
Exception Miner: Multi-language Static Analysis Tool to Identify
Exception Handling Anti-Patterns

Jairo Souza∗
Tales Alves∗

jrmcs@cin.ufpe.br
tvac@cin.ufpe.br

Federal University of Pernambuco
Recife, Pernambuco, Brazil

Robson Oliveira
Leopoldo Teixeira
ropj@cin.ufpe.br
lmt@cin.ufpe.br

Federal University of Pernambuco
Recife, Pernambuco, Brazil

Baldoino Fonseca
baldoino@ic.ufal.br

Federal University of Alagoas
Maceió, alagoas, Brazil

ABSTRACT
Exception handling is a technique used to manage errors or ex-
ceptional events that occur during program execution and disrupt
the standard flow of the program. Although this method is benefi-
cial, developers often neglect proper exception handling. Misuse
of exception handling mechanisms can lead to exception handling
anti-patterns in the source code, negatively impacting software
quality. Additionally, many projects nowadays are built using mul-
tiple languages, which increases the complexity of identifying these
anti-patterns and the workload involved in configuring various lin-
ters or detection tools. To address this gap, we developed a tool
that identifies exception handling anti-patterns in three popular
languages: Java, TypeScript, and Python. To evaluate our tool, we
conducted an empirical study on 11 multi-language projects to
investigate the occurrence of exception handling patterns across
different languages. Our results demonstrated that the occurrence
of exception handling anti-patterns is similar between Python and
TypeScript. However, in Java, exception handling anti-patterns oc-
cur up to four times more frequently in the analyzed projects. The
tool is available on GitHub1, along with a video2 demonstrating its
use.

KEYWORDS
Exception Handling, Anti-Patterns, Mining Software Repositories,
Static Analysis

1 INTRODUCTION
Exception handling is a crucial aspect of programming, involving
techniques to manage errors or unexpected events that can inter-
rupt the normal execution flow of a program [2]. These techniques,
known as “exception handling mechanisms”, are commonly found
in many programming languages, including Java, TypeScript, and
Python [7]. Widely used in various projects, from enterprise so-
lutions to open-source development, effective exception handling
enhances software quality by improving code readability, reliability,
and maintainability [17].

Previous studies have revealed the widespread presence of ex-
ception handling in systems and their relation to anti-patterns in
different languages. Most research analyzing exception handling
anti-patterns predominantly focuses on Java [4, 8, 15], leaving a
gap in comprehensive multi-language analysis. These studies have

∗Both authors contributed equally to this research.
1https://github.com/RobsonOlv/exception-miner
2https://tinyurl.com/fjb8sz89

shown that addressing these aspects is crucial for improving soft-
ware quality. However, other studies [6, 13] have indicated that
developers often neglect best practices in exception handling, un-
derestimate the impact of exception handling anti-patterns, and
consequently introduce them during the software development.

This study aims to develop and evaluate Exception Miner, specif-
ically designed to identify exception handling anti-patterns in three
programming languages: Java, TypeScript, and Python. This ap-
proach aims to unify the detection process, allowing developers
to avoid the complexity and unnecessary work of using multiple
linters or static analysis tools with different configurations and
outputs for each language. Using Exception Miner, it is possible to
detect various exception handling anti-patterns in a multi-language
project. To achieve this, the tool mines GitHub repositories and de-
tects exception handling anti-patterns across these three languages.

Moreover, we evaluated our tool by mining 11 open source repos-
itories containing at least two languages. Our results demonstrate
that all multi-language open-source projects contain exception han-
dling anti-patterns in at least one language. Notably, Java exhibits
more anti-patterns than Python and TypeScript, with Exception
Swallowing and Destructive Wrapping being the most frequent,
occurring 2,286 and 1,196 times, respectively. Our tool enables
practitioners and researchers to detect various types of exception
handling anti-patterns in multi-language projects within their CI
pipelines or for conducting empirical studies.

