function call (Listing 7).

1 @Test
2 public void t e s t Xm l S a n i t i z e r () {
3 boolean v a l i d = Xm l S an i t i z e r . i s V a l i d (" F r i t z b o x ") ;
4 a s s e r t E q u a l s (" F r i t z b o x i s v a l i d " , true , v a l i d) ;
5 System . out . p r i n t l n (" Pure ASCII t e s t − pas sed ") ;
6
7 v a l i d = Xm l S an i t i z e r . i s V a l i d (" F r i t z Box ") ;
8 a s s e r t E q u a l s (" Spaces a r e v a l i d " , true , v a l i d) ;
9 System . out . p r i n t l n (" Spaces t e s t − pas sed ") ;
10
11 v a l i d = Xm l S an i t i z e r . i s V a l i d (" F ru t zbux ") ;
12 a s s e r t E q u a l s (" F ru t zbux i s i n v a l i d " , fa l se , v a l i d) ;
13 System . out . p r i n t l n ("No ASCII t e s t − pas sed ") ;
14
15 v a l i d = Xm l S an i t i z e r . i s V a l i d (" F r i t z ! box ") ;
16 a s s e r t E q u a l s (" Exc l ama t ion mark i s v a l i d " , true , v a l i d) ;
17 System . out . p r i n t l n (" Exc l ama t ion mark t e s t − pas sed ") ;
18
19 v a l i d = Xm l S an i t i z e r . i s V a l i d (" F r i t z . box ") ;
20 a s s e r t E q u a l s (" Exc l ama t ion mark i s v a l i d " , true , v a l i d) ;
21 System . out . p r i n t l n (" Dot t e s t − pas sed ") ;
22
23 v a l i d = Xm l S an i t i z e r . i s V a l i d (" F r i t z −box ") ;
24 a s s e r t E q u a l s (" Minus i s v a l i d " , true , v a l i d) ;
25 System . out . p r i n t l n (" Minus t e s t − pas sed ") ;
26
27 v a l i d = Xm l S an i t i z e r . i s V a l i d (" F r i t z −box ") ;
28 a s s e r t E q u a l s (" Minus i s v a l i d " , true , v a l i d) ;
29 System . out . p r i n t l n (" Minus t e s t − pas sed ") ;
30 }

Listing 4: Duplicate Assert Java example

1 t e s t (' t e s t Xm l S a n i t i z e r ' , () => {
2 l e t v a l i d = Xm l S an i t i z e r . i s V a l i d (' F r i t z b o x ') ;
3 expe c t (v a l i d) . toBe (true) ;
4 c on so l e . l og (' Pure ASCII t e s t − pas sed ') ;
5
6 v a l i d = Xm l S an i t i z e r . i s V a l i d (' F r i t z Box ') ;
7 expe c t (v a l i d) . toBe (true) ;
8 c on so l e . l og (' Spaces t e s t − pas sed ') ;
9
10 v a l i d = Xm l S an i t i z e r . i s V a l i d (' F ru t zbux ') ;
11 expe c t (v a l i d) . toBe (f a l s e) ;
12 c on so l e . l og ('No ASCII t e s t − pas sed ') ;
13
14 v a l i d = Xm l S an i t i z e r . i s V a l i d (' F r i t z ! box ') ;
15 expe c t (v a l i d) . toBe (true) ;
16 c on so l e . l og (' Exc l ama t ion mark t e s t − pas sed ') ;
17
18 v a l i d = Xm l S an i t i z e r . i s V a l i d (' F r i t z . box ') ;
19 expe c t (v a l i d) . toBe (true) ;
20 c on so l e . l og (' Dot t e s t − pas sed ') ;
21
22 v a l i d = Xm l S an i t i z e r . i s V a l i d (' F r i t z −box ') ;
23 expe c t (v a l i d) . toBe (true) ;
24 c on so l e . l og (' Minus t e s t − pas sed ') ;
25
26 v a l i d = Xm l S an i t i z e r . i s V a l i d (' F r i t z −box ') ;
27 expe c t (v a l i d) . toBe (true) ;
28 c on so l e . l og (' Minus t e s t − pas sed ') ;
29 }) ;

Listing 5: Duplicate Assert JavaScript example

We created and made available on GitHub a project2 containing
examples of smelly tests in Java and JavaScript, the ASTs of both
codes, implementations of the ASTTextExtractor interface for Java
and JavaScript, implementations of the TestSmellDetector interface
for the Duplicate Assert and Assertion Roulette test smells, and
ready-to-use examples of using these classes. To test the project,
simply clone the GitHub repository and follow the instructions in
the README.md file.

