
AIssistDM: A Plugin to Assist Non-specialist Decision-Makers in
Search-Based Software Engineering Tools

Willian M. Freire
State University of Maringá
Maringá, Paraná, Brazil

willianmarquesfreire@gmail.com

Murilo Boccardo
State University of Maringá
Maringá, Paraná, Brazil

ra124160@uem.br

Daniel Nouchi
State University of Maringá
Maringá, Paraná, Brazil

ra123991@uem.br

Aline M. M. M. Amaral
State University of Maringá
Maringá, Paraná, Brazil
ammmamaral@uem.br

Silvia R. Vergilio
DInf, Federal University of Paraná

Curitiba, Paraná, Brazil
silvia@inf.ufpr.br

Thiago Ferreira
University of Michigan-Flint

Flint, MI, USA
thiagod@umich.edu

Thelma E. Colanzi
State University of Maringá
Maringá, Paraná, Brazil
thelma@din.uem.br

ABSTRACT
Search-Based Software Engineering (SBSE) is a field that applies
optimization algorithms to address complex problems in various
software engineering domains. A significant challenge when using
SBSE tools is the choice of parameter values related to the prob-
lem domain, which is usually performed by the Decision-Makers
(DMs). This task is not trivial and critically influences the resulting
solutions. Recognizing that DMs, mainly non-specialist ones, often
struggle with these complexities, this paper introduces AIssistDM,
a plugin developed to make adopting SBSE tools accessible with-
out needing deep knowledge of their configuration parameters.
The AIssistDM offers guided assistance by integrating Large Lan-
guage Models (LLMs), particularly ChatGPT, to provide human-text
generated suggestions of problem-domain parameters, improving
decision-making. AIssistDM plugin was designed with a modu-
lar architecture to be integrated with different SBSE tools. The
plugin has standard interfaces to enhance its capabilities without
requiring extensive modifications in the integrated tools. A usage
example describes integrating with the tool OPLA-Tool for Prod-
uct Line Architecture (PLA) search-based design. This integration
aids non-specialist DMs when configuring objective functions in
OPLA-Tool. This study demonstrates how the AIssistDM integrates
SBSE tools with ChatGPT by detailing the system architecture and
core functionalities. The AIssistDM represents an advancement in
the SBSE field, offering a new way to support the DM’s choice of
parameters for SBSE tools.
Video Available on https://doi.org/10.6084/m9.figshare.25942801.v1

KEYWORDS
Search-based Software Engineering, Large Language Model, Plugin

1 INTRODUCTION
Search-Based Software Engineering (SBSE) employs metaheuristic
optimization algorithms to solve complex problems in various do-
mains of software engineering. SBSE applies methods that are par-
ticularly suited to address issues where traditional methodsmay fail,

especially under conditions that demand optimization with conflict-
ing constraints [13]. SBSE tools allow automatic support for SBSE
solutions, addressing a great variety of tasks in different software
engineering areas. Among these tools, we can mention EvoSuite,
for automatic test data generation in different scenarios [11]; OPLA-
Tool, for optimization of Product Line Architecture (PLA) design [12];
and OptiJIT, for optimizing just-in-time compilation strategies in
order to enhance execution performance [16].

One significant challenge within SBSE, mainly for non-specialist
Decision-Makers (DMs),1 is configuring optimal parameter values [1].
SBSE tools often deal with a broad spectrum of parameters, ranging
from straightforward algorithmic settings to complex problem-
domain configurations that significantly influence the outcomes
of software engineering tasks [4]. For instance, algorithm-specific
parameters of evolutionary algorithms include population size, mu-
tation rate, and crossover probability, which directly affect the
behavior and performance of the optimization process.

