
SNUTS.js: Sniffing Nasty Unit Test Smells in Javascript
Jhonatan Oliveira

University of the State of Bahia (UNEB)
Bahia, Brazil

natanjesuss20@gmail.com

Luigi Mateus
University of the State of Bahia (UNEB)

Bahia, Brazil
luigimee15@gmail.com

Tássio Virgínio
Federal University of Bahia (UFBA)

Bahia, Brazil
tassio.virginio@ufba.br

Larissa Rocha
University of the State of Bahia (UNEB)

State University of Feira de Santana (PGCC/UEFS)
Bahia, Brazil

larissabastos@uneb.br

ABSTRACT
Test smells indicate potential issues or weaknesses within the test
code, which can compromise its effectiveness and maintainability.
They highlight areas where improvements can enhance the over-
all quality of the test suite or testing practices. For instance, an
example of a test smell is the Anonymous Test, where the test’s
name lacks descriptive information about its function or purpose.
Addressing these test smells can result in more robust and maintain-
able test suites, thus improving the reliability of the testing process.
Despite significant research on these issues, tools are scarce for
automatically detecting them, particularly in certain programming
languages such as JavaScript. In the current landscape, existing test
smell detection tools for JavaScript lack intuitiveness and graphical
interfaces, and require extensive configuration, which may lead to
low adoption within the developer community. To address this gap,
we propose SNUTS.js, a tool designed to streamline the detection of
test smells in JavaScript. Designed as an API, SNUTS.js offers ver-
satility, allowing integration with various tools and environments.
This tool goes beyond existing solutions by identifying previously
undetected test smells, including the Anonymous Test, Comments
Only Test, Overcommented, General Fixture, Transcripting Test,
and Sensitive Equality. We also introduce a new test smell termed
Test Without Description, which denotes a test case lacking de-
scriptive text. In a preliminary evaluation, we constructed a dataset
of tests sourced from real-world projects on GitHub. Through man-
ual analysis, we identified 285 instances of test smells. SNUTS.js
demonstrated a detection accuracy of 100% for three specific types
of test smells, Anonymous Test, Overcommented, and General Fix-
ture, all tailored to the JavaScript environment. Link to the video:
https://youtu.be/89z0jy4Nu0s

KEYWORDS
Test Smells, JavaScript, Test Quality, Tool

1 INTRODUCTION
Software testing is a cornerstone of high-quality software devel-
opment. It plays a critical role in identifying and preventing bugs
before they reach end users, thereby enhancing confidence in soft-
ware deliveries and preventing regressions throughout the develop-
ment process [8, 12, 18]. Despite its importance, testing demands
substantial effort in both development and maintenance. Effective
test coverage often requires multiple methods, and any changes to

production code necessitate the creation or modification of tests
[10, 22].

High-quality tests ensure that code functions correctly and is
maintainable and evolvable. This requires test code to be compre-
hensible and clear, which facilitates easier maintenance and updates
to production code [10, 22]. Automated testing, a prevalent practice
in industrial software development, provides several advantages
such as repeatability, predictability of results, and speed, all of
which contribute to efficient fault detection [13, 18, 22].

However, automated tests are not without their issues. They are
susceptible to errors and must adhere to quality guidelines to mini-
mize such occurrences [13, 15, 18, 22]. One key metric for assessing
test quality is coverage, which measures how thoroughly the tests
exercise the production code [7]. Nevertheless, high coverage does
not necessarily equate to high-quality test code in terms of read-
ability and maintainability. Poorly written test code, known as "test
smells," can negatively impact the overall quality and effectiveness
of tests [4].

Research into test smells has largely focused on statically typed
languages such as Java, Scala, Smalltalk, and C++ [5, 14, 20]. In
contrast, JavaScript, despite being one of the most widely used
programming languages, has received comparatively little attention
in this area. This oversight is significant given JavaScript’s unique
syntactical and paradigmatic characteristics, which could influence
the introduction and detection of test smells.

A recent systematic mapping study identified 22 test smell detec-
tion tools, yet none for JavaScript [1]. This gap presents a promising
research opportunity, especially considering JavaScript’s exten-
sive use and the potential for unique test smells due to its distinct
language features. Further investigation into the literature post-
Aljedaani et al. [1] revealed only two studies focused on JavaScript
test smells [11, 17], with only one tool available online for down-
loading [17]. These tools together detect 23 types of test smells but
are not user-friendly or straightforward to use.