2 BACKGROUND
Exception handling is a critical aspect of software development that
deals with unexpected events (errors) during a program’s execution.
Its primary purpose is to ensure the robustness and reliability of
software systems, address exceptional conditions, prevent abrupt
program termination, and enable programs to respond or recover
appropriately from unexpected situations [1, 7]. Handling an ex-
ception depends on whether the code can and should recover as
expected. If recovery is not possible, it is best to let the error propa-
gate through the execution flow [1]. For example, in Python, the
control flow is defined by a set of mechanisms (e.g., except, raise),
that enable the developer to determine the path or transfer control
whenever an error occurs.

2.1 Common Exception Handling Mechanisms
Python, Java, and TypeScript share the following core mechanisms
for exception handling:

https://orcid.org/0000-0001-9361-0665
https://github.com/RobsonOlv/exception-miner
https://tinyurl.com/fjb8sz89


SBES ’24, September 30– October 04, 2024, Curitiba, PR Jairo Souza et al.

2.1.1 Try-Catch (Try-Except in Python). Used to catch exceptions
that occur in the try block and handle them in the catch (or except
in Python) block.

• Python:
try:

result = 10 / 0
except ZeroDivisionError as e:

print(f"Error occurred: {e}")

• Java:
try {

int result = 10 / 0;
} catch (ArithmeticException e) {

System.out.println("Error occurred: " +
e.getMessage());

}

• TypeScript:
try {

let result = 10 / 0;
} catch (e) {

console.log("Error occurred: " + e.message);
}

2.1.2 Try-Finally. Ensures that the finally block executes regard-
less of whether an exceptionwas thrown, typically used for resource
cleanup.

• Python:
try:

result = 10 / 0
finally:

print("This will always run.")

• Java:
try {

int result = 10 / 0;
} finally {

System.out.println("This will always run.");
}

• TypeScript:
try {

let result = 10 / 0;
} finally {

console.log("This will always run.");
}

2.1.3 Throwing/Raising Exceptions. Exceptions can be explicitly
thrown (or raised) using the throw (or raise in Python) statement.

Example:
• Python:
raise ValueError("An error occurred")

• Java:
throw new RuntimeException("An error occurred");

• TypeScript:
throw new Error("An error occurred");

2.2 Language-Specific Constructs
In addition to these common constructs, Python provides some
unique mechanisms:

2.2.1 Try-Except-Else. Executes the else block if the code inside
the try block does not raise an exception.

Example:
try:

result = 10 / 2
except ZeroDivisionError as e:

print(f"Error occurred: {e}")
else:

print("No errors occurred, result is:", result)

2.3 Exception Handling Anti-Patterns
Anti-patterns are common mistakes developers make during soft-
ware development [11], while exception handling anti-patterns are
specifically associated with exception handling mechanisms. Previ-
ous studies emphasize the negative impact of improper practices,
demonstrating how these anti-patterns can introduce bugs and
compromise code maintainability [10, 14, 15]. These studies sug-
gest that such anti-patterns should be avoided when developing or
evolving software. Below, we describe the exception handling anti-
patterns used in our study. We selected these exception handling
anti-patterns based on previous studies [5, 9, 10, 12] and current
static analysis tools or linters.

Exception Handling Anti-Patterns in Python:

• Too Broad Raising: Raising exceptions that are too general,
lacking specificity. For example, using a Generic exception
type. This can hide bugs and make debugging harder.

• TooBroadExcept: Handling exceptions that are too general,
lacking specificity.

• Swallowing Exceptions: Doing nothing or logging insuf-
ficient information inside an exception handler potentially
leads to silent errors. This exception handling anti-pattern is
common in Python using the try-except-pass flow.

• Nested Try-Except Blocks: Using three or more nested
try-except blocks, indicating complex exception handling
logic.

• Bare Raise Block: A raise statement with no exception
provided, i.e., re-raising the last active exception. Bare raises
should only be used in except blocks;

• Bare Except Catch Block: An except block with no excep-
tion provided. Bare except catches all exceptions, including
exceptions such as SystemExit or KeyboardInterrupt.

