
CRAFTPy: allowing people with visual impairments to create
diagrams

Lucas Lopes Fraga
UEFS, Bahia, Brazil

lucasfraga884@gmail.com

Rafael Tosta Santos
IFBA, Bahia, Brazil

rafael.tosta@ifba.edu.br

Larissa Rocha
UNEB, PGCC/UEFS, Bahia, Brazil

larissabastos@uneb.br

ABSTRACT
The inclusion of students with visual impairments (SVI) in higher
education has greatly advancedwith the advent of new technologies.
Despite these strides, challenges remain, particularly in Information
and Communication Technology (ICT) courses that heavily rely
on visual elements. Screen readers facilitate SVI’s access to digi-
tal content, but many educational tools are still incompatible with
these readers. This incompatibility is especially problematic in tools
requiring interaction with visual components, such as block-based
programming, diagramming, and 3D modeling tools. This study
introduces CraftPy, an accessible web tool fully compatible with
screen readers. CraftPy enables SVI to create various types of dia-
grams using Python code, employing an object-oriented approach
to design classes, actors, entities, attributes, and relationships. We
also conducted a preliminary evaluation involving eight SVI partic-
ipants to assess the tool’s effectiveness. Overall, participants found
the tool to be highly accessible with screen readers and user-friendly.
They were able to complete the experiment tasks with minimal
difficulties. However, improvements are needed, particularly in en-
hancing screen responsiveness for low-vision users who depend on
screen magnifiers. By developing CraftPy, we aim to promote equity
in higher education, offering SVI enhanced opportunities to succeed
in ICT courses. Link to the video: https://youtu.be/NXu4xbOH8Q4

KEYWORDS
UML, Python, Diagrams, Tool

1 INTRODUCTION
In its latest world report on vision, the World Health Organization
(WHO) estimated that over 2.2 billion people globally experience
some level of visual impairment, from mild to complete blindness.
This staggering figure is expected to rise in the coming decades due
to population growth and lifestyle changes [17]. As a result, the
number of students with visual impairments (SVI) entering higher
education is also increasing, as many countries are making con-
certed efforts to improve accessibility in universities for individuals
with disabilities [9].

To support the learning process for SVI, various assistive tech-
nologies have been developed to assist them in higher education
courses [10, 13, 19]. However, significant gaps remain, especially in
visually intensive fields such as Information and Communication
Technology (ICT). Tools like screen readers, such as JAWS1 and
NVDA2, assist SVI in navigating digital content, but many program-
ming and development tools are not compatible with these screen
readers due to their reliance on graphical content and complex
interfaces [6].
1https://www.freedomscientific.com/products/software/jaws/
2https://www.nvaccess.org

A survey by Alves et al. [2] revealed that over 40% of SVI par-
ticipants reported a lack of instrumental accessibility in higher
education computing courses. The primary challenges identified
include the inadequacy of devices and assistive technologies de-
signed to help SVI understand graphical interfaces [14]. This issue
is particularly pronounced in ICT courses, where visual content
such as diagrams plays a critical role. For instance, Unified Model-
ing Language (UML) diagrams, essential in software engineering
courses, use graphical notations to represent software systems [5].

Additionally, the tools used to create and edit these diagrams,
such as StarUML, Astah, Draw.io, and Dia, often pose significant
accessibility challenges. These tools typically have complex inter-
faces that are not navigable by screen readers and require users
to manipulate graphical elements manually to construct diagrams,
making them inaccessible to blind users.

In a previous study, we proposed a prototype [16] specifically
designed to be compatible with screen readers, allowing SVI to
generate class diagrams using Python code. However, that tool had
several limitations, including being unavailable online and creating
only class diagrams with many constraints, such as neither showing
multiplicity nor the variables responsible for the associations.

To address this gap, we developed CraftPy, a tool freely available
on the internet that currently supports three types of diagrams:
Class Diagrams, Use Case Diagrams, and Entity-Relationship Di-
agrams. In an evaluation involving eight visually impaired indi-
viduals who are either current students or graduates of higher
education ICT courses, most participants were able to complete
assigned tasks with minimal difficulty using CraftPy. This tool aims
to foster equity in higher education by empowering SVI to create
their own diagrams, thereby promoting a more inclusive learning
environment. By providing accessible tools like CraftPy, we can
ensure that SVI has the necessary resources to succeed in visually
demanding fields, ultimately contributing to a more inclusive and
equitable educational landscape.