This study introduces SNUTS.js, a novel tool designed to detect
test smells in JavaScript through a user-friendly interface. SNUTS.js
enhances the detection process by providing detailed visualizations,
including the number of smells found, the files they are located in,
and the specific lines where they occur. Implemented as an API,
SNUTS.js offers versatility and seamless integration with various
tools and environments. The current version of SNUTS.js detects
a set of test smells, including Anonymous Test, Comments Only

SBES ’24, September 30– October 04, 2024, Curitiba, PR Jhonatan Oliveira, Luigi Mateus, Tássio Virgínio, and Larissa Rocha

Test, Overcommented, General Fixture, Transcripting Test, and Sensi-
tive Equality. Additionally, it introduces a new smell, Test Without
Description, characterized by test cases lacking descriptive text. Pre-
liminary results indicate that SNUTS.js achieves 100% detection
accuracy for certain test smells, demonstrating its effectiveness in
the JavaScript environment. We also provide a dataset with more
than 500 manually identified test smells.

2 BACKGROUND AND RELATEDWORK
2.1 Test Smells
Unit testing refers to testing software units in isolation (e.g., meth-
ods), ensuring that the production code functions as intended
Aniche [2]. Analogous to this, when there is poor structuring of
the test code, the presence of Test Smells is inevitable. Test smells
are poor design choices that degrade the overall quality and effec-
tiveness of the test suites. The presence of test smells can lead to
less reliable, harder to maintain, and less efficient tests, ultimately
compromising the ability to ensure software correctness and robust-
ness [3, 9]. Identifying and addressing these test smells is crucial
to maintaining high standards in software testing practices and
ensuring the delivery of high-quality software products.

Aljedaani et al. [1] identified andmapped a total of 66 types of test
smells from various programming languages, including Java, Scala,
Smalltalk, C++, and Python. The Aljedaani et al. [1] catalog does
not include JavaScript, which has some specificities. For example,
in Java, the name of the test is the method’s name itself, whereas in
JavaScript, a string defines the test’s name. In Java, the test structure
is the body of the method, while in JavaScript, it is passed as a
function. Due to this different structure, we were able to identify a
new test smell, “Test without description (TWD)”, a test smell that
occurs when a test case lacks a description, which is not possible
in Java.

In the following subsections, we provide seven examples of these
test smells, along with corresponding code snippets in JavaScript
that we created ourselves. To the best of our knowledge, these spe-
cific test smells have not been previously demonstrated in JavaScript.
To select this set of smells, we started from the catalog provided by
Aljedaani et al. [1] and adopted the following criteria: the absence
of detection by other solutions; ease of implementation; and the
relevance of these smells for JavaScript.

2.1.1 Anonymous Test (AT). : type of test whose name is not de-
scriptive enough to indicate its function or purpose. In the following
test example, the designation ‘check date’ can lead to different in-
terpretations within the ‘it’ block, which does not fully explain the
functionality or purpose of the test and can result in a lack of clarity
and difficulty in maintenance. Descriptive names make it clearer to
those reading the test what is being verified.

1 it("check date", () => {
2 const date = new Date();
3 expect(date).toBeInstanceOf(Date);
4 });

2.1.2 Overcommented Test (OT). : refers to a type of test that has
been excessively commented on. In the following example, the

comments redundantly describe what the code is doing, such as
explaining the purpose of calling the add function or checking if the
result is equal to 5. These comments add noise to the code without
providing any additional value.

1 // Test to verify if the getUserInfo() function

returns user information correctly↩→

2 test('getUserInfo returns user information', () => {
3 // Calls the getUserInfo() function to obtain user

information↩→

4 const userInfo = getUserInfo();
5 // Equality-sensitive test: Compares the object

returned by the function with an expected
object using the toEqual() method

↩→

↩→

6 // This test verifies if all properties of the
returned object are identical to those of the
expected object

↩→

↩→

7 expect(userInfo).toEqual({
8 id: 1, // Checks if the id is 1
9 username: 'john_doe',
10 email: 'john@example.com' // Checks if the email

is 'john@example.com'↩→

11 });
12 });

2.1.3 Sensitive Equality (SE). : type of test smell that occurs when
an assertion involves an equality with the toString method. In the
following example, the test block uses the toString method in the
assertion, resulting in a test that is sensitive to the specific imple-
mentation of the toString() method, which can make it fragile and
less reliable.