Problem-domain parameters in SBSE are specific to the software
engineering context and impact the type and quality of the solutions
generated. Those parameters often involve decisions that cannot be
fully automated and require human expertise to balance trade-offs
according to specific design needs and goals. The complexity of such
parameters makes crucial to provide both automation and insightful
support that guides non-specialist users through decision-making.
One comprehensive example of such parameters is the objective
functions used to evaluate the quality of solutions. More specific
examples include Requirement Prioritization, which determines
the criticality of software requirements during optimization; Ar-
chitectural Constraints, which define allowable configurations of
software architectures; Test Coverage Goals, specifying the extent
of code coverage required for test generation; and Performance
Benchmarks, setting specific performance targets to be met.

1The term “Decision-Makers” in this context refers to users responsible for making
strategic decisions in the SBSE tool, including selecting appropriate parameters and
evaluating potential solutions.

https://doi.org/10.6084/m9.figshare.25942801.v1

SBES ’24, September 30– October 04, 2024, Curitiba, PR Freire et al.

While some tools exist to assist in automatically configuring
algorithmic parameters [17, 18], there remains a significant chal-
lenge in dealing with problem-domain parameters that require
in-depth knowledge and strategic decision-making. This need for
decision-making can pose a challenge for non-specialists who may
not possess the knowledge required to interpret optimization results
effectively. Guiding DMs through the decision-making process by
simplifying data presentation and offering actionable insights could
improve the application of SBSE tools [1]. Integrating advanced
computational technologies, such as Machine Learning (ML), offers
promising opportunities to overcome these challenges. Large Lan-
guageModels (LLMs), a subset ofML, have demonstrated remarkable
abilities in processing and understanding complex data sets [26],
making them ideal for improving optimization tasks within SBSE
tools. Their ability to generate context-aware solutions is particu-
larly crucial in environments where traditional algorithms struggle
to adapt dynamically to evolving conditions [24].

Considering these facts, this paper introduces AIssistDM, a plu-
gin developed to enhance the optimization process implemented
by a SBSE tool by integrating LLLM, more particularly ChatGPT2.
This integration utilizes LLMs’ natural language processing capabil-
ities to offer intelligent, context-aware suggestions for parameters
related to the domain problem in SBSE tools, such as objective
functions and search operators, thus streamlining the search-based
optimization process and improving decision-making [7].

Recognizing the challenges that non-specialist DMs face when
configuring and utilizing sophisticated SBSE tools, the AIssistDM
was specifically developed to provide accessible support. This plu-
gin aims to be adopted in SBSE by simplifying the complexities
involved in parameter configuration. This initiative is important as
it ensures that the benefits of SBSE can be realized across a broader
spectrum of DMs, regardless of their prior expertise.

AIssistDMwas integrated as a case studywithOPLA-Tool v2.0[12],
for PLA optimization. The integration was made through a user-
friendly interface that supports DMs in choosing objective func-
tions. PLA design is a software engineering problem that signifi-
cantly benefits from SBSE techniques due to its inherent complexity
and the requirement to balance diverse and often conflicting de-
sign constraints [8]. Effective PLA design requires an approach
to explore its complex trade-offs, making the application of SBSE
techniques essential [20].

The AIssistDM Plugin aids DMs by leveraging ChatGPT to gen-
erate human-like text, simplifying the complex data associated with
these decisions and enhancing the understanding and accessibility
of parameter choices. ChatGPT can analyze and synthesize informa-
tion from diverse data sources, providing tailored suggestions that
respect each project’s unique constraints and goals. This capability
ensures that DMs are equipped with recommendations that are not
only optimized but also contextually aligned with strategic business
objectives [7].

By examining the system architecture and core functionalities,
this study demonstrates how the AIssistDM Plugin can aid the DM
in choosing problem-domain parameters of SBSE tools. Further-
more, the paper discusses how this integration advances the ap-
plication of AI technologies within essential software engineering

2https://chatgpt.com

tasks, highlighting significant improvements in DM engagement in
the optimization process.

The remainder of this paper is organized as follows: section 2
establishes background about LLMs used in this work. section 3 de-
scribes related work. section 4 presents the plugin’s functionalities,
structure, usage example and license. Finally, section 5 concludes
the paper and outlines future research directions.