1 @Test
2 public void t e s tC loneNonBareRepoFromLoca lTe s t Se rve r ()

throws Excep t i on {
3 Clone cloneOp = new Clone (
4 fa l se ,
5 i n t e g r a t i o nG i t S e r v e rUR I F o r (" sma l l − repo . e a r l y . g i t ") ,
6 he l p e r () . newFolder ()
7) ;
8
9 Repo s i t o r y repo = executeAndWaitFor (c loneOp) ;
10
11 a s s e r t T h a t (
12 repo ,
13 ha sG i tOb j e c t ("

b a 1 f 6 3 e 4 4 3 0 b f f 2 6 7 d 1 1 2 b 1 e 8 a f c 1 d 6 2 9 4 db 0 c c c ")
14) ;
15
16 F i l e r e admeF i l e = new F i l e (repo . getWorkTree () , "README"

) ;
17 a s s e r t T h a t (r eadmeF i l e , e x i s t s ()) ;
18 a s s e r t T h a t (r e admeF i l e . l e ng t h () , equa lTo (1 2 L)) ;
19 }

Listing 6: Assertion Roulette Java example

1 t e s t (' t e s tC loneNonBareRepoFromLoca lTe s t Se rve r ' , async ()
=> {

2 const cloneOp = new Clone (
3 fa l se ,
4 i n t e g r a t i o nG i t S e r v e rUR I F o r (' sma l l − repo . e a r l y . g i t ') ,
5 he l p e r () . newFolder ()
6) ;
7 const repo = awa i t executeAndWaitFor (c loneOp) ;
8
9 expe c t (repo) . t oHaveG i tOb j e c t ('

b a 1 f 6 3 e 4 4 3 0 b f f 2 6 7 d 1 1 2 b 1 e 8 a f c 1 d 6 2 9 4 db 0 c c c ') ;
10
11 const r e admeF i l e = new F i l e (repo . getWorkTree () , 'README

') ;
12 expe c t (r e admeF i l e . e x i s t s ()) . toBe (true) ;
13 expe c t (r e admeF i l e . l e ng t h) . toBe (1 2) ;
14 }) ;

Listing 7: Assertion Roulette JavaScript example

5 DISCUSSION
The outcomes of this study provided valuable insights into the
methodologies employed in detecting test smells within similar
studies. We noted a disparity between this domain and other fields
like static code analysis and code smell detection, where language-
agnostic approaches are more prevalent. This discrepancy under-
scores the need for further exploration and development within
the test smell detection domain, particularly regarding language-
agnostic strategies.

Additionally, our study acquainted us with potential methodolo-
gies for devising language-agnostic solutions for test smell detec-
tion. We contributed a high-level architectural framework, offering
a foundational scaffold for future studies into language-agnostic
2https://github.com/publiosilva/aroma-lia/blob/main/README.md

https://github.com/publiosilva/aroma-lia/blob/main/README.md

SBES’24, September 30 – October 04, 2024, Curitiba, PR Silva, Bezerra and Machado

test smell detection. Moreover, we operationalized this framework
by drafting a POC that effectively identified two distinct test smells
across test cases in disparate programming languages, employing
identical detection mechanisms.

Moreover, while a part of our proposed strategy needs language-
specific implementations for test case extraction from the AST, the
core detection mechanism remains consistent across languages.
This architectural design choice ensures the stability and univer-
sality of the detection process, irrespective of the programming
language employed. Furthermore, our approach was intentionally
engineered with extensibility in mind, enabling seamless adapta-
tion to new languages without the need to reinvent the wheel. This
aligns with the principle endorsed by Aljedaani et al. [1], which
emphasizes the importance of critically evaluating the need for
entirely new tool creation versus leveraging existing ones to foster
efficiency and enable robust frameworks.

Lastly, we acknowledge that while our solution is currently
limited by the language support provided by Mozilla’s rust-code-
analysis crate [2], our choice of a versatile tool emphasizes our
commitment to scalability and adaptability. As the tool’s language
support expands, so will the breadth of languages accommodated
by our solution, ensuring its relevance and applicability in diverse
programming ecosystems.

6 THREATS TO VALIDITY
This section discusses threats to the study’s validity according to
the classification of Wohlin et al. [27].

Internal validity. The validity of the selected techniques to
detect test smells might be questioned. To mitigate this threat, we
selected techniques that have been successfully utilized in other
works. This approach demonstrates that the techniques we chose
have a track record of effectiveness and reliability in similar con-
texts, bolstering the internal validity of our study.