2 BACKGROUND AND RELATEDWORK
This section provides the background for our study, discussing
related tools that share a concept similar to CraftPy.

Visual impairment. Vision impairments are multiple conditions
that afflict billions of people in the entire world. Affecting the
visual system and its functions, visual impairments have serious
consequences for individuals reducing their ability to see the world
around them [17].

Adults with visual impairments experience a significant reduc-
tion in their quality of life. They are generally less represented in
the workforce and have lower productivity. In addition, they tend
to have higher rates of depression and anxiety compared to those
with normal vision [17].

https://youtu.be/NXu4xbOH8Q4


SBES ’24, September 30– October 04, 2024, Curitiba, PR Lucas Lopes Fraga, Rafael Tosta Santos, and Larissa Rocha

In ICT courses, visual impairments significantly hinder students
due to accessibility challenges in both programming languages
and environments [13]. To overcome these barriers and ensure
quality education in the computing field, there has been a rise in
the development of assistive technologies.

Assistive technologies for SVI in ICT Education. As outlined
by Alves et al. [2], the primary challenge faced by SVI in comput-
ing courses is related to instrumental difficulties. These issues, as
defined by Sassaki [14], stem from challenges in adapting materials,
devices, tools, and assistive technologies to help students com-
prehend both the theoretical concepts and practical applications
presented in the classroom.

The tools created for SVI still lack accessibility and are inef-
fective for students who have severe visual impairments or are
completely blind. Therefore measures need to be taken, such as
asserting that those tools have quality and are easy to use, and
training the teachers and students about the use of assistive tech-
nologies [1, 2]. Although there are tools designed to aid visually
impaired students [4, 7, 11, 12, 16, 18], many of these tools are either
unavailable to the general public or were never published. Addi-
tionally, some require users to learn a new programming language
or undergo extensive training.

Py2UML [16] presents a prototype of a tool that allows the cre-
ation and edition of UML class diagrams through the use of the
Python programming language. Nonetheless, the prototype is not
available to the general public and only creates UML class dia-
grams lacking some features, such as multiplicity and some types
of relationships between classes.

PlantUML3 is an open-source tool that allows users to create
diagrams through coding. However, it has a learning curve because
users must learn the PlantUML notations to fully utilize the tool,
necessitating user training to create diagrams effectively.

The B-Model tool [4] was created to help SVI create UML dia-
grams through a language called BLM (Blind Modeling Language)
to standardize the generation of the diagrams. The process of cre-
ating diagrams is divided into the specification of functional re-
quirements, the interpretation of functional requirements, and the
generation of diagrams. To use this tool it is needed to learn a new
programming language.

TeDUB (Technical Drawings Understanding for the Blind) [7]
was made to make graphical information accessible through the
analysis of graphical content using text recognition and identifica-
tion of diagram elements. It consists of two different modules, one
that analyses the drawings and another that presents the results of
said analysis. However, the tool has not been made available online.

AprenDER Magalhães and Neto [12] focuses on the creation of
entity-relationship diagrams by SVI. However, the work does not
make the tool available to the general public and limits the number
of entities and relationships that the diagrams can support.

Luque et al. [11] presents the Model2gether tool. It promotes
cooperative modeling between a sighted user and a blind user to in-
clude SVI in the process of creating diagrams. The tool implements
two interfaces, one with a screen reader-compatible interface and
one with a graphical interface to allow collaboration between both

3https://plantuml.com/

parties. However, the tool requires work in pairs for the creation of
the diagrams.

The CRAFTPy tool is compatible with modern browsers for
screen reading tools and creates three different kinds of diagrams:
Class diagrams, Use Case diagrams, and Entity-Relationship dia-
grams in a single tool, those three types of diagrams are commonly
used for the modeling of systems for both software and databases.
It does not require taxing training to the users due to the use of
the Python programming language for the creation of the diagrams
and does not require a second user to help with their generation.