2 BACKGROUND
Large Language Models (LLMs), such as the Generative Pre-trained
Transformer (GPT) series developed by OpenAI3, have significantly
advanced natural language processing capabilities. Starting from
GPT and evolving through GPT-2, GPT-3, and the latest iterations,
these models have been trained on diverse internet text to generate
coherent, contextually relevant text based on the prompts they
receive [7, 21]. These models can perform tasks beyond simple text
generation, including answering questions, summarizing lengthy
documents, and generating code snippets, making them versatile
AI research and application tools.

ChatGPT, a variant of these models, has been explicitly fine-
tuned for dialogue applications, enabling more human-like interac-
tions. Its underlying technology, based on deep learning architec-
tures such as transformers, allows it to understand and generate
responses by considering the broader context of a conversation or
a query [24].

In SBSE, LLMs such as ChatGPT can be utilized to interpret
complex software engineering tasks, automate the generation of
coding artifacts, or even assist in developing and maintaining soft-
ware by providing real-time recommendations and solutions. Their
ability to process and synthesize large amounts of unstructured
text data can enhance decision-making processes, bridging the gap
between vast data handling and actionable software development
insights [2].

3 RELATEDWORK
Initial explorations into using LLMs in software engineering fo-
cused on tasks such as code completion [14], bug fixes and code
refactoring [3], as well as automated documentation, where their
ability to understand and generate human-like text proved partic-
ularly beneficial [7, 10]. These foundational applications demon-
strated the versatility of LLMs in handling complex tasks that tra-
ditionally required extensive human expertise.

Zhang et al. [26] explore using LLMs for adaptive test case gen-
eration, showcasing how these models can dynamically generate
tests to match evolving software requirements during development
cycles. This application underscores the potential of LLMs to im-
prove the responsiveness of testing processes to ongoing changes
in software projects. On the other hand, Alon et al. [3] focus on the
role of LLMs in automating routine maintenance tasks such as bug
fixes and code refactoring. Their work highlights the capability of
LLMs to understand and manipulate code, thereby facilitating the
maintenance phase of software development with reduced human
intervention.

These studies exemplify the adaptability of LLMs to diverse soft-
ware engineering contexts, particularly their ability to automate
3https://openai.com

https://chatgpt.com
https://openai.com

AIssistDM: A Plugin to Assist Non-specialist Decision-Makers in Search-Based Software Engineering Tools SBES ’24, September 30– October 04, 2024, Curitiba, PR

complex and repetitive tasks across various stages of the software
development lifecycle. But unlike the general applications of LLMs
discussed above, AIssistDM, proposed in this work, targets the op-
timization tools within SBSE. The plugin is designed to assist DMs,
particularly non-specialists, in configuring optimal tool parameters,
thereby easing the cognitive load on DMs. By leveraging LLMs like
ChatGPT, the plugin interprets DM queries and provides context-
aware recommendations, thus bridging the gap between complex
optimization needs and user-friendly interfaces. We have not found
an LLM-based tool with similar goals in the literature. As far as we
know, our plugin is the first to assist DM in choosing SBES tools’
parameters through integration with ChatGPT.

4 PROPOSED PLUGIN
This section presents the functionalities, structure and usage of
AIssistDM. The source code, documentation, and instructions for
building, installing, and usage can be obtained from Github 4.

4.1 Functionalities and Users
TheAIssistDMPlugin is designed to assist DMs by integrating LLMs
to suggest parameters for SBSE tools. This subsection outlines the
main functionalities of the plugin, and identifies its potential users
and applicability contexts.

4.1.1 Main Functionalities.

• Integration with Existing Tools: the AIssistDM Plugin
is designed to be integrated with existing SBSE tools, such
as: [6] [12] [15] [19] [22] [23]. This integration capability
extends the utility of traditional SBSE tools by incorporating
advanced AI-driven insights, thereby broadening the scope
of their application. The plugin acts as a middleware that can
interact with the tools and handle external API calls, making
it a flexible addition to commercial and open-source software
engineering environments. Section 4.3 presents an example
of the protocol the tool must have to integrate within the
plugin. It is important to detach that, for the integration to
be possible, the SBSE tool must support external plugins or
extensions.