Construct validity. Limiting our study to only two languages
(Java and JavaScript) could raise concerns about the generalizability
of our approach. To address this threat, we justified our choice of
languages. For instance, Java is widely used and serves as a represen-
tative language in the context of test smell detection. By selecting
a widely used language like Java, we increased the likelihood that
our findings will be applicable to a broad range of scenarios, thus
enhancing construct validity.

External validity. The selection of valid examples of test smells
is crucial for the external validity of our study. To mitigate this
threat, we utilized examples from a well-known dataset of test
smells 3. This approach ensures that the test smells used in our study
are recognized and accepted by the broader research community,
enhancing the generalizability of our findings beyond the specific
dataset or context used in our study.

Conclusion validity. Testing a limited number of languages
and test smells may raise concerns about the robustness and gener-
alizability of our conclusions. To address this threat, we justified
our choice of languages and test smells as representative samples.
Additionally, we acknowledged the limitations of our study and
proposed avenues for future research, such as testing the approach
with new languages and test smells. This approach demonstrates

3https://testsmells.org/pages/testsmellexamples.html

our commitment to expanding our research scope and enhancing
the validity of our conclusions over time.

7 FINAL REMARKS
In this work, we conducted a study to propose a language-agnostic
solution for detecting test smells. We reviewed related literature to
understand which techniques for detecting test smells have been
used and what strategies have been employed in related areas to
create language-agnostic solutions. After this preliminary study, we
defined a high-level architecture for a language-agnostic approach
to test smell detection using techniques and tools successfully used
in relatedwork.We also designed a POC implementing the proposed
architecture, which successfully detected the Duplicate Assert and
Assertion Roulette test smells in test cases written in Java and
JavaScript using the same code for test smell detection.

This work can serve as a basis for future research in language-
agnostic test smell detection. Additionally, the POC produced in
this work provides the necessary framework for detecting new test
smells and other languages not covered in this study. The results of
this work can also serve as a basis for comparison for studies aiming
to implement solutions for language-agnostic test smell detection
using other techniques such as metrics, information retrieval, and
dynamic tainting.

In future work, we intend to: (i) expand the set of test smells
that can be detected by the tool produced in this work; (ii) expand
the set of languages supported by the tool produced in this work
by creating new implementations of the ASTTestExtractor inter-
face for other languages and frameworks, including those that use
paradigms such as functional programming; (iii) validate the tool
with a larger set of test cases considering also other languages and
other test smells; and (iv) create a tool for language-agnostic test
smell detection using techniques different from those used in this
work and compare the results.

ARTIFACT AVAILABILITY
We provide our data under open licenses at: https://github.com/
publiosilva/aroma-lia/blob/main/README.md

ACKNOWLEDGMENTS
This study was financed in part by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001; CNPq grants 315840/2023-4 and 403361/2023-0; and FAPESB
grant PIE0002/2022.

REFERENCES
[1] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi, Mo-

hamed Wiem Mkaouer, Ali Ouni, Christian D. Newman, Abdullatif Ghallab,
and Stephanie Ludi. 2021. Test Smell Detection Tools: A Systematic Mapping
Study. In Proceedings of the 25th International Conference on Evaluation and Assess-
ment in Software Engineering (EASE ’21). Association for Computing Machinery,
New York, NY, USA, 170–180. https://doi.org/10.1145/3463274.3463335

[2] Luca Ardito, Luca Barbato, Marco Castelluccio, Riccardo Coppola, Calixte Denizet,
Sylvestre Ledru, and Michele Valsesia. 2020. rust-code-analysis: A Rust library
to analyze and extract maintainability information from source codes. SoftwareX
12 (2020), 100635. https://doi.org/10.1016/j.softx.2020.100635

[3] P. Baker, D. Evans, J. Grabowski, H. Neukirchen, and B. Zeiss. 2006. TRex - The
Refactoring andMetrics Tool for TTCN-3 Test Specifications. In Testing: Academic
Industrial Conference - Practice And Research Techniques (TAIC PART’06). 90–94.
https://doi.org/10.1109/TAIC-PART.2006.35

https://testsmells.org/pages/testsmellexamples.html
https://github.com/publiosilva/aroma-lia/blob/main/README.md
https://github.com/publiosilva/aroma-lia/blob/main/README.md
https://doi.org/10.1145/3463274.3463335
https://doi.org/10.1016/j.softx.2020.100635
https://doi.org/10.1109/TAIC-PART.2006.35

Toward a Language-Agnostic Approach to Detect Test Smells SBES’24, September 30 – October 04, 2024, Curitiba, PR