Python coding. According to the TIOBE4 Index for April 2024,
Python is currently the most popular language with more than 6%
ahead of its competitors. The TIOBE Index is an indicator of the
popularity of programming languages updated every month using
famous websites such as Google, Bing, and Wikipedia to calculate
their ratings.

Python is also known for being a beginner-friendly program-
ming language and suitable as a first language for novices due to
it minimizing the use of keywords, being close to simple mathe-
matical thinking, and having a built-in help module [3, 8]. In an
experiment carried out by Bogdanchikov et al. [3] there was an
increase of about 16% in the performance of the students in an
Algorithms & Programming course after switching from JAVA to
Python as the programming language used. For the reasons already
listed, Python was chosen as the language used to generate the
UML diagrams.

3 CRAFTPY
The CraftPy tool was designed to assist blind and visually im-
paired ICT students in building diagrams through the Python pro-
gramming language. The tool aims primarily to ensure accessi-
bility and reduce the learning curve for users by utilizing the
Python language. Currently, CraftPy allows users to create class
diagrams, use case diagrams, and entity-relationship diagrams,
commonly seen in software engineering and database courses in
universities. The CraftPy tool is available at the following link:
https://lucaskart.github.io/craftpy/

3.1 Tool’s Architecture
The development of our tool was inspired by a prototype presented
by [16]. Their tool, which generates only class diagrams, lacks
certain properties such as multiplicity and visibility markers, and
is not publicly available, due to the technologies it uses. We believe
that the most important aspect of a tool aimed at SVI is to make it
accessible to users. Therefore, we completely redesigned the tool’s
code using different technologies to address these issues.

CraftPy is a web application developed using the Vite5 devel-
opment server, the React6 library, and TypeScript7. Vite serves as
a fast and lightweight bundler for the front-end, while React pro-
vides a robust framework for building components that encapsulate
logic and user interface into independent, reusable units. Type-
Script enhances the code’s security and reliability with its static

4Avaliable on: (https://www.tiobe.com/tiobe-index/)
5https://vitejs.dev/
6https://react.dev/
7https://www.typescriptlang.org/



CRAFTPy: allowing people with visual impairments to create diagrams SBES ’24, September 30– October 04, 2024, Curitiba, PR

typing features. Also, CraftPy’s architecture follows the principles
of Single-Page Application (SPA) development, where most of the
processing logic is handled on the client side, resulting in a more
fluid and responsive user experience.

Accessibility and responsiveness are crucial for ensuring that
the web application is inclusive and adaptable to different devices
and users, especially since the tool’s target audience includes peo-
ple with visual impairments. To achieve this, we use the RadixUI8
component library and the TailwindCSS9 framework. TailwindCSS
enables responsive styling of React components, allowing them to
adapt seamlessly to various screen sizes and devices. Radix UI pro-
vides accessible components out of the box, ensuring an inclusive
experience from the outset of development.

Additionally, we evaluated CraftPy with Google PageSpeed In-
sights (PSI)10. PSI reports on a page’s user experience and offers
suggestions for improvements. For CraftPy, PSI revealed a maxi-
mum score in accessibility for desktop devices, confirming that all
components are accessible to screen readers and support keyboard
navigation.

No JavaScript libraries were found for analyzing Python code to
extract class, attribute, and method information. Instead, regular
expressions were implemented, disregarding Python’s mandatory
indentation conventions and using reservedwords as delimiters. For
instance, "def" marked the start of a method, with its end indicated
by another "def" or "class" declaration. If a class was improperly
formed, its code block was discarded, retaining only valid parts for
diagram representation.

At the end of the analysis, a JavaScript object is generated con-
taining all the information separately, enabling the construction of
any type of diagram. This means that the code analysis is unique,
and each diagram is built according to the established rules, provid-
ing the necessary context for each analyzed element. Subsequently,
for visualization of the diagrams, a DOT11 file was generated and
rendered using the d3-graphviz12 library.

CraftPy is hosted and deployed on GitHub Pages13. The appli-
cation is deployed using continuous integration and continuous
delivery (CI/CD) pipelines, which automate the build, testing, and
deployment process. This ensures that new versions are made avail-
able quickly and securely, keeping the application always up-to-date
and stable for end users. CraftPy tool is licensed under the GNU
General Public License, and the source code is available on GitHub.