• Automated Parameters Suggestion: The main function-
ality of AIssistDM is the suggestion of parameters for the
integrated SBSE tool. Since the plugin acts as a bridge be-
tween the ChatGPT and the SBSE tool, the ChatGPT must
be trained on the suggested parameters. Also, providing
examples of parameter usage to ChatGPT is important so
the model can correctly make suggestions. subsection 4.3
presents an example of using the AIssistDM plugin to sug-
gest objective functions in a SBSE tool.

• Interactive Suggestions: DMs can interactively visualize
the parameter suggestions through a graphical interface in
the SBSE tool. The interface helps the DM better understand
the trade-offs between different parameter choices and make
informed decisions.

4.1.2 Potential Users. This work adopts the term DM as standard
since the tool’s user in the context of optimization in SBSE is com-
monly referred to as DM. The plugin was designed to assist DMs,
4https://github.com/otimizes/AIssistDM-plugin

mainly non-specialist DMs. These DMs can be Software Engineers
involved in creating solutions and using the plugin to enhance
decision-making, and even Research Scholars engaged in studying
and developing SBSE approaches and tools who can use the plugin
to experiment with different optimization techniques.

4.2 Overall Architecture
This subsection details the architecture and core components of the
AIssistDM Plugin, describing how these elements work together.
The plugin is designed to integrate language model capabilities
into existing SBSE tools, prioritizing modularity, scalability and
maintainability, as presented in Figure 1. We can see in this figure
that the Optimization Tool, the ChatGPT, and the AIssistDM Plugin
interact through interfaces. The focus of this work is the plugin,
which can be expanded into the following components:

• Popup controls the plugin’s opening and the buttons’ ac-
tions of connecting to the WebSocket and sending test mes-
sages to the ChatGPT.

• Background controls the WebSocket connection, responsi-
ble for exchanging messages between the optimization tool
and the ChatGPT.

• WebSocket Server is a server application that enables two-
way, persistent communication channels over a single TCP
(Transmission Control Protocol) connection. In this work, we
used the WebSocket for real-time communication between
the optimization tool in the server and the ChatGPT in the
web browser.

As mentioned and presented in Figure 1, a WebSocket integrates
the optimization tool with the AIssistDM Plugin to exchange ques-
tions and answers between the optimization tool and the ChatGPT.
TheWebSocketConnection class, included in the Background com-
ponent, has the socket instance and the methods of controlling the
socket, such as opening, closing, exchanging messages, and treating
errors.

To send messages and get ChatGPT answers, two functions in
Background were developed. The Send Message Function (Figure 1)
presents the flow of sendingmessages to the ChatGPT. The first step
is inspecting the input field in the ChatGPT application responsible
for exchanging messages. Figure 2 presents an example of a visual
inspection of this input field. As can be seen, this field has an HTML
ID that can be obtained through Javascript coding. After obtaining
the input field, the second step is to put the received message in
the field and dispatch an event using the button to send questions.

Getting messages from the ChatGPT is more advanced since
the answers are asynchronous, which demands a timer that stays
checking if the answer has arrived. This is made by theWait Answer
Function presented in Figure 1. For the ChatGPT, we tested different
configurations for the timer, and we verified that the best option
was to check every 3 seconds to see if the answer arrived. Practically,
every time ChatGPT answers questions, as presented in Figure 3,
it creates a button to stop generating questions. So, to know if the
ChatGPT is answering yet, the plugin needs to check if this button
is on the page.

In summary, the AIssistDM plugin provides a graphical interface
that allows DMs to interact, configure parameters, and visualize
optimization results. At the plugin’s core, this engine integrates the

SBES ’24, September 30– October 04, 2024, Curitiba, PR Freire et al.