[4] Jonathan Bell, Gail Kaiser, Eric Melski, and Mohan Dattatreya. 2015. Efficient
dependency detection for safe Java test acceleration. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). Association
for Computing Machinery, New York, NY, USA, 770–781. https://doi.org/10.
1145/2786805.2786823

[5] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, how, and why developers (do not) test in their IDEs. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2015). Association for Computing Machinery, New York, NY, USA, 179–190.
https://doi.org/10.1145/2786805.2786843

[6] Jonas De Bleser, Dario Di Nucci, and Coen De Roover. 2019. SoCRATES: Scala
radar for test smells. In Proceedings of the Tenth ACM SIGPLAN Symposium on
Scala (Scala ’19). Association for Computing Machinery, New York, NY, USA,
22–26. https://doi.org/10.1145/3337932.3338815

[7] Julien Delplanque, Stéphane Ducasse, Guillermo Polito, Andrew P. Black, and
Anne Etien. 2019. Rotten Green Tests. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). 500–511. https://doi.org/10.1109/
ICSE.2019.00062

[8] Arie Deursen, Leon M.F. Moonen, A. Bergh, and Gerard Kok. 2001. Refactoring
test code. Technical Report. NLD.

[9] S. Ducasse, M. Rieger, and S. Demeyer. 1999. A language independent approach
for detecting duplicated code. In Proceedings IEEE International Conference on
SoftwareMaintenance - 1999 (ICSM’99). ’SoftwareMaintenance for Business Change’
(Cat. No.99CB36360). 109–118. https://doi.org/10.1109/ICSM.1999.792593

[10] Vahid Garousi and Barış Küçük. 2018. Smells in software test code: A survey of
knowledge in industry and academia. Journal of Systems and Software 138 (2018),
52–81. https://doi.org/10.1016/j.jss.2017.12.013

[11] Michaela Greiler, Arie van Deursen, and Margaret-Anne Storey. 2013. Automated
Detection of Test Fixture Strategies and Smells. In 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation. 322–331. https:
//doi.org/10.1109/ICST.2013.45

[12] Michaela Greiler, Andy Zaidman, Arie van Deursen, and Margaret-Anne Storey.
2013. Strategies for avoiding text fixture smells during software evolution. In
2013 10th Working Conference on Mining Software Repositories (MSR). 387–396.
https://doi.org/10.1109/MSR.2013.6624053

[13] Chen Huo and James Clause. 2014. Improving oracle quality by detecting
brittle assertions and unused inputs in tests. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering (FSE
2014). Association for Computing Machinery, New York, NY, USA, 621–631.
https://doi.org/10.1145/2635868.2635917

[14] Negar Koochakzadeh and Vahid Garousi. 2010. A tester-assisted methodology
for test redundancy detection. Adv. Soft. Eng. 2010, Article 6 (jan 2010), 13 pages.
https://doi.org/10.1155/2010/932686

[15] Stefano Lambiase, Andrea Cupito, Fabiano Pecorelli, Andrea De Lucia, and Fabio
Palomba. 2020. Just-In-Time Test Smell Detection and Refactoring: The DARTS
Project. In Proceedings of the 28th International Conference on Program Compre-
hension (ICPC ’20). Association for Computing Machinery, New York, NY, USA,
441–445. https://doi.org/10.1145/3387904.3389296

[16] Fabio Palomba, Andy Zaidman, and Andrea De Lucia. 2018. Automatic Test Smell
Detection Using Information Retrieval Techniques. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 311–322. https:
//doi.org/10.1109/ICSME.2018.00040

[17] Annibale Panichella, Sebastiano Panichella, Gordon Fraser, Anand Ashok Sawant,
and Vincent J. Hellendoorn. 2022. Test smells 20 years later: detectability, validity,
and reliability. Empirical Software Engineering 27, 7 (20 Sep 2022), 170. https:
//doi.org/10.1007/s10664-022-10207-5

[18] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2020. tsDetect: an open source test
smells detection tool. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2020). Association for Computing Machinery, New York,
NY, USA, 1650–1654. https://doi.org/10.1145/3368089.3417921

[19] Gordana Rakić, Zoran Budimac, and Miloš Savić. 2013. Language independent
framework for static code analysis. In Proceedings of the 6th Balkan Conference
in Informatics (BCI ’13). Association for Computing Machinery, New York, NY,
USA, 236–243. https://doi.org/10.1145/2490257.2490273