3.2 Tool’s Features
The CraftPy tool has multiple features in its system. The main func-
tion is the creation of multiple types of diagrams, such as class, use
case, and entity-relationship diagrams. Figure 1 shows the main
interface of the system. For the UML class diagrams, using Python
coding, users can define classes, attributes, methods, and establish
inheritance relationships between classes. Additionally, CraftPy
enables the definition of use cases, identifying different actors and
detailing their interactions with the system. The tool is also effective

8https://www.radix-ui.com/
9https://tailwindcss.com/
10https://pagespeed.web.dev/
11https://graphviz.org/
12https://www.npmjs.com/package/d3-graphviz
13https://pages.github.com/

in database modeling, allowing the creation of entity-relationship
diagrams that detail entities, their attributes, and the relationships
among them. Furthermore, the CraftPy interface features a top
navigation bar that facilitates access to other important sections, in-
cluding usage examples, help sections, and the source code available
on GitHub.

These core functionalities empower users to create essential dia-
grams for software engineering and database courses, promoting an
inclusive and accessible educational experience. CraftPy is designed
to be fully compatible with modern screen readers, ensuring that
all components can be navigated and read via keyboard and screen
reading.

3.3 Tool’s Diagrams
CraftPy is currently allowing users to create three kinds of diagrams:
class diagram, use case diagram, and entity-relationship diagram.
This section summarizes the instructions in Python code to generate
the diagrams in the CraftPy tool.

3.3.1 Class Diagram. To create a class in the diagram, it is needed
to write a Python class. To add attributes to the class, it is necessary
to create a constructor for the class using the ‘__init__’ method. And
to add functions to a class, it is necessary to define the functions
within the scope of the class. It is possible to create private attributes
and methods through two subtraces. The following example shows
a Car class with a private attribute (brand) and a given method
(increaseKM):

class Car:
def __init__(self , brand:str):

self.brand = brand

def increaseKM(self):
pass

A class can inherit from another by using parentheses when it is
instantiated. It is possible to create an aggregation between classes
when one class uses objects of another class in its constructor. In
the following example, the windows list is a list of Window’s type:

class Auto:
pass

class Car(Auto):
pass

To create an association between classes in the diagram, it is nec-
essary to instantiate an object within a class that belongs to another
class outside the constructor to avoid dependency relationships.
Multiplicity can be achieved through the use of lists. Example:

class Car:
__tire: list[Tire] = list()

Aggregation and composition are two types of class associations
in object-oriented programming. Aggregation involves one class
using objects of another class as part of its structure, often by
passing instances of one class as arguments to the constructor
of another. In contrast, composition entails a closer relationship,
where one class directly creates an object of another class within
its constructor. For example, in aggregation, a class may have a
member variable referencing objects of another class, whereas in



SBES ’24, September 30– October 04, 2024, Curitiba, PR Lucas Lopes Fraga, Rafael Tosta Santos, and Larissa Rocha

Figure 1: System Interface.

composition, one class owns or manages the lifecycle of another
class. Example:

class Car(Auto):
def __init__(self , brand:str , windows:list[Window]):

self.brand = brand
self.windows:list[Window] = windows # Aggregation
self.owner = Owner(name="Marcos") # Composition

3.3.2 Use Case Diagram. To represent actors in a use case diagram
using Python, each actor is modeled as a class. To create an actor in
the diagram, you need to define a new Python class. To implement
inheritance between two or more actors, simply create inheritance
between their classes. For example:

class Actor:
class Admin(Actor):
class User(Actor):

To create a use case in the diagram, you need to define a function
with the @usecase decorator before the function declaration. For an
’include’ relationship between two use cases, define an additional
@include decorator with the related use case name in brackets.
Similarly, for an ’extend’ relationship, use an additional @extends
decorator with the related use case name in brackets. For example:

@usecase
@include[verify_captcha]
@extends[two_factor_authentication]
def login(self):

pass

@usecase
def verify_captcha(self):

pass

@usecase
def two_factor_authentication(user):

pass

3.3.3 Entity-Relationship Diagram. To create an entity in an Entity-
Relationship diagram, it is necessary to start by defining a Python
class. To add attributes to the entity, it is needed to create a construc-
tor for the class. Attributes that are lists, tuples, and dictionaries
are automatically considered as multivalued attributes. To define
primary keys, it is necessary to declare them as class attributes

outside the constructor. In the case of foreign keys, the variable
name must begin with two underscores. An entity is automatically
identified as a weak entity if it does not have a primary key. An
example is shown below.

class Entity:
primaryKey = 3 # Primary key
__foreignKey = 2 # Foreign key
def __init__(self , name , attributes):

self.name = name
self.attributes = attributes
self.multivaluedAtt = (5,6)

To establish a relationship between two entities in the diagram,
it is necessary to define a decorator @relationship with the name
of the related entity in brackets. To specify the relationship’s multi-
plicity, it is necessary to use the @multiplicity decorator with the
multiplicities of both parts separated by a colon. For identifying
relationships between two entities, it should be used the @identify-
ingrelationship decorator with the related entity’s name in brackets,
along with the @multiplicity decorator to specify the relationship’s
multiplicity, separating the multiplicities of both parts with a colon.

class Order():
pass

class Customer ():
pass

@identifyingrelationship[Order]
@multiplicity[1:1]
def makeOrder ():

pass

4 USAGE EXAMPLE
In this section, we present three different examples of the tool
being used with the creation of three different kinds of diagrams.
Figure 2 shows a class diagram created by using CraftPy adapting
an example from Fowler [5] book. The adapted diagram has five
classes in total, starting with the “Customer" class, which contains
information about a customer who orders a good from an automatic
system. The classes “PersonalCustomer" and “CorporateCustomer"
both inherit from "Customer", symbolized by the arrow present in
the diagram. The "Order" class represents an order in the system,



CRAFTPy: allowing people with visual impairments to create diagrams SBES ’24, September 30– October 04, 2024, Curitiba, PR

"Customer" and "Order" have an aggregation relationship with
each other, where customers can make multiple orders but an order
can only have a single customer. Similarly, the "OrderList" class
that represents the list of orders in the system shares a similar
relationship with the "Order" class.

Figure 2: Class Diagram.

To the use case diagram, we adapted another example from the
[5] book. In this diagram, we have four actors: "Trader", "Salesper-
son", "TradingManager" and "AccountingSystem", each with their
own use cases. Both the "AnalyzeRisk" and "PriceDeal" use cases
include another use case called "ValueDeal".

Figure 3: Use Case Diagram.

The last of the three diagrams is the entity-relationship diagram,
often seen to represent databases of systems. Based on an exam-
ple of the Takai et al. [15] book, the tool created a diagram with
three entities, each with its own primary key, and the relationship
between each of the three entities. The relationships all have a
’m..n’ multiplicity signaling for example that a supplier can supply
multiple parts and a part can be supplied by multiple suppliers.

5 EVALUATION
We conducted a preliminary evaluation of the CraftPy tool. Thus,
we sent email invitations to 45 people with visual impairments and

Figure 4: Entity-Relationship Diagram.

received 8 responses over a period of 15 days, even sending some
reminders. The results of the participants’ forms provide insights
into the effectiveness of CraftPy in meeting the needs of visually
impaired users. Feedback was used to identify strengths and areas
for improvement in tool design and functionality. The analysis
focuses on usability, accessibility, and the overall user experience.
All forms and evaluation documents are available in our replication
package on Zenodo.

5.1 Evaluation Design
The participants were selected from a study conducted by Alves
et al. [2]. In that study, 45 students with visual impairments were
surveyed to investigate their profiles, perceptions of teaching con-
tent focused on accessibility and assistive technology (AT), and
areas where accessibility could be improved to promote their inclu-
sion. The students agreed to share their emails for participation in
future studies on similar topics.

To participate in the tool’s evaluation, participants needed to
meet the following criteria: have studied or are currently studying
any course in the ICT area and have basic knowledge of Python.
Thus, participants received an email inviting them to participate in
the experiment. The email included links to the background survey,
detailed instructions for the experiment, and the final survey for
feedback. The experiment involved the following steps:

(1) Background Survey: Participants completed a background
survey to provide demographic information and details about
their IT experience and visual impairment.