• Unhandled Exception: Occurs when the application does
not properly handle exceptions, leading to unexpected pro-
gram termination or errors.



Exception Miner: Multi-language Static Analysis Tool to Identify Exception Handling Anti-Patterns SBES ’24, September 30– October 04, 2024, Curitiba, PR

Table 1: Summary of Exception Handling Mechanisms

Mechanism Python Java TypeScript
Try-Catch (Except) try ... except try ... catch try ... catch

Try-Finally try ... finally try ... finally try ... finally

Throw/Raise raise throw throw

Try-Except-Else try ... except ... else Not applicable Not applicable

• BareRaise inside Finally: Raising exceptions directlywithin
a finally block, which may lead to unexpected states and
conditions.

• Try and Return: Using a try block solely to return from a
function indicates a potential design issue.

Exception Handling Anti-Patterns in Typescript:

• Empty Catch: Using the empty catch block, which means
catching an exception but not handling it.

• Wrapped Catch: Do not use the error thrown by catch
block. This means losing the error and its traceability, which
are key to identifying the problem and its origin, as well as
generating useful feedback

• Throw Literal: Throwing an exception without using any
standard JavaScript error types derived from the JavaScript
Error object. We can use the stack trace for the error when
we throw an exception using an Error object.

• Useless Catch: Blocks that only re-throw the exception,
equivalent to not handling the error.

• Error Reassignment: Reassigning the captured error in
the catch block is potentially problematic as it can lose the
traceability of the original error.

Exception Handling Anti-Patterns in Java:

• Throwing Generic Exception: Throwing exceptions that
are too general, such as Exception or Throwable, lacks
specificity and can obscure the nature of the error.

• Throwing Raw Exception: Directly throwing
RuntimeException or other raw exceptions without addi-
tional context or wrapping is not informative.

• Throw from Within Finally: Throwing exceptions inside
a finally block can mask exceptions thrown in the try or
catch blocks.

• Throwing NullPointerException: Explicitly throwing
NullPointerException represents a programmer error and
should be avoided.

• HandlingGeneric Exception: Catching exceptions that are
too general, such as Exception or Throwable, can obscure
the specific nature of the error.

• Relying on instanceof inCatchBlocks: Using instanceof
to check the type of an exception in a generic catch block
indicates poor exception hierarchy design.

• Nesting Try-Catch Blocks More than Twice: Using three
or more nested try-catch blocks indicates a complex and
hard-to-maintain exception handling mechanism.

• Exception Swallowing: Catching exceptions, doing noth-
ing, or logging insufficient information can lead to silent
failures.

• DestructiveWrapping/Logging:Wrapping exceptionswith-
out preserving the original exception’s context, stack trace,
or logging exceptions without enough detail.

• Masking Programmer Errors: Using exception handling
to mask errors that should be fixed by the programmer, such
as incorrect logic or null pointer references.

3 EXCEPTION MINER TOOL
We introduce Exception Miner, a multi-language static analysis tool
designed to identify exception handling anti-patterns. The tool is
designed to provide a command-line interface for analyzing Python,
Java, and TypeScript projects.

3.1 Comparison of Related Tools
In Table 2, we compare existing tools that address code quality
issues, including those related to exception handling. While these
tools may not specifically focus on identifying exception handling
anti-patterns across multiple languages, they provide valuable in-
sights into the landscape of static analysis and code quality tools.

These tools offer valuable capabilities in detecting code quality
issues, but none comprehensively cover the automated analysis
of exception handling anti-patterns across multiple programming
languages. Our Exception Miner fills this gap by providing a unified
solution for identifying and addressing exception handling anti-
patterns in Java, TypeScript, and Python source code.

3.2 Exception Miner Architecture
The Exception Miner architecture is designed to facilitate the de-
tection of exception handling anti-patterns across multiple pro-
gramming languages. The method involves five main stages, each
contributing to the comprehensive analysis of the selected reposito-
ries. An overview of the tool’s architecture is illustrated in Figure 1.