1 test ('it should check user age to be equal to 13',()

=>{↩→

2 const user = getUser()
3 expect(user.age.toString()).toBeEqual('13')
4 }

2.1.4 Test without description (TWD). : type of test smell that oc-
curs when a test case lacks a description. In the example below,
the test block lacks a description, which can result in a lack of
understanding and difficulty in maintenance. It is relevant to pro-
vide clear and concise descriptions for each test to ensure they are
understandable and easy to maintain.

1 const sum = require('./sum');
2 test('', () => {
3 expect(sum(1, 2)).toBe(3);
4 });

2.1.5 Comments Only Test (COT). : type of test smell that occurs
when the test or a test block is entirely commented out, as the
following example shows.

SNUTS.js: Sniffing Nasty Unit Test Smells in Javascript SBES ’24, September 30– October 04, 2024, Curitiba, PR

1 const UserManager = require('./userManager');
2 // test('should remove a user successfully', () => {
3 // const user = { id: 1, name: 'John Doe' };
4 // userManager.addUser(user);
5 // userManager.removeUser(user.id);
6 // expect(userManager.getUsers())
7 // .not.toContainEqual(user);
8 });

2.1.6 Transcripting Test (TT). : refers to a test smell that occurs
when print commands are used within the test block. The following
example shows that different types of commands are used within
the test blocks to display messages in the terminal, which can result
in a performance impact, security risk, and visual clutter.

1 test("Test 1", () => {
2 console.log("Logging to the console");
3 expect(someFunction()).toBe(true);
4 });
5 test("Test 2", () => {
6 console.warn("Warning message");
7 expect(anotherFunction()).toBe(false);
8 });
9 test("Test 3", () => {
10 console.error("Error message");
11 expect(anotherFunction()).toBe(false);
12 });

2.1.7 General Fixture (GF). : It is a type of test smell that occurs
when the test setup defines multiple data or objects but only uses
a subset of them. The following example shows that the tests are
preceded by a beforeEach block, which is executed before each
test. This ensures that each instance of User, Admin, and Guest is
initialized with consistent values before the execution of each test.
However, no test uses the guest variable.

1 let user;
2 let admin;
3 let guest;
4 beforeEach(() => {
5 user = new User("Alice", 30);
6 admin = new Admin("Bob", 40);
7 guest = new Guest("Charlie", 25);
8 });
9 test("user should have a name", () => {
10 expect(user.name).toBe("Alice");
11 });
12 test("admin should have an age", () => {
13 expect(admin.age).toBe(40);
14 });

2.2 Tools for test smell detection
Identifying test smells is a crucial practice for ensuring the quality
and maintainability of software. Given the complexity and time-
consuming nature of manually identifying test smells, automated

tools have become essential. In the study presented by Garousi
and Küçük [6], they highlighted the inefficiency and challenges
associated with the manual identification and analysis of test smells.
The manual process is not only labor-intensive but also prone to
oversight, making it ineffective for large codebases where compre-
hensive results are necessary.

Recognizing these challenges, Aljedaani et al. [1] conducted
a systematic mapping study and identified 22 tools specifically
designed for test smell detection. These tools were gathered from
peer-reviewed scientific publications and encompass a wide range
of programming languages. Additionally, their study compiled a
dataset featuring 66 distinct types of test smells.

One notable tool is JNose, presented by Virgínio et al. [19], which
identifies 21 types of test smells in Java projects. JNose allows devel-
opers to analyze code quality and track improvements over time as
the project evolves. It also calculates unit test coverage, providing
a comprehensive view of test effectiveness within a project.

Similarly, Santana et al. [16] introduced RAIDE (Refactoring
Test Design Errors), a tool that uses Abstract Syntax Tree (AST)
analysis to identify and refactor Assertion Roulette and Duplicate
Assert test smells in Java with JUnit. Developed as an Eclipse IDE
plugin, RAIDE leverages AST to accurately pinpoint test smells in
the source code.

For Python, Wang et al. [21] proposed PyNose, a tool designed
to detect 17 types of test smells. PyNose also introduced a new test
smell called “Suboptimal Assert", highlighting the evolving nature
of test smell research and the need for language-specific solutions.

Each programming language presents unique characteristics that
influence test smell detection. Test smells that are highly relevant
in one language might not be as significant in another due to these
inherent differences.