ChatGPT

api

SBSE Tool AIssistDM Plugin

Send messages
and get answersExchange messages

via WebSocket

Background

Send Message Function

1) Inspect Input field of ChatGPT page

2) Put the websocket message in input field

3) Dispatch Event button of making question ChatGPT instance tab

Wait Answer Function

* While ChatGPT is generating answer
1) Check every 3 seconds the status of answer

* After ChatGPT stop generating answer
1) Get the answer

2) Send the answer to the socket

WebSocket

Popup

Get Opened tab Draw the buttons

Add event function
to "Connect to

WebSocket" button

Add event
function to "Send
test message"

button

Figure 1: High-level architecture diagram of the AIssistDM Plugin

Figure 2: Inspecting ChatGPT input field.

capabilities of ChatGPT, managing the processing and generation
of suggestions based on DM inputs and project data. The plugin
handles all data interactions between the optimization tool and
ChatGPT, ensuring data integrity and security.

The plugin is designed to integrate into SBSE tools that support
external plugins or extensions by using Websocket. Integration
typically requires minimal changes to the host application, as the
AIssistDM Plugin adheres to standard data exchange formats and
communication protocols. Section 4.3 presents the usage example
of the plugin and how it was integrated into OPLA-Tool v2.0.

Figure 3: Inspecting ChatGPT answering questions

4.3 Usage
The AIssistDM Plugin provides an intuitive and effective interface
for enhancing SBSE processes with AI-driven capabilities. This
subsection offers a detailed usage example, demonstrating how
DMs can leverage the optimization tool using SBSE techniques
augmented by LLMs.

4.3.1 Search-Based PLA design. As this paper presents a plugin
that can be integrated into SBSE tools, we choose a search-based
PLA design tool (OPLA-Tool v2.0 [12]) to demonstrate the AIssistAI
usage. All the integration made with OPLA-Tool v2.0 is available on
Github 5. Search-based PLA design represents a specific application
area where SBSE techniques have shown significant potential [9].

5https://github.com/otimizes/OPLA-Tool

AIssistDM: A Plugin to Assist Non-specialist Decision-Makers in Search-Based Software Engineering Tools SBES ’24, September 30– October 04, 2024, Curitiba, PR

The complexities inherent in PLA design, such as feature modu-
larization, reuse, variability, and extensibility, present challenges
well-suited to search-based approaches’ capabilities.

Adopting SBSE in PLA design is necessary due to the intrinsic
complexities of managing diverse architectural elements and their
dependencies. SBSE’s capability to explore extensive design spaces
through optimization algorithms enables architects to discover
innovative solutions that traditional heuristic-based methods might
miss. This exploratory capacity is critical in PLA design, where
the optimal integration of features can drastically impact the final
product line’s performance and maintainability.

OPLA-Tool v2.0 tool is implemented in the Java programming
language with Spring framework6. This version employs various
search algorithms to optimize PLAs by balancing conflicting ob-
jectives such as Class Coupling (ACLASS), Feature Modularization
(FM), and Cohesion (COE). A key component of OPLA-Tool is its
evaluation model, which integrates objective functions derived
from software metrics to measure aspects such as modularity, ex-
tensibility, and variability [25]. Despite the efficacy of OPLA-Tool
v2.0, there is still a gap in efficiently selecting and tuning the myriad
of possible objective functions to optimize software engineering
outcomes [12].

4.3.2 Installation. ChatGPT works on a web browser. In this sense,
DMs must install the AIssistDM Plugin in their browser navigator
to enable communication between the ChatGPT and the SBSE tool.
The repository on GitHub has a tutorial on how the plugin can
be installed. Figure 4 presents an example of manual installation
for Google Chrome 7. To install, the DM must follow the steps: (1)
Access the URL of extensions (chrome://extensions/); (2) Click on
the “Load unpacked button”; and (3) select the plugin folder;

Figure 4: Manual installation of the AIssistDM Plugin in
Google Chrome.