The architecture has five main components: CLI Interface, Repos-
itory Manager, File Analyzer, Anti-Pattern Detector, and Data Ag-
gregator. Each is responsible for specific tasks in the analysis pro-
cess.

1. CLI Interface: The CLI Interface is the entry point for users to
interact with the tool. Users specify the parameters for the analysis,
such as the list of repository links, the programming languages to
be analyzed, and other configuration settings. This component is
responsible for:

• Collecting repository links.
• Accepting user-specified languages for analysis.

2. RepositoryManager:The RepositoryManager handles down-
loading and managing the repositories specified by the user. It in-
teracts with the GitHub API to fetch the required repositories. This
component performs the following steps:



SBES ’24, September 30– October 04, 2024, Curitiba, PR Jairo Souza et al.

Tool Purpose Supported Languages Features
FindBugs Static analysis for Java Java Detects potential bugs, including issues in exception handling.
PMD Static analysis for Java Java Identifies common coding flaws, including issues related to

exception handling.
ESLint Static analysis for JavaScript JavaScript Identifies coding errors and style inconsistencies, which may

include problematic exception handling mechanisms.
PyLint Static analysis for Python Python Checks for errors, style issues, and anti-patterns, including

potential issues in exception handling.
SonarQube Continuous inspection platform Multiple languages Provides static analysis rules covering various programming

languages such as Java, JavaScript, and Python.
Table 2: Comparison of Related Tools

• Sending HTTP requests to the GitHub API.
• Downloading projects from GitHub.
• Organizing the downloaded projects for further analysis.

3. File Analyzer: The File Analyzer examines each file within
the downloaded projects to identify those written in the specified
programming languages. It uses the tree-sitter library3 to parse and
analyze the syntax of the code files. This component is responsible
for:

• Parsing the code to understand its structure.
• Identifying files based on the user-specified languages.

4. Anti-Pattern Detector: The Anti-Pattern Detector is the
core component that analyzes the parsed code to identify exception
handling anti-patterns. It applies specific AST (Abstract Syntax
Tree) queries to detect various anti-patterns in Python, Java, and
TypeScript code. This component performs the following tasks:

• Applying AST queries to detect anti-patterns.
• Identifying exception handling anti-patterns in the analyzed
code.

5. Data Aggregator: The Data Aggregator compiles the analysis
results and creates data frames for each project. These data frames
contain detailed information about the detected exception handling
anti-patterns. The tasks of this component include:

• Aggregating the detected anti-patterns data.
• Creating data frames for each analyzed project.

4 STUDY DESIGN
To demonstrate and evaluate our tool, we focus on answering our re-
search question:How common are exception handling anti-patterns in
open-source projects? With this, we pretend to investigate the pres-
ence of exception handling anti-patterns in open-source projects.
Such analysis provides an overview of each type of exception han-
dling anti-pattern across different projects and programming lan-
guages. This information can help researchers and developers to
focus their efforts on exception handling anti-patterns that occur
most frequently in the multi-language projects analyzed in our
study.

3https://tree-sitter.github.io/tree-sitter/

Figure 1: Overview of the Exception Miner Architecture.

4.1 Selected Projects
To perform our study, we use the SEART GitHub Search Engine [3]4
to identify relevant multi-language open-source projects on GitHub.
We select projects based on previous studies [6, 10] and by consid-
ering the following criteria:

• the projects need to be open-source, hosted on GitHub, and
developed in Python, Typescript, and/or Java since access to
closed software systems is usually limited;

• The projects must be active with at least one commit in the
last three months andmaintained for at least three years. The
mainmotivation is to collect relevant evolving and long-term
projects;

4https://seart-ghs.si.usi.ch/

https://tree-sitter.github.io/tree-sitter/
https://seart-ghs.si.usi.ch/


Exception Miner: Multi-language Static Analysis Tool to Identify Exception Handling Anti-Patterns SBES ’24, September 30– October 04, 2024, Curitiba, PR