For JavaScript, Jorge et al. [11] developed Steel, a tool capable
of identifying 15 types of test smells adapted to the JavaScript
language. These include Eager Test, Lazy Test, Assertion Roulette,
Conditional Test Logic, Duplicate Assert, Empty Test, Exception
Handling, Ignored Test, Sleepy Test, Magic Number Test, Redundant
Assertion, Redundant Print, Mystery Guest, Unknown Test, and
Resource Optimism.

Building on this, Silva [17] introduced a tool that identifies eight
types of test smells in JavaScript, implementing five additional
smells beyond those covered by Steel. Silva’s tool adapted test
smells identified byWang et al. [21] in PyNose, tailoring them to the
JavaScript context due to certain similarities between the languages.
Specifically, Silva [17] implemented detection for test smells such
as Suboptimal Assert, Verifying in Setup Method, Non-Functional
Statement, Verbose Test, and Unused Imports. Additionally, they
identified three new test smells: Identical Test Description, Only
Test (OT), and Complex Snapshot (CS).

In conclusion, while significant progress has been made in de-
veloping tools for test smell detection across various programming
languages, there remains a gap in comprehensive solutions for
JavaScript. To the best of our knowledge, Steel and Silva’s tools are
currently the only ones available specifically for JavaScript. These
tools have made important strides by adapting test smells from
other languages and introducing new ones relevant to JavaScript.
However, the range of detected test smells is not as extensive as in
languages like Java and Python, where tools like JNose and PyNose

SBES ’24, September 30– October 04, 2024, Curitiba, PR Jhonatan Oliveira, Luigi Mateus, Tássio Virgínio, and Larissa Rocha

provide more comprehensive coverage. As the field of test smell
detection continues to evolve, it is crucial to further develop and
refine tools for JavaScript to ensure high-quality and maintainable
code in this widely used language.

3 SNUTS.JS
Before conducting this study, we performed a comprehensive re-
view of the state of the art to examine detection tools for test smells
across various programming languages, such as JNose for Java and
PyNose for Python. Our aim was to map existing and common test
smells. We also utilized the test smells cataloged in the study by
Aljedaani et al. [1], which identified 22 test smell detection tools
provided by the research community and established a dataset
containing 66 test smells. From this mapping, we analyzed which
test smells were already automatically detected by tools for the
JavaScript language. After identifying and excluding these, we com-
piled a list of test smells that were not yet automatically detected.
We then assessed the feasibility of the remaining test smells based
on the characteristics of the JavaScript language.

Currently, the two existing JavaScript test smell detection tools
are not very intuitive, requiring extensive configuration, which
might result in low adoption by the developer community. There-
fore, we developed SNUTS.JS to offer a versatile and user-friendly
solution with an intuitive interface. Licensed under the GNU Gen-
eral Public License, SNUTS.JS is implemented as a JavaScript project
and comprises four main packages: (i) detectors, responsible for the
logic of detecting smells; (ii) controllers, responsible for repository
analysis and generating CSV files from them; (iii) routes, which
configure API routes using the aforementioned controllers; and
(iv) services, responsible for repository upload and delivering re-
sults in JSON and CSV formats, as well as providing methods for
working with Abstract Syntax Trees (AST). SNUTS.JS can analyze
public repositories and export results to CSV. It includes an API
for programmatic analyses that facilitates integration with CI / CD
pipelines.

SNUTS.JS improves the adoption of test smell detection by pro-
viding an easy-to-integrate and comprehensive tool. Developed
using web technologies, the tool features an API created with the
Fastify microframework. This API facilitates integration with var-
ious web solutions by providing results in the widely used JSON
(JavaScript Object Notation) format. Detailed documentation is
available through the web interface with instructions and usage
examples. Currently, SNUTS.JS identifies the following test smells,
which have been adapted to the context of the JavaScript program-
ming language: Anonymous Test, Comments Only Test, Overcom-
mented, General Fixture, Transcripting Test, and Sensitive Equality.
In addition, we defined a new smell called Test Without Description,
which consists of a test case lacking descriptive text.

SNUTS.JS can identify key JavaScript test file patterns within a
repository and analyze the test code using AST. Seven standards are
recognized by SNUTS.JS, which are listed in Table 1. Additionally,
SNUTS.JS can analyze unit test files that follow the patterns of the
most commonly used testing libraries in the JavaScript ecosystem,
such as Jest1 and Jasmine2. The API documentation, created using

1https://jestjs.io/
2https://jasmine.github.io/

the Swagger library, can be accessed using the /documentation
route in its URL.

