
METEOR: A Tool for Monitoring Behavior Preservation in Test
Code Refactorings

Tiago Samuel Rodrigues
Teixeira

Institute for Technological Research
São Paulo, Brazil

tiagosamfito@gmail.com

Fábio Fagundes Silveira
Federal University of São Paulo
São José dos Campos, Brazil

fsilveira@unifesp.br

Eduardo Martins Guerra
Free University of Bolzen-Bolzano

Bozen-Bolzano, Italy
guerraem@gmail.com

ABSTRACT
The success of test refactoring, particularly in the removal of test
smells, relies on a post-refactoring evaluation to ensure that the
refactored test maintains its behavior, meaning its defect detec-
tion capability. Test smells are indicative of issues within test code.
While various approaches in the literature propose strategies for
evaluating test behavior, they lack tool support for practical indus-
try application. Therefore, this study introduces MeteoR, a tool
model that employs a mutation testing approach to assess refac-
tored test behavior. MeteoR is implemented as a plugin for the
Eclipse IDE and is integrated with PITclipse, streamlining the col-
lection and analysis of mutation test data for effective evaluation
of test refactoring. This paper provides a detailed description of
theMeteoR implementation, discusses encountered challenges and
findings, and includes illustrative examples demonstrating its ef-
ficacy through a preliminary evaluation, which shows promising
initial results.

The video presentation of MeteoR is available at https://doi.org/
10.6084/m9.figshare.25954045.

KEYWORDS
software engineering, test code refactoring, test smells, test behav-
ior, mutation testing.

1 INTRODUCTION
Testing determines the success of refactoring application code, as
emphasized by Meszaros [10]. However, regarding refactoring test
code, there is no definitive approach adopted for evaluating the
refactored tests, as highlighted by van Bladel and Demeyer [17].

Parsai et al. [13] and Xuan et al. [19] proposed the adoption of
mutation testing to ensure that the behavior of refactored test code
remains unaffected by clean-up activities, without, however, pro-
viding a tool that applies the approach they themselves proposed.

Building upon the work of Parsai et al. [13], in the previous
study [16] we provided a more detailed exploration of the mutation
testing-based approach. Teixeira et al. [16] introduced a test refac-
toring tool model, moving towards its implementation. Primarily
focusing on a conceptual discussion of a holistic test refactoring
tool, the study [16] covered many aspects of test refactoring and
test behavior evaluation using mutation testing. However, the tool’s
implementation remained open for future work.

Thus, the main goal of this study is to discuss the implementa-
tion of MeteoR based on proposal approached in study [16], while
also presenting three other important contributions: (1) Address-
ing architectural and functional aspects in the building of the tool,

(2) Identifying valuable lessons learned during the development
process by adopting the mutation testing approach defined in the
previous studies [13, 16, 19] regarding of the test refactoring eval-
uation, and (3) Demonstrating the tool’s suitability by applying it
to two refactoring scenario examples for preliminary assessment,
indicating its adequacy for adoption in test code refactoring.

The remainder of this paper is organized as follows. Section 3 re-
views related work in the field of refactoring testing code providing
background information on the concepts and techniques relevant
to this study. Section 4 delves into the implementation details of the
MeteoR. Following that, Section 5 presents the preliminary evalua-
tion of the tool. Section 6 discusses the findings and implications
of this study. The paper concludes in Section 7 with a summary
of the contributions and potential future directions for research in
Section 8.

Seven studies served as central references for this research [3,
7, 8, 13, 14, 17, 19]. These studies highlighted the main aspects of
test code refactoring tools combined with test behavior observabil-
ity approachs aiming to preserve test behavior. Additional studies
were considered, and further investigation was conducted to ex-
plore additional references from databases, including ACM, Scopus
(Elsevier), IEEE, and Web Of Science (WoS).

2 BACKGROUND
For a better understanding of the concepts addressed in the context
of MeteoR’s development, it is essential to ground the theoretical
aspects of this study in two main pillars: mutation testing and test
refactoring.

2.1 Mutation Testing
Mutation testing, as described by Offutt and Untch [12], objectively
evaluates the adequacy of test suites through a mutation score.
This score quantifies the effectiveness of the test, calculated as the
proportion of “killed” mutants (those detected by the test suite) to
the total number of non-equivalents. Non-equivalents are mutant
versions that replicate the behavior of the original code. Mutants
are faulty versions of the application used to run against the test
suite.

Parsai et al. [13] and Andrade et al. [1] detail that mutation test-
ing is carried out as follows: First, faulty versions of the application
are created by intentionally injecting defects (mutations). An oper-
ator or mutator transforms a specific part of the application’s code.
After the faulty application versions (mutants) are generated and
compiled, the test suite is executed on each of these mutants, and
the results are evaluated.

https://doi.org/10.6084/m9.figshare.25954045
https://doi.org/10.6084/m9.figshare.25954045

SBES ’24, September 30– October 04, 2024, Curitiba, PR Teixeira et al.