Once integrated, the plugin is accessible from the browser, where
it can be activated by selecting the AIssistDM Plugin. As presented
in Figure 5, the DM must access ChatGPT, log in, and click on the
extension.
6The Spring Framework is an application framework and inversion of control container
for the Java platform, commonly used to develop web applications.
7https://www.google.pt/intl/en-US/chrome

Figure 5: Main GUI (Graphical User Interface).

The DM has two options at the plugin’s main GUI: The first
one is to make a Websocket server available on port 3000, and any
optimization application can connect to this port to exchange JSON
messages. The second option is to send a test message to ChatGPT.

4.3.3 OPLA-Tool Adaptation. Figure 6 presents an example of the
integration with OPLA-Tool. The plugin’s core is a dynamic in-
teraction model between the DM and the LLM. The process initi-
ates with the DM requesting suggestions for objective functions
when he/she clicks the "Get a suggestion" button. This request is
translated into a structured prompt and dispatched to ChatGPT
by the plugin, which processes the query and returns a list of sug-
gested objective functions. All the questions are accompanied by
an instruction to receive the answer in a specified JSON format:
{"fns": ["..."], "suggestion": "..."}. Here, fns denotes
the objective functions, represented as uppercase acronyms, and
suggestion provides detailed recommendations. This format was
chosen due to its simplicity and ease of integration into existing
systems, ensuring that suggestions are accessible and actionable
via API (Application Programming interface).

4.3.4 Training ChatGPT for assisting DMs . All the potential of the
AIssistDM plugin lies in the data that the DM of the optimization
tool will supply to the ChatGPT in the context in which the plugin
will be used. In this sense, for using the AIssistDM Plugin, it is
necessary to tailor the underlying LLM, specifically ChatGPT, to
understand better and respond to the specific needs of software
engineering tasks. Training ChatGPT involves fine-tuning it with
datasets relevant to the functions it will perform, including diverse
software engineering problems and optimization scenarios.

The training process typically involves several steps:
(1) Data Collection: Gathering a comprehensive dataset that

includes various software engineering texts, such as code
snippets, documentation, and problem descriptions.

(2) Preprocessing: Cleaning and preparing the data to ensure
it is suitable for training, which may involve removing ir-
relevant information, correcting errors, and formatting the
data in a digestible way for the model.

SBES ’24, September 30– October 04, 2024, Curitiba, PR Freire et al.

Figure 6: Running example of objective function suggestion.

(3) Model Training: Feeding the prepared dataset to ChatGPT
allows it to learn from the specific patterns, terminology,
and contexts used in software engineering.

(4) Evaluation: Testing the trained model on new, unseen data
to assess its understanding and ability to generate accurate
and relevant responses.

(5) Iteration: Based on performance, additional adjustments
and refinements may be made to improve the model’s accu-
racy and responsiveness.

By customizing ChatGPT, the AIssistDM Plugin becomes more
proficient in handling the challenges of complex software engi-
neering tasks. It improves in providing contextually appropriate
suggestions that can significantly enhance decision-making pro-
cesses within SBSE tools.

Training LLMs like ChatGPT for specific domains is essential
to leverage their full potential and ensure they perform optimally
in targeted applications. This adaptability underscores LLMs’ ver-
satility and capacity to transform industries by providing tailored,
intelligent solutions.

4.3.5 Initial Evaluation with PLA Specialists. The AIssistDM was
initially evaluated with two PLA specialists to assess the plugin’s
integration in the OPLA-Tool [5]. We verified the suggestions for
objective functions made through the plugin. The first DM is a
doctoral-level educator with advanced PLA design knowledge. The

second DM is a computer science graduate working in the industry
with moderate knowledge of relevant fields. This preliminary test
aimed to gather DM feedback on the practical utility and perfor-
mance of the plugin in a real-world PLA optimization scenario.