• the projects must have relevant popularity based on con-
tributors and stars, so we only consider projects with more
than ten contributors and 1k stars indicating developers’
community engagement;

• The projects need to have at least 2 languages.
We select projects with distinct characteristics, such as commits,

issues, and size, based on the aforementioned criteria. Table 3 de-
scribes the list of selected projects in our study, presenting their
number of commits, number of developers, popularity based on
contributors, stars, and programming languages. As a result, our
study analyzes a total of 11 multi-language projects, characterized
by a total of 3.0050 contributors, 142.8k stars, and 84.211 commits.

Table 3: An overview of the selected multi-language projects.

Project # Contributors # Stars # Commits Languages

Arduino 238 14k 7.375 Java, Python
Airbyte 908 14.5k 16.103 Java, Python
Apitable 66 12.2k 917 Typescript, Java

Ar-cutpaste 6 14.6k 50 Typescript, Python
Capacitor 273 11.3k 4.296 Typescript, Java
Flipper 298 13.2k 9.808 Typescript, Java
Gitpod 135 12.4k 11.695 Typescript, Java

Jupyterlab 543 13.9k 26.020 Typescript, Python
Kubeflow 296 13.8k 2.556 Typescript, Python
Leon 18 14.8k 1.614 Typescript, Python

Python-for-android 224 8.1k 3.777 Typescript, Java
Total: 3.005 142.8k 84.211 -

4.2 Collecting Exception Handling
Anti-Patterns

This section describes how our tool collects and identifies exception
handling anti-patterns across various projects (The exception han-
dling anti-patterns collected are demonstrated in Section 2.3). To
perform that, we developed a specific Abstract Syntax Tree (AST)
query using the tree-sitter library to detect these patterns in Python,
Java, or JavaScript code for each identified anti-pattern.

For example, consider the “Nested Try-Except” anti-pattern, ini-
tially identified and cataloged in a previous study [12]. We trans-
lated the manual identification of this anti-pattern into an AST
query that our tool uses to automate the detection process. This
translation enables the systematic identification of such anti-patterns
across all the analyzed projects. To illustrate this, we formulated
an AST query for the “Nested Try-Except” exception handling anti-
pattern using the tree-sitter library to identify try statements:
QUERY_TRY_STMT: Query = PY_LANGUAGE.query(

"""(try_statement) @try.statement""")

Then, to detect nested try-except blocks, we define a function
that works as follows:

(1) It captures all try statements within a given AST node.
(2) It then iterates through these captures to check if any try

statement contains more than two nested try statements
using the previous query.

(3) If such a nested structure is found, it returns True, flagging
the presence of the “Nested Try-Except” anti-pattern.

Our tool systematically identifies and catalogs exception han-
dling anti-patterns across various programming languages and
projects by employing such AST queries and detection functions.

5 RESULTS
Our study aims to identifywhich exception handling anti-patterns are
more common in the 11 open-source multi-language projects an-
alyzed in our study. First, we present a general analysis of the oc-
currence of all exception handling anti-patterns across all projects.
Furthermore, we analyze the occurrence of each exception handling
anti-patterns in the respective programming languages: Python,
Java, and Typescript.

Table 4 describes the results of each programming language
across all projects. The first column presents the project, and the
remaining column describes the number of exception handling anti-
patterns occurrence and their respective percentages across the
programming languages.

Table 4: Distribution of exception handling anti-patterns in
Python, Typescript and Java.