Test File Standards
**/*.test.js | **/*.tests.js | **/*.spec.js
**/*.specs.js | **/*test_*.js | **/*test-*.js

**/*Spec*.js

Table 1: Test File Standards

The tool analysis process consists of several steps, as exemplified
in Figure 1. Data input is the stage where the initial data required
for the analysis is provided. It is necessary to pass the repository
URL in the request body. The repository must be public to be down-
loaded by the tool. Additionally, the API has an optional parameter
called hasTestSmell which, when sent along with the repository
URL, returns only the files where test smells were found. Therefore,
a POST request is made by sending this data.

Next, in the Project Analysis step, the repository is downloaded
and a search is performed for all unit test files present in the project.
Furthermore, the source code is transformed into anAST (Abstract
Syntax Tree) using the Babel library, which performs code tran-
spilation, making it compatible with older versions of browsers or
environments that support the latest language features, facilitating
the process of checking for the presence of test smells. Finally, de-
tection functions are used to find possible test smells. Therefore,
in the Data Output step, the API returns a JSON as the response
to the request. The following code snippet shows an example of
the JSON file. In this example, the API returns a JSON file with the
data, which primarily contains the path of the analyzed file, the
type of the detected smell, and the start and end lines of the test
block where the smell was found. Additionally, the info section
refers to the number of individual test blocks defined by "it" or
"test" (itCount) and the number of test description blocks defined
by describeCount.

1 "file": "chartjs/Chart/test/specs/scale.logarithmic.tests.js",
2 "type": "AnonymousTest",
3 "smells": [
4 {
5 "startLine": 8,
6 "endLine": 12
7 }
8],
9 "info": {
10 "itCount": 27,
11 "describeCount": 8
12 }

3.1 Usage Example
This section presents concrete examples of the SNUTS.JS usage. As
an API, SNUTS.JS offers a broad range of functionalities, and we
next explore several usage scenarios to highlight its adaptability
and usefulness in various applications.

Usage With SNUTS.js Frontend. To provide a better user experi-
ence with SNUTS.JS, a frontend application has been designed and
developed utilizing the core of SNUTS.JS, namely, the API, which
can be integrated with various other tools, as illustrated in Figure
2. To use the tool, the user needs to enter the public repository to
be analyzed in the search field. Then, upon clicking the search but-
ton, a POST request is made to the API, specifying this repository.

SNUTS.js: Sniffing Nasty Unit Test Smells in Javascript SBES ’24, September 30– October 04, 2024, Curitiba, PR

Figure 1: Schematic overview of the SNUTS.js

Figure 2: SNUTS.js Frontend

Figure 3: result found example

Following this, the frontend anticipates the arrival of the response,
transitioning to a waiting state.

Next, upon successful completion, all files in which test smells
have been identified are listed. Additionally, there is the option to
generate a CSV table containing the project name, file name, the
type of identified smell, and the location of the smell in that file, i.e.,
their respective start and end lines. Finally, a count of "Describe"

Figure 4: Request example

blocks and "it" or "test" blocks is performed. An example of the
analysis result is shown in Figure 3

Usage With SNUTS.js API. To aid the integration of the API
with other tools, a documentation of the API was created using
the Swagger library. This simplifies the integration process, as the
documentation includes response examples and the parameters
required to use the API. The API documentation can be accessed by
appending "/documentation" to the end of the URL. In this way, de-
velopers who need to use the API will find it easy to understand the
application routes and the required parameters without accessing
the source code of SNUTS.js. Consequently, they can make requests
using Swagger, as demonstrated in Figure 4.

4 EVALUATION
This section describes the preliminary evaluation of the tool. To
perform the evaluation, we selected three JavaScript projects based
on specific criteria, including popularity (one thousand stars or
more), use of unit testing libraries such as Jest, Jasmine, and Vitest,
and version releases in the last six months on GitHub. The selected
projects are presented in Table 2.

Also, Table 3 shows the number of test files in the projects and
the occurrence of test smells per file. The dispersion of test smells
among the test files of the three selected projects was significant,
with the Play Canvas project having 7.69% of test files with at

SBES ’24, September 30– October 04, 2024, Curitiba, PR Jhonatan Oliveira, Luigi Mateus, Tássio Virgínio, and Larissa Rocha

Name Repositories Stars

ChartJS https://github.com/chartjs/Chart.js 64K
PlayCanvas https://github.com/playcanvas/engine 9.3K
OpenLayers https://github.com/openlayers/openlayers 11.1K

Table 2: Repositories used in the study

least one “test smell", the Open Layers project with 30.29%, and the
Chart.js project with 14.55%.