[20] Railana Santana, Luana Martins, Larissa Rocha, Tássio Virgínio, Adriana Cruz,
Heitor Costa, and Ivan Machado. 2020. RAIDE: a tool for Assertion Roulette and
Duplicate Assert identification and refactoring. In Proceedings of the XXXIV Brazil-
ian Symposium on Software Engineering (SBES ’20). Association for ComputingMa-
chinery, New York, NY, USA, 374–379. https://doi.org/10.1145/3422392.3422510

[21] Micah Schiewe, Jacob Curtis, Vincent Bushong, and Tomas Cerny. 2022. Ad-
vancing Static Code Analysis With Language-Agnostic Component Identifica-
tion. IEEE Access 10 (2022), 30743–30761. https://doi.org/10.1109/ACCESS.2022.
3160485

[22] Masayuki Taniguchi, Shinsuke Matsumoto, and Shinji Kusumoto. 2021. JTDog:
a Gradle Plugin for Dynamic Test Smell Detection. In 2021 36th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 1271–1275.

https://doi.org/10.1109/ASE51524.2021.9678529
[23] Huynh Khanh Vi Tran, Michael Unterkalmsteiner, Jürgen Börstler, and Nauman

bin Ali. 2021. Assessing test artifact quality—A tertiary study. Information and
Software Technology 139 (2021), 106620. https://doi.org/10.1016/j.infsof.2021.
106620

[24] Bart Van Rompaey, Bart Du Bois, Serge Demeyer, and Matthias Rieger. 2007. On
The Detection of Test Smells: A Metrics-Based Approach for General Fixture
and Eager Test. IEEE Transactions on Software Engineering 33, 12 (2007), 800–817.
https://doi.org/10.1109/TSE.2007.70745

[25] Tássio Virgínio, Luana Martins, Larissa Rocha, Railana Santana, Adriana Cruz,
Heitor Costa, and Ivan Machado. 2020. JNose: Java Test Smell Detector. In
Proceedings of the XXXIV Brazilian Symposium on Software Engineering (SBES
’20). Association for Computing Machinery, New York, NY, USA, 564–569. https:
//doi.org/10.1145/3422392.3422499

[26] Tongjie Wang, Yaroslav Golubev, Oleg Smirnov, Jiawei Li, Timofey Bryksin, and
Iftekhar Ahmed. 2021. PyNose: A Test Smell Detector For Python. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
593–605. https://doi.org/10.1109/ASE51524.2021.9678615

[27] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[28] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis (ISSTA 2014). Association for Computing Machinery, New
York, NY, USA, 385–396. https://doi.org/10.1145/2610384.2610404

https://doi.org/10.1145/2786805.2786823
https://doi.org/10.1145/2786805.2786823
https://doi.org/10.1145/2786805.2786843
https://doi.org/10.1145/3337932.3338815
https://doi.org/10.1109/ICSE.2019.00062
https://doi.org/10.1109/ICSE.2019.00062
https://doi.org/10.1109/ICSM.1999.792593
https://doi.org/10.1016/j.jss.2017.12.013
https://doi.org/10.1109/ICST.2013.45
https://doi.org/10.1109/ICST.2013.45
https://doi.org/10.1109/MSR.2013.6624053
https://doi.org/10.1145/2635868.2635917
https://doi.org/10.1155/2010/932686
https://doi.org/10.1145/3387904.3389296
https://doi.org/10.1109/ICSME.2018.00040
https://doi.org/10.1109/ICSME.2018.00040
https://doi.org/10.1007/s10664-022-10207-5
https://doi.org/10.1007/s10664-022-10207-5
https://doi.org/10.1145/3368089.3417921
https://doi.org/10.1145/2490257.2490273
https://doi.org/10.1145/3422392.3422510
https://doi.org/10.1109/ACCESS.2022.3160485
https://doi.org/10.1109/ACCESS.2022.3160485
https://doi.org/10.1109/ASE51524.2021.9678529
https://doi.org/10.1016/j.infsof.2021.106620
https://doi.org/10.1016/j.infsof.2021.106620
https://doi.org/10.1109/TSE.2007.70745
https://doi.org/10.1145/3422392.3422499
https://doi.org/10.1145/3422392.3422499
https://doi.org/10.1109/ASE51524.2021.9678615
https://doi.org/10.1145/2610384.2610404

	Abstract
	1 Introduction
	2 Background
	2.1 Test smells
	2.2 Test smell detection techniques
	2.3 Related Work

	3 Proposed Approach (AromaLIA)
	3.1 Goal
	3.2 Study Steps

	4 Proof of Concept of AromaLIA
	5 Discussion
	6 Threats to Validity
	7 Final Remarks
	Acknowledgments
	References