During this evaluation, the DMs interacted with the AIssistDM,
engaging with its features and assessing the relevance and accuracy
of the suggestions provided. The feedback was highly encouraging,
with the DMs highlighting several key observations. About usage,
DM 1 said, “The interface is user-friendly and intuitive”. Regarding
the quality of suggestions, DM 2 said, “I was surprised. The module
brought answers that, from my point of view, surpass the suggestion
of a trained DM with no experience analyzing optimized solutions.”.

These comments indicate that the AIssistDM Plugin can deliver
contextually appropriate suggestions that enhance the decision-
making process in PLA design. This promising start lays a solid
foundation for further development and more comprehensive eval-
uations to refine the plugin’s capabilities and ensure its efficacy in
diverse SBSE tools.

The AIssistDM plugin provides advantages over directly using
ChatGPT, including automated background training phases, seam-
less integration with SBSE tools, and tailored context-aware param-
eter suggestions. Unlike a standalone ChatGPT session, the plugin
offers a user-friendly interface and ensures consistency in param-
eter selection by maintaining a history of interactions and learn-
ing from previous decisions. This integrated approach enhances
decision-making and reduces the cognitive load on DMs.

4.4 License
AIssistDM is an open-source plugin under the AGPLv3 license
(GNU Affero General Public License v3.0).

5 CONCLUDING REMARKS
This work presented a plugin designed to integrate LLM into SBSE
tools. The AIssistDM Plugin showcases how AI can improve opti-
mization approaches, assisting the DM in the decision-making of
the SBSE tool’s parameters. The plugin implementation has shown
that including it significantly enhances decision-making by pro-
viding intelligent, context-aware suggestions for tool parameters.
This has streamlined the optimization tasks and improved the tools’
usability, enabling novice and experienced DMs to achieve better
optimization results with less effort.

Future work could explore: (i) integrating other SBSE tools to
address different areas of SBSE; (ii) improving of the AI models used
in the plugin, including training on larger datasets and refining the
algorithms to understand complex software engineering contexts
better; (iii) investigating the use of the plugin in other SBSE tools,
which explore different software engineering domains; and (iv)
conducting comprehensive DM studies to evaluate the impact of
the AIssistDM Plugin on the workflow of DMs, aiming to optimize
the interface and functionalities based on DM feedback.

ACKNOWLEDGMENTS
This research is supported by CAPES (Grant: 88887.941765/2024-00)
and CNPq (Grant: 310034/2022-1, 404027/2023-7).

AIssistDM: A Plugin to Assist Non-specialist Decision-Makers in Search-Based Software Engineering Tools SBES ’24, September 30– October 04, 2024, Curitiba, PR

REFERENCES
[1] Wasif Afzal, Richard Torkar, and Robert Feldt. 2009. A systematic review of

search-based testing for non-functional system properties. Information and
Software Technology 51, 6 (2009), 957–976.

[2] Baleegh Ahmad, Shailja Thakur, Benjamin Tan, Ramesh Karri, and Hammond
Pearce. 2024. On Hardware Security Bug Code Fixes By Prompting Large Lan-
guage Models. IEEE Transactions on Information Forensics and Security (2024).

[3] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. 2020. Structural language
models of code. In International conference on machine learning. PMLR, 245–256.

[4] Andrea Arcuri and Gordon Fraser. 2013. Parameter tuning or default values? An
empirical investigation in search-based software engineering. Empirical Software
Engineering 18 (2013), 594–623.

[5] Anonymous Authors. 2024. Complementary Material. (2024). https://figshare.
com/s/3f89f0bce25aaa406cdc

[6] Cosimo Birtolo, Paolo Pagano, and Luigi Troiano. 2009. Evolving colors in user
interfaces by interactive genetic algorithm. In 2009 World Congress on Nature &
Biologically Inspired Computing (NaBIC). IEEE, 349–355.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[8] Paul Clements and Linda Northrop. 2002. Software Product Lines: Practices and
Patterns. Addison-Wesley Professional.

[9] Thelma Elita Colanzi, Silvia Regina Vergilio, Itana Gimenes, and Willian Nalepa
Oizumi. 2014. A search-based approach for software product line design. In Proc.
of the 18th International Software Product Line Conference-Volume 1. 237–241.