(2) Introduction to Diagrams: Participants were provided
with explanations and examples of class diagrams, use case
diagrams, and entity-relationship diagrams.

(3) Experiment Tasks: Participants were assigned three tasks,
one for each type of diagram, involving minor edits to pro-
vided codes:
• Class Diagram Task: create two new classes inheriting
from another existing one and add two new attributes.

• Use Case Diagram Task: create a new function in an ex-
isting class and mark it as a use case using the respective
decorator.



SBES ’24, September 30– October 04, 2024, Curitiba, PR Lucas Lopes Fraga, Rafael Tosta Santos, and Larissa Rocha

• Entity-Relationship Diagram Task: create a given key for
a given class and a new function in another class, and
establish a relationship with a class using the relationship
decorator.

(4) Final Survey: After completing the tasks, participants filled
out a final survey to provide feedback on their experience
with CraftPy. The survey included questions about the us-
ability, accessibility, and any issues encountered while using
the tool.

5.2 Evaluation Results
Background Survey results. In the background survey, we col-
lected information about the eight participants. Their age varies
between 21 to 35 years old. Only one of the eight participants
claimed to not know the three types of diagrams before doing the
experiment. Six of the eight already work in the ICT field, while
two of them are not employed.

When asked which technology course they are currently study-
ing or have completed, two participants selected two courses (Com-
puter Science and Computer Engineering; and Computer Science
and Software Engineering). Three participants selected Information
Systems, two selected Computer Science, two selected Computer
Engineering, one selected Software Engineering, one selected In-
formation Technology, and one selected Internet Systems.

Out of the participants, three of them were totally blind, two of
themhadmonocular vision, one had a severe visual impairment, one
had a moderate visual impairment and one had multiple colobomas.

Final Survey results. In the final survey, we asked the participants
to submit their answers to the questions and give their feedback.
Since half of the participants who were part of the experiment were
completely blind or had a severe visual impairment, they used a
screen reader to understand the tool’s content. Four of them used
NVDA, two of them used VoiceOver and the last two didn’t use any
screen reader for the experiment.

The statistics for the completion of the activities are as follows:
Seven participants were able to complete both Task 1 and Task 2.
However, only five participants were able to answer Task 3 correctly.
One participant was unable to complete the experiment due to a
problem in the system that caused them to be unable to finish the
activities.

Some feedbacks from the participants are presented in the fol-
lowing:

• "Very good from a programmer’s perspective, because, in-
stead of spending time learning a new system, the person
can model the classes they want to show through code, in
any text editor. For those who already know the Python
language, the experience is even better. I also found the in-
terface very interesting, and very easy to use. In my opinion,
it’s even better because you don’t have to install anything
to start using the tool."

• "I wish I could able to resize the width of the code screens
and generated diagrams/use cases/ER. Mainly because I use
a larger font (125%) zoom."

Some problems that caused system errors and were reported by
the participants were addressed after the experiment. Some of those

issues were compatibility with smaller screens for users that use
amplifying tools and issues that caused the tool to stop responding.
Overall, the participants found the tool easy to use and praised the
accessibility of the tool and its compatibility with the screen readers
used. This experiment is critical for refining CraftPy and ensuring it
serves its target audience effectively. By involving visually impaired
users in the testing process, we aim to create a more inclusive and
user-friendly tool for creating diagrams.

6 LIMITATIONS
CraftPy contains some limitations when it comes to diagram cre-
ation due to it being a recently developed tool. However many of
them can be addressed with further development of the tool. Those
limitations include: (i) Diagram type limitation: So far CraftPy
can only generate three kinds of diagrams: Class Diagrams, Use
Case Diagrams and Entity-Relationship Diagram; and (ii) Python
language restrictions: Due to the Python language not needing
certain formalities, some restrictions come with the use of it when
generating diagrams, such as specifying the capacity of an array,
multiplicity in Class Diagrams are either 1:1 or 1:n.