Project Python Typescript Java

Arduino 24 (2.07%) 0 (0.00%) 1133 (97.93%)
Airbyte 760 (31.43%) 0 (0.00%) 1658 (68.57%)
Apitable 0 (0.00%) 221 (26.09%) 626 (73.91%)

Ar-cutpaste 0 (0.00%) 2 (100.00%) 0 (0.00%)
Capacitor 0 (0.00%) 135 (24.37%) 419 (75.63%)
Flipper 0 (0.00%) 348 (57.90%) 253 (42.10%)
Gitpod 0 (0.00%) 230 (27.54%) 605 (72.46%)

Jupyterlab 48 (19.20%) 202 (80.80%) 0 (0.00%)
Kubeflow 9 (50.00%) 9 (50.00%) 0 (0.00%)
Leon 39 (90.70%) 4 (9.30%) 0 (0.00%)

Python-for-android 44 (21.05%) 0 (0.00%) 165 (78.95%)
Total 924 (13.33%) 1.151 (16.60%) 4.859 (70.07%)

The results show that the total number of exception handling
anti-patterns is 924 (13.33%) in Python projects, 1151 (16.60%) in
TypeScript, and 4.859 (70.07%) in Java. The Arduino project exhibits
the highest number of exception handling anti-patterns in Java with
1.133 exception handling anti-patterns, while the Airbyte project
contains the highest number in Python, reaching 760 exception
handling anti-patterns in Airbyte. Finally, TypeScript language
contains the distribution of exception handling anti-patterns with
values between 0 and 348 (accounting for 57.90% of the exception
handling anti-patterns from Flipper project). These results suggest
that exception handling anti-patterns in Java occur more frequently
than Python and Typescript.

To provide a detailed view, Table 5 presents the results of excep-
tion handling anti-patterns regarding Java programming language
in the projects analyzed. The first column lists the project, while
the subsequent columns show the occurrences of five specific anti-
patterns: Handling Generic, Throwing Generic, Nested Try, Wrapped
Catch, and Exception Swallowing.

The results demonstrated a higher occurrence of the exception
handling anti-patterns Destructive Wrapping and Exception Swal-
lowing. For example, the Arduino project contains 291 exception
handling anti-patterns occurrences of Destructive Wrapping and
572 occurrences of Exception Swallowing. Similarly, the Airbyte
project has 405 Destructive Wrapping and 782 Exception Swallowing
occurrences. These two anti-patterns are the most frequent across
all projects, totaling 1.196 and 2.286 occurrences, respectively.



SBES ’24, September 30– October 04, 2024, Curitiba, PR Jairo Souza et al.

Table 5: Distribution of exception handling anti-patterns in
Java

projeto Handling Generic Throwing Generic Nested Try Destructive Wrapping Exception Swallowing

Arduino 126 1 2 291 572
airbyte 148 0 0 405 782
apitable 56 3 2 160 302
ar-cutpaste 0 0 0 0 0
capacitor 39 0 0 115 220
flipper 20 0 3 72 128
gitpod 1 0 0 96 192
jupyterlab 0 0 0 0 0
kubeflow 0 0 0 0 0
leon 0 0 0 0 0
python-for-android 10 0 0 57 90

Total 400 4 7 1196 2286

In contrast, the remaining exception handling anti-patterns are
less common. For example, Handling Generic occurs 400 times. Ad-
ditionally, Nested Try is relatively rare, with only 7 occurrences
across all projects, and Throwing Generic is the least frequent, with
just 4 occurrences. Moreover, the Ar-cutpaste, Jupyterlab, Kubeflow,
and Leon projects show no exception handling anti-patterns, indi-
cating better quality in their exception handling mechanisms.In
summary, our results highlight a significant disparity among
different anti-patterns, with Destructive Wrapping and Ex-
ception Swallowing being the most prevalent in the multi-
language open-source projects analyzed. Additional results
regarding the exception handling anti-patterns in Python and Type-
Script are available on the accompanying web page [16].

6 TOOL IMPACTS AND LIMITATIONS
Exception Miner is a mining tool that parses and analyzes source
code written in Python, Java, and TypeScript, making it a valuable
resource for developers in projects with diverse programming lan-
guages. The tool features a user-friendly command-line interface
(CLI) that facilitates the integration into existing workflows (CI/CD
platforms). By focusing on collecting and reporting exception han-
dling anti-patterns, our tool provides detailed insights about poten-
tial issues that could compromise code quality and maintainability.