Project Smelly Test Files Total test files Dispersal (%)

Play Canvas 6 78 7.69%
Open Layers 93 307 30.29%
Chart.js 8 55 14.55%

Table 3: Dispersion of test smells

Initially, two researchers manually examined the projects listed
in Table 2. They performed this analysis in isolation and then con-
ducted a meeting to check for inconsistencies. This comprehensive
analysis involved a total of 153 test files, which we make publicly
available as a dataset of Test Smells in JavaScript on Zenodo.

The manual analysis identified 285 test smells: 170 Anonymous
Tests, 89 General Fixtures, and 26 Overcommented smells. Both
researchers agreed on the final list of smells. However, four classes
of test smells were not present in the selected projects: Test without
Description, Comments Only Test, Sensitivity Equality, and Tran-
scripting Test smells. In detail, for the ChartJs project, we found 14
instances of Anonymous Tests, 8 Overcommented, and only 1 Gen-
eral Fixture. Regarding the Play Canvas, we found 11 Anonymous
Tests, 10 Overcommented, and none of General Fixture. Finally, in
the Open Layers, we identified 145 Anonymous Tests, 88 General
Fixture, and 8 Overcommented smells, as Table 4 shows.

Project TWD OT SE AT GF COT TT

Play Canvas 0 10 0 11 0 0 0
Open Layers 0 8 0 145 88 0 0
Chart.js 0 8 0 14 1 0 0

TOTAL 0 26 0 170 89 0 0
Table 4: Test Smell Analysis

It is important to highlight that the adaptation of test smells
for JavaScript was a process grounded in empirical methods due
to the lack of precise definitions in the existing literature. In this
case, specific acceptance thresholds were established for the Over-
commented and Anonymous Test categories. Hence, an Overcom-
mented test case was delineated by exceeding a set threshold of 5
comments per test, and an Anonymous Test was detected for tests
in which its description comprised fewer than two words. Impor-
tantly, users retain the flexibility to customize these thresholds to
suit their requirements.

After building the dataset, we analyzed the same projects with
the SNUTS.js tool. We used the same thresholds defined in the
manual analysis. Remarkably, the SNUTS.js results mirrored those
obtained manually, exactly all the test smells were detected. This

affirms the tool’s efficacy in identifying smells within thementioned
repositories, while also offering an intuitive interface for users,
thereby simplifying adoption by researchers and devs.

5 THREATS TO VALIDITY
In our study, several validity concerns arose during the construction
and validation of our test oracle. These concerns were addressed
through careful consideration and methodology adjustments.
Internal Validity. Potential disparities in researchers’ analyses
during the manual construction of the dataset were acknowledged.
Disagreements were collectively resolved to ensure consistency.
External Validity. While our results offer valuable insights, they
may not apply universally. Future research could broaden the scope
to enhance generalizability.
Conclusion Validity. In our preliminary evaluation, we found
three out of seven test smell types detected by SNUTS.js. However,
the absence of the other four types of smells limited the validation
scope, suggesting the need for broader data inclusion.
Construct Validity. The dataset construction involved two pro-
grammers with testing experience, enhancing thoroughness. How-
ever, dependency on their expertise poses a potential threat.

6 CONCLUSIONS
SNUTS.JS is a comprehensive tool designed to analyze and im-
prove JavaScript unit test code by detecting test smells. Currently,
it identifies six specific types of test smells, adapted from existing
literature to fit the JavaScript programming environment. Empha-
sizing usability and ease of integration, SNUTS.JS offers a robust
API documented with Swagger and a user-friendly frontend ap-
plication for detailed repository analysis. Looking ahead, the core
functionality of SNUTS.JS can be extended to create plugins for
IDEs and other code quality analysis tools, thus enhancing its utility
for the JavaScript development community. We also intend to ex-
tend both the tool to identify more smells and the dataset to include
more projects. We intend to evaluate the usability of the tool with
developers in real production projects and conduct further studies
to verify the relevance of test smells in the JavaScript language.

ARTEFACT AVAILABILITY
The supplementary material is available on Zenodo: https://doi.org/
10.5281/zenodo.11475024. The SNUTS.js frontend is available on
GitHub at https://github.com/Jhonatanmizu/snuts.js_frontend and
the SNUTS.js API is available at https://github.com/Jhonatanmizu/
SNUTS.js

ACKNOWLEDGMENTS
This work was partially supported by UEFS-AUXPPG 2023 and
the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- Brasil (CAPES) - Finance Code 001; PROAP 2023 grants; CNPq
grant 403361/2023-0 and 140587/2024-1.