7 CONCLUSIONS
In this paper, we present CraftPy, a tool designed to assist SVI in
higher education ICT courses with an accessible interface fully com-
patible with screen readers. CraftPy is a web application that allows
users to create three types of diagrams using Python code directly
in the browser, eliminating the need to install software on their ma-
chines. We conducted an experiment with eight visually impaired
participants to evaluate the tool’s effectiveness in completing a set
of activities. Results showed that 87.5% of participants successfully
completed two of the three assigned tasks, with the third task hav-
ing a lower success rate. Future work includes: (i) increasing the
number of diagrams types; (ii) optimizing the interface for better
compatibility with smaller screens; and (iii) enhancing the existing
diagrams to allow for greater versatility and the addition of more
elements.

ARTEFACT AVAILABILITY
The supplementary material is available on Zenodo: https://doi.org
/10.5281/zenodo.11432990

ACKNOWLEDGMENTS
This work was partially supported by UEFS-AUXPPG 2023 and
CAPES-PROAP 2023 grants.

REFERENCES
[1] Enitan Olabisi Adebayo and Ibiyinka Temilola Ayorinde. 2022. Efficacy of assistive

technology for improved teaching and learning in computer science. International
Journal of Education and Management Engineering 12, 5 (2022), 9–17.

[2] Lais Alves, Larissa Rocha, Cláudia Pereira, Ivan Machado, Windson Viana, and
Nailton Almeida Junior. 2022. Estudantes comDeficiência Visual em Computação:
participação, perspectivas e desafios enfrentados. InAnais do II Simpósio Brasileiro
de Educação em Computação (Online). SBC, Porto Alegre, RS, Brasil, 67–76. https:
//doi.org/10.5753/educomp.2022.19200

[3] A Bogdanchikov, M Zhaparov, and R Suliyev. 2013. Python to learn programming.
Journal of Physics: Conference Series 423, 1 (apr 2013), 012027. https://doi.org/10.
1088/1742-6596/423/1/012027

[4] Pedro de Azevedo, Francisco Carlos Souza, and Alinne Souza. 2021. B-Model
Uma ferramenta para auxiliar estudantes com deficiência visual na modelagem

https://doi.org/10.5753/educomp.2022.19200
https://doi.org/10.5753/educomp.2022.19200
https://doi.org/10.1088/1742-6596/423/1/012027
https://doi.org/10.1088/1742-6596/423/1/012027


CRAFTPy: allowing people with visual impairments to create diagrams SBES ’24, September 30– October 04, 2024, Curitiba, PR

de sistemas. Revista Eletrônica de Iniciação Científica em Computação 19, 3 (set.
2021). https://sol.sbc.org.br/journals/index.php/reic/article/view/1886

[5] Martin Fowler. 2018. UML distilled: a brief guide to the standard object modeling
language. Addison-Wesley Professional.

[6] Alex Hadwen-Bennett, Sue Sentance, and Cecily Morrison. 2018. Making Pro-
gramming Accessible to Learners with Visual Impairments: A Literature Review.
International Journal of Computer Science Education in Schools 2, 2 (May 2018),
3–13. https://doi.org/10.21585/ijcses.v2i2.25

[7] M. Horstmann*, M. Lorenz, A. Watkowski, G. Ioannidis, O. Herzog, A. King,
D. G. Evans, C. Hagen, C. Schlieder, A.-M. Burn, N. King, H. Petrie, S. Dijkstra,
and D. Crombie. 2004. Automated interpretation and accessible presentation
of technical diagrams for blind people. New Review of Hypermedia and Mul-
timedia 10, 2 (2004), 141–163. https://doi.org/10.1080/13614560512331326017
arXiv:https://doi.org/10.1080/13614560512331326017

[8] Greg Lindstrom. 2005. Programming with python. IT professional 7, 5 (2005),
10–16.