For developers, Exception Miner offers significant advantages by
unifying the detection of exception handling anti-patterns across
different languages. This eliminates the need for multiple linters,
each with different outputs and interfaces, simplifying maintaining
high code standards in multilingual projects. Developers can use
this tool to identify poor practices of exception handling mecha-
nisms to improve the software quality, leading to more robust and
reliable software. Also, it helps developers save time and effort,
enabling them to focus on writing efficient code without worrying
about exception handling mechanisms language-specific nuances.
Moreover, our tool allows researchers to conduct empirical studies
using exception handling mechanisms across various languages.
Researchers can use its cross-language analysis capabilities to mine
software repositories and provide an extensive output (dataset)
on how exception handling mechanisms are used in real-world
projects. Thus, this output can help us better understand the use of
exception handling mechanisms.

While Exception Miner offers robust capabilities for analyzing
exception handling mechanisms in Python, Java, and TypeScript,
it does have some limitations. Notably, the tool does not support
all main programming languages, which may restrict its applica-
bility in projects incorporating these languages. Additionally, the

tool’s effectiveness relies on predefined anti-pattern definitions
using AST queries as demonstrated in Section 4.2, which might not
cover every possible nuance of exception handling anti-patterns.
Finally, the tool does not cover all possible exception handling
anti-patterns available in the literature, since as a static analysis
tool, Exception Miner cannot detect runtime-specific issues or dy-
namically generated exception handling anti-patterns, potentially
not identifying some exception handling anti-patterns that only
manifest during execution (e.g., uncaught exceptions).

7 CONCLUSION AND FUTUREWORK
This paper demonstrated the Exception Miner tool for identifying
exception handling anti-patterns in three programming languages:
Java, Python, and TypeScript, to support software maintenance.
The tool aims to enhance software quality by identifying excep-
tion handling anti-patterns in these popular languages. Our results
indicate that all multi-language open-source projects contain excep-
tion handling anti-patterns in at least one language. Notably, Java
exhibits more exception handling anti-patterns than Python and
TypeScript, with Exception Swallowing and Destructive Wrapping
being the most frequent, with 2,286 and 1,196 occurrences, respec-
tively. Future work will involve evaluating our tool in additional
open-source projects and other programming languages.

AVAILABILITY OF ARTIFACTS
The complete results (from Python and JavaScript), along with the
Exception Miner tool, and the link to the video, are available on
the accompanying web page. [16].

REFERENCES
[1] David M. Beazley. 2022. Python distilled. Addison-Wesley.
[2] Joshua Bloch. 2008. Effective Java™, Second Edition (second ed.). Prentice Hall

Press, USA.
[3] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in

GitHub for MSR Studies. In 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. IEEE, 560–564.

[4] C. Hsieh, C. L.My, Kim T. Ho, and Yu C. Cheng. 2017. Identification and Refac-
toring of Exception Handling Code Smells in JavaScript. Journal of Internet
Technology 18, 6 (2017), 1461–1471.

[5] Chin-Yun Hsieh, Canh Le My, Kim Thoa Ho, and Yu Chin Cheng. 2017. Identifi-
cation and Refactoring of Exception Handling Code Smells in JavaScript. Journal
of Internet Technology 18, 6 (2017), 1461–1471. https://jit.ndhu.edu.tw/article/
view/1597

[6] Miryung Kim, Romain Robbes, Christian Bird, Demóstenes Sena, Roberta Coelho,
Uirá Kulesza, and Rodrigo Bonifácio. 2016. Understanding the exception handling
strategies of Java libraries. Proceedings of the 13th International Conference on
Mining Software Repositories (2016), 212–222. https://doi.org/10.1145/2901739.
2901757

[7] Oracle. 2014. What is an exception? https://docs.oracle.com/javase/tutorial/
essential/exceptions/definition.html

[8] Haidar Osman, Andrei Chiş, Claudio Corrodi, Mohammad Ghafari, and Oscar
Nierstrasz. 2017. Exception Evolution in Long-lived Java Systems. 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR) (2017), 302–
311. https://doi.org/10.1109/msr.2017.21