REFERENCES
[1] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi, Mo-

hamed Wiem Mkaouer, Ali Ouni, Christian D. Newman, Abdullatif Ghallab,
and Stephanie Ludi. 2021. Test Smell Detection Tools: A Systematic Map-
ping Study. In Proceedings of the 25th International Conference on Evaluation

https://github.com/chartjs/Chart.js
https://github.com/playcanvas/engine
https://github.com/openlayers/openlayers
https://doi.org/10.5281/zenodo.11475024
https://doi.org/10.5281/zenodo.11475024
https://github.com/Jhonatanmizu/snuts.js_frontend
https://github.com/Jhonatanmizu/SNUTS.js
https://github.com/Jhonatanmizu/SNUTS.js

SNUTS.js: Sniffing Nasty Unit Test Smells in Javascript SBES ’24, September 30– October 04, 2024, Curitiba, PR

and Assessment in Software Engineering (Trondheim, Norway) (EASE ’21). As-
sociation for Computing Machinery, New York, NY, USA, 170–180. https:
//doi.org/10.1145/3463274.3463335

[2] Maurício Aniche. 2022. Effective Software Testing: A developer’s guide. Simon and
Schuster.

[3] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave
Binkley. 2015. Are test smells really harmful? an empirical study. Empirical
Software Engineering 20 (2015), 1052–1094.

[4] Arie Deursen, Leon M.F. Moonen, A. Bergh, and Gerard Kok. 2001. Refactoring
Test Code. In Refactoring Test Code. CWI (Centre for Mathematics and Computer
Science), Amsterdam, The Netherlands, The Netherlands.

[5] Daniel Fernandes, Ivan Machado, and Rita Maciel. 2022. TEMPY: Test Smell
Detector for Python. In Proceedings of the XXXVI Brazilian Symposium on Software
Engineering (<conf-loc>, <city>Virtual Event</city>, <country>Brazil</country>,
</conf-loc>) (SBES ’22). Association for Computing Machinery, New York, NY,
USA, 214–219. https://doi.org/10.1145/3555228.3555280

[6] Vahid Garousi and Barış Küçük. 2018. Smells in software test code: A survey of
knowledge in industry and academia. Journal of Systems and Software 138 (2018),
52–81. https://doi.org/10.1016/j.jss.2017.12.013

[7] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Code Coverage for Suite
Evaluation by Developers. In Proceedings of the 36th International Conference on
Software Engineering (Hyderabad, India) (ICSE 2014). ACM, New York, NY, USA,
72–82. https://doi.org/10.1145/2568225.2568278

[8] Giovanni Grano, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and Harald C
Gall. 2019. Scented since the beginning: On the diffuseness of test smells in
automatically generated test code. Journal of Systems and Software 156 (2019),
312–327.

[9] Giovanni Grano, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and Harald C
Gall. 2019. Scented since the beginning: On the diffuseness of test smells in
automatically generated test code. Journal of Systems and Software 156 (2019),
312–327.

[10] Dayne Guerra Calle, Julien Delplanque, and Stéphane Ducasse. 2019. Expos-
ing Test Analysis Results with DrTests. In International Workshop on Smalltalk
Technologies. Cologne, Germany. https://hal.inria.fr/hal-02404040

[11] Dalton Jorge, Patricia Machado, and Wilkerson Andrade. 2021. Investigat-
ing Test Smells in JavaScript Test Code. In Proceedings of the 6th Brazilian
Symposium on Systematic and Automated Software Testing (Joinville, Brazil)
(SAST ’21). Association for Computing Machinery, New York, NY, USA, 36–45.
https://doi.org/10.1145/3482909.3482915

[12] Gerard Meszaros, Shaun M. Smith, and Jennitta Andrea. 2003. The Test Automa-
tion Manifesto. In Extreme Programming and Agile Methods - XP/Agile Universe
2003, Frank Maurer and Don Wells (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg.

[13] F. Palomba, D. Di Nucci, A. Panichella, R. Oliveto, and A. De Lucia. 2016. On the
Diffusion of Test Smells in Automatically Generated Test Code: An Empirical
Study. In 2016 IEEE/ACM 9th International Workshop on Search-Based Software
Testing (SBST). IEEE, Austin, TX, United States.