[9] Ava Gibson Lise Bird Claiborne, Sue Cornforth and Alexandra Smith.
2011. Supporting students with impairments in higher education: so-
cial inclusion or cold comfort? International Journal of Inclusive Edu-
cation 15, 5 (2011), 513–527. https://doi.org/10.1080/13603110903131747
arXiv:https://doi.org/10.1080/13603110903131747

[10] Néstor Ulises López Flores and Aída Lucina González Lara. 2023. Technologies
in Education for Visually Impaired People: A Literature Review. In 2nd EAI
International Conference on Smart Technology, Francisco Torres-Guerrero, Leticia
Neira-Tovar, and Jorge Bacca-Acosta (Eds.). Springer International Publishing,
Cham, 163–169.

[11] Leandro Luque, CL Santos, Davi O Cruz, Leônidas O Brandao, and AA Brandao.
2016. Model2gether: a tool to support cooperative modeling involving blind
people. In Brazilian Conference of Software.

[12] Rafael L Magalhães and Michelle MF Neto. 2010. AprenDER: Ferramenta de
apoio à construção de diagrama entidade relacionamento para deficientes vi-
suais. In Brazilian Symposium on Computers in Education (Simpósio Brasileiro de
Informática na Educação-SBIE), Vol. 1.

[13] AboubakarMountapmbeme, Obianuju Okafor, and Stephanie Ludi. 2022. Address-
ing Accessibility Barriers in Programming for People with Visual Impairments:
A Literature Review. ACM Trans. Access. Comput. 15, 1, Article 7 (mar 2022),
26 pages. https://doi.org/10.1145/3507469

[14] Romeu Kazumi Sassaki. 2003. Inclusão no lazer e turismo: em busca da qualidade
de vida. São Paulo: Áurea (2003).

[15] Osvaldo Kotaro Takai, Isabel Cristina Italiano, and João Eduardo Ferreira. 2005.
Introdução a banco de dados. Departamento de Ciências da Computação. Instituto
de Matemática e Estatística. Universidade de São Paulo. São Paulo (2005).

[16] Alisson Verde, Lais Alves, Lucas Fraga, and Larissa Soares. 2023. Py2UML: a Tool
for Visually Impaired Students to Build UML Diagrams from Python Coding. In
Proceedings of the XXXVII Brazilian Symposium on Software Engineering (Campo
Grande, Brazil) (SBES ’23). Association for Computing Machinery, New York, NY,
USA, 491–496. https://doi.org/10.1145/3613372.3613418

[17] WHO et al. 2019. World report on vision. (2019).
[18] Ira Woodring, Charles Owen, and Samia Islam. 2024. A Method for Presenting

UML Class Diagrams with Audio for Blind and Visually Impaired Students. In
Proceedings of the 17th International Conference on PErvasive Technologies Related
to Assistive Environments (Crete, Greece) (PETRA ’24). Association for Computing
Machinery, New York, NY, USA, 15–20. https://doi.org/10.1145/3652037.3652056

[19] Eliana Zen, Marcelo da Silveira Siedler, Vinicius Kruger da Costa, and Ta-
tiana Aires Tavares. 2022. Assistive Technology to Assist the Visually Im-
paired in the Use of ICTs: A Systematic Literature Review. In XVIII Brazil-
ian Symposium on Information Systems (Curitiba, Brazil) (SBSI). Association
for Computing Machinery, New York, NY, USA, Article 18, 8 pages. https:
//doi.org/10.1145/3535511.3535529

https://sol.sbc.org.br/journals/index.php/reic/article/view/1886
https://doi.org/10.21585/ijcses.v2i2.25
https://doi.org/10.1080/13614560512331326017
https://arxiv.org/abs/https://doi.org/10.1080/13614560512331326017
https://doi.org/10.1080/13603110903131747
https://arxiv.org/abs/https://doi.org/10.1080/13603110903131747
https://doi.org/10.1145/3507469
https://doi.org/10.1145/3613372.3613418
https://doi.org/10.1145/3652037.3652056
https://doi.org/10.1145/3535511.3535529
https://doi.org/10.1145/3535511.3535529

	Abstract
	1 Introduction
	2 Background and Related Work
	3 CRAFTPy
	3.1 Tool's Architecture
	3.2 Tool's Features
	3.3 Tool's Diagrams

	4 Usage Example
	5 Evaluation
	5.1 Evaluation Design
	5.2 Evaluation Results

	6 Limitations
	7 Conclusions
	Acknowledgments
	References