[9] Yun Peng, Yu Zhang, and Mingzhe Hu. 2021. An Empirical Study for Common
Language Features Used in Python Projects. 2021 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER) 00 (2021), 24–35.
https://doi.org/10.1109/saner50967.2021.00012

[10] Guilherme Bicalho de Pádua and Weiyi Shang. 2017. Studying the Prevalence of
Exception Handling Anti-Patterns. 2017 IEEE/ACM 25th International Conference
on Program Comprehension (ICPC) (2017), 328–331. https://doi.org/10.1109/icpc.
2017.1

[11] Linda Rising. 1998. Design patterns: elements of reusable architectures. Cambridge
University Press, USA, 9–17.

[12] Jonathan Rocha, Hugo Melo, Roberta Coelho, and Bruno Sena. 2018. Towards a
Catalogue of Java Exception Handling Bad Smells and Refactorings. In Proceedings

https://jit.ndhu.edu.tw/article/view/1597
https://jit.ndhu.edu.tw/article/view/1597
https://doi.org/10.1145/2901739.2901757
https://doi.org/10.1145/2901739.2901757
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://doi.org/10.1109/msr.2017.21
https://doi.org/10.1109/saner50967.2021.00012
https://doi.org/10.1109/icpc.2017.1
https://doi.org/10.1109/icpc.2017.1


Exception Miner: Multi-language Static Analysis Tool to Identify Exception Handling Anti-Patterns SBES ’24, September 30– October 04, 2024, Curitiba, PR

of the 25th Conference on Pattern Languages of Programs (Portland, Oregon) (PLoP
’18). The Hillside Group, USA, Article 7, 17 pages.

[13] Hina Shah, Carsten Görg, and Mary Jean Harrold. 2008. Why do developers
neglect exception handling?. In Proceedings of the 4th International Workshop on
Exception Handling (Atlanta, Georgia) (WEH ’08). Association for Computing
Machinery, New York, NY, USA, 62–68. https://doi.org/10.1145/1454268.1454277

[14] Dêmora Bruna Cunha de Sousa, Paulo Henrique Maia, Lincoln Souza Rocha,
and Windson Viana. 2018. Analysing the Evolution of Exception Handling Anti-
Patterns in Large-Scale Projects: A Case Study. Proceedings of the VII Brazilian
Symposium on Software Components, Architectures, and Reuse on - SBCARS ’18

(2018), 73–82. https://doi.org/10.1145/3267183.3267191
[15] Dêmora B C de Sousa, Paulo Henrique M. Maia, Lincoln S Rocha, and Windson

Viana. 2020. Studying the evolution of exception handling anti-patterns in a
long-lived large-scale project. Journal of the Brazilian Computer Society 26, 1
(2020), 1. https://doi.org/10.1186/s13173-019-0095-5

[16] Jairo Souza, Tales Alves, RobsonOliveira, Leopoldo Texeira, and Baldoino Fonseca.
2024. Complementary Material. https://github.com/RobsonOlv/exception-miner

[17] Veselin Kolev Svetlin Nakov. 2013-09-01. Fundamentals of Computer Programming
with C#. Faber Publishing.

https://doi.org/10.1145/1454268.1454277
https://doi.org/10.1145/3267183.3267191
https://doi.org/10.1186/s13173-019-0095-5
https://github.com/RobsonOlv/exception-miner

	Abstract
	1 Introduction
	2 Background
	2.1 Common Exception Handling Mechanisms
	2.2 Language-Specific Constructs
	2.3 Exception Handling Anti-Patterns

	3 Exception Miner Tool
	3.1 Comparison of Related Tools
	3.2 Exception Miner Architecture

	4 Study Design
	4.1 Selected Projects
	4.2 Collecting Exception Handling Anti-Patterns

	5 Results
	6 Tool Impacts and Limitations
	7 Conclusion and Future Work
	References