[10] Jacob Devlin et al. 2018. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. North American Chapter of the Association for
Computational Linguistics (2018).

[11] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-
eration for Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engi-
neering. ACM, 416–419.

[12] Willian Marques Freire, Mamoru Massago, Arthur Cattaneo Zavadski,
Aline Maria Malachini, Miotto Amaral, and Thelma Elita Colanzi. 2020. OPLA-
Tool v2. 0: a tool for product line architecture design optimization. In Proceedings
of the XXXIV Brazilian Symposium on Software Engineering. 818–823.

[13] Mark Harman and Bryan F Jones. 2010. Search based software engineering:
Trends, techniques and applications. ACM Computing Surveys (CSUR) 45, 1
(2010), 11.

[14] Maliheh Izadi, Jonathan Katzy, Tim Van Dam, Marc Otten, Razvan Mihai Popescu,
and Arie Van Deursen. 2024. Language Models for Code Completion: A Practical
Evaluation. In Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. 1–13.

[15] Wael Kessentini, Manuel Wimmer, and Houari Sahraoui. 2018. Integrating the
designer in-the-loop for metamodel/model co-evolution via interactive computa-
tional search. In Proceedings of the 21th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems. 101–111.

[16] William B. Langdon and Justyna Petke. 2017. Optimising Existing Software with
Genetic Programming. IEEE Transactions on Evolutionary Computation 21, 1
(2017), 118–135.

[17] William B Langdon and Justyna Petke. 2018. Evolving better software parameters.
In Search-Based Software Engineering: 10th International Symposium, SSBSE 2018,
Montpellier, France, September 8-9, 2018, Proceedings 10. Springer, 363–369.

[18] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, and Mauro Bi-
rattari. 2011. The IRACE package, Iterated Race for Automatic Algorithm Con-
figuration. Technical Report TR/IRIDIA/2011-004. IRIDIA, Université Libre de
Bruxelles, Belgium.

[19] Mohamed WMkaouer, Marouane Kessentini, Slim Bechikh, and Daniel R Tauritz.
2013. Preference-based multi-objective software modelling. In 2013 1st Interna-
tional Workshop on Combining Modelling and Search-Based Software Engineering
(CMSBSE). IEEE, 61–66.

[20] Klaus Pohl, Günter Böckle, and Frank van der Linden. 2005. Software Product
Line Engineering: Foundations, Principles, and Techniques. Springer Science &
Business Media.

[21] Alec Radford and Karthik Narasimhan. 2018. Improving Language Understanding
by Generative Pre-Training. https://api.semanticscholar.org/CorpusID:49313245

[22] Aurora Ramirez, José Raúl Romero, and Sebastian Ventura. 2018. Interactive
multi-objective evolutionary optimization of software architectures. Information
Sciences 463 (2018), 92–109.

[23] Paolo Tonella, Angelo Susi, and Francis Palma. 2013. Interactive requirements
prioritization using a genetic algorithm. Information and software technology 55,
1 (2013), 173–187.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[25] Yenisei D. Verdecia, Thelma E. Colanzi, Silvia R. Vergilio, and Marcelo C.B. dos
Santos. 2017. An Enhanced Evaluation Model for Search-based Product Line
Architecture Design.. In CIbSE. 155–168.

[26] Chen Yang, Junjie Chen, Bin Lin, Jianyi Zhou, and Ziqi Wang. 2024. Enhancing
LLM-based Test Generation for Hard-to-Cover Branches via Program Analysis.
arXiv preprint arXiv:2404.04966 (2024).

https://figshare.com/s/3f89f0bce25aaa406cdc
https://figshare.com/s/3f89f0bce25aaa406cdc
https://api.semanticscholar.org/CorpusID:49313245

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Proposed Plugin
	4.1 Functionalities and Users
	4.2 Overall Architecture
	4.3 Usage
	4.4 License

	5 Concluding remarks
	Acknowledgments
	References