[14] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2020. tsDetect: an open source test smells
detection tool. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery,
New York, NY, USA, 1650–1654. https://doi.org/10.1145/3368089.3417921

[15] Roger Pressman. 2016. Software Engineering: A Practitioner’s Approach (8 ed.).
McGraw-Hill, Inc., USA.

[16] Railana Santana, Luana Martins, Larissa Rocha, Tássio Virgínio, Adriana Cruz,
Heitor Costa, and Ivan Machado. 2020. RAIDE: a tool for Assertion Roulette and
Duplicate Assert identification and refactoring. In Proceedings of the XXXIV Brazil-
ian Symposium on Software Engineering (<conf-loc>, <city>Natal</city>, <coun-
try>Brazil</country>, </conf-loc>) (SBES ’20). Association for Computing Ma-
chinery, New York, NY, USA, 374–379. https://doi.org/10.1145/3422392.3422510

[17] Andrew Costa Silva. 2022. Identificação e Caracterização de Test Smells em
JavaScript. Instituto de Ciencias Exatas e Informática - Pontifícia Universidade
138 (2022), 52–81. http://bib.pucminas.br:8080/pergamumweb/vinculos/000014/
000014ce.pdf

[18] D. Spadini, F. Palomba, A. Zaidman, M. Bruntink, and A. Bacchelli. 2018. On
the Relation of Test Smells to Software Code Quality. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 1–12. https://doi.
org/10.1109/ICSME.2018.00010

[19] Tássio Virgínio, Luana Almeida Martins, Larissa Rocha Soares, Railana Santana,
Heitor Costa, and Ivan Machado. 2020. An empirical study of automatically-
generated tests from the perspective of test smells. In Proceedings of the XXXIV
Brazilian Symposium on Software Engineering (<conf-loc>, <city>Natal</city>,
<country>Brazil</country>, </conf-loc>) (SBES ’20). Association for Computing
Machinery, New York, NY, USA, 92–96. https://doi.org/10.1145/3422392.3422412

[20] Tássio Virgínio, Luana Martins, Railana Santana, Adriana Cruz, Larissa Rocha,
Heitor Costa, and Ivan Machado. 2021. On the test smells detection: an empirical
study on the JNose Test accuracy. Journal of Software Engineering Research and

Development 9, 1 (Sep. 2021), 8:1 – 8:14. https://doi.org/10.5753/jserd.2021.1893
[21] Tongjie Wang, Yaroslav Golubev, Oleg Smirnov, Jiawei Li, Timofey Bryksin, and

Iftekhar Ahmed. 2022. PyNose: a test smell detector for python. In Proceedings of
the 36th IEEE/ACM International Conference on Automated Software Engineering
(Melbourne, Australia) (ASE ’21). IEEE Press, 593–605. https://doi.org/10.1109/
ASE51524.2021.9678615

[22] Vahid Garousi Yusifoğlu, Yasaman Amannejad, and Aysu Betin Can. 2015. Soft-
ware test-code engineering: A systematic mapping. Information and Software
Technology 58 (2015), 123 – 147. https://doi.org/10.1016/j.infsof.2014.06.009

https://doi.org/10.1145/3463274.3463335
https://doi.org/10.1145/3463274.3463335
https://doi.org/10.1145/3555228.3555280
https://doi.org/10.1016/j.jss.2017.12.013
https://doi.org/10.1145/2568225.2568278
https://hal.inria.fr/hal-02404040
https://doi.org/10.1145/3482909.3482915
https://doi.org/10.1145/3368089.3417921
https://doi.org/10.1145/3422392.3422510
http://bib.pucminas.br:8080/pergamumweb/vinculos/000014/000014ce.pdf
http://bib.pucminas.br:8080/pergamumweb/vinculos/000014/000014ce.pdf
https://doi.org/10.1109/ICSME.2018.00010
https://doi.org/10.1109/ICSME.2018.00010
https://doi.org/10.1145/3422392.3422412
https://doi.org/10.5753/jserd.2021.1893
https://doi.org/10.1109/ASE51524.2021.9678615
https://doi.org/10.1109/ASE51524.2021.9678615
https://doi.org/10.1016/j.infsof.2014.06.009

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Test Smells
	2.2 Tools for test smell detection

	3 SNUTS.JS
	3.1 Usage Example

	4 Evaluation
	5 Threats to Validity
	6 Conclusions
	Acknowledgments
	References