Killed mutants, i.e., mutant applications that cause test failures
during their execution, indicate that the testing covers the mutation
and detects the faults injected. Conversely, survived mutants in-
dicate uncovered areas, highlighting tests that need improvement.
In Section 3, it is demonstrated how mutation testing fits as an
approach that can be useful to assist refactoring

2.2 Test Refactoring
According to Fowler [6] in its verbal form, refactoring means re-
structuring the software by applying a series of refactorings in the
code without altering its observable behavior. Regarding testing,
refactoring is especially relevant in the context of automated tests,
as it should preserve the behavior of the tests (test scenarios) with-
out introducing errors into the test suite, as stated by Meszaros
[10].

Test refactoring in this study is focused on the elimination of
code smells that can lead to issues such as reduced readability,
among other factors, as discussed in studies [2, 7, 9, 18]. There are
various refactorings to address test smells. A foundational reference
is the catalog proposed by Van Deursen et al. [18], which includes
Inline Resource Incorporation, Setup of External Resource, Making
Resource Unique, Reducing Data, Adding Assertion Explanation, and
Introducing Equality Method.

3 RELATEDWORK
Evaluation of test behavior is a crucial step in test code refactoring,
aiming to detect changes in observable aspects of this behavior
that may indicate a lower effectiveness of the tests. Following some
approaches of test behavior observability are discussed.

3.1 Test Behavior Observability Approaches
3.1.1 Mutation Testing Approaches. Parsai et al. [13] offer a distinct
perspective on mutation testing application in the test refactoring
evaluation, by adoptingmutation scores before and after refactoring
as an indicator of change in the behavior of test. They do not merely
regard mutants as a means to evaluate test quality; instead, they
see them as an objective measure to gauge changes in test behavior.
As related by Parsai et al. [13], any alteration in the mutation score
following refactoring indicates a change in test behavior.

Xuan et al. [19] complement the proposal of Parsai et al. [13],
according to their approach mutants are generated and executed
against both refactored and non-refactored versions of test code.
For a refactoring to be considered successful, a mutant killed by the
non-refactored version of test code must also be killed by the refac-
tored one, and a surviving mutant should persist in the refactored
version of test code, indicating that, according to this perspective,
the refactored test has preserved its behavior.

3.1.2 Instrumentation Approach. Pizzini [14] and [15] proposed
using source code instrumentation of the System Under Test (SUT)
and tests to identify method entry and exit points, modifications
to Class Under Test (CUT) attributes, and loop structures. Instru-
mentation will allow the creation of the code execution tree, from
which the behavior of tests and the SUT can be observed.

3.1.3 Static Analysis Approaches. Guerra and Fernandes [7] intro-
duced a tool grounded in static analysis that assesses the preser-
vation of verifications within refactored test code. A verification
encompasses a single assertion and all associated actions.

In contrast, Bladel and Demeyer [3] proposed an approach based
on symbolic execution. A tool called T-CORE (Test Code Refactoring
Tool) generates a report indicating whether the test behavior has
changed after refactoring. The tool captures the behavior of Java
tests in the form of a test behavior tree using symbolic execution
technique.

3.1.4 General considerations. It is worth noting that in the studies
focusing on relevant approaches and tools for this research, such as
[3, 7, 13–15, 19], the specific implementation of these tools was nei-
ther identified or finalized. Although some studies have addressed
some aspects of the tools, they do not necessarily cover in depth
the features desired, such as providing fast feedback to developers
within the Integrated Development Environment (IDE). Some tools
implementations have been carried out, but in some cases they
are not properly available for general use or indeed have not been
implemented as recognized by Parsai et al. [13].

3.2 Approach Selected
The mutation testing-based approaches [13, 19] was chosen due to
its dynamic nature compared to static analysis approaches [3, 7].
Additionally, it does not require code instrumentation for behavior
evaluation, unlike approaches such as those described in [14, 15].
Furthermore, the approaches [13, 19] were combined into a single
approach.

Instead of solely relying on comparing mutation scores, as pro-
posed by Parsai et al. [13], to evaluate test code behavior, it is feasi-
ble to individually compare the state of each mutant, as suggested
by Xuan et al. [19] and Teixeira et al. [16]. This involves verifying
whether mutants maintain their states as "survived," "killed," or "not
covered" after refactoring, thereby enhancing the assurance of test
behavior preservation by providing a more exhaustive analysis of
the mutants’ data. This approach has been incorporated intoMe-
teoR, and the following sections will delve into its implementation
specifics.

4 METEOR
MeteoR was developed as a plugin for the Eclipse IDE, utilizing the
Java language. Its implementation involved the fork of the PITclipse
project, facilitating code synergy and enhancing communication
between both plugins (MeteoR ↔ PITclipse). PITclipse itself is a
plugin designed to integrate PITest [5] with the Eclipse IDE.

According to Monteiro et al. [11], the PIT or PITest, is a widely
adopted mutation testing tool for research and in the industry
within the Java language context.

In the study [16], a test refactoring workflow was established
to cover all stages (S1 - S9) of a refactoring process. Each stage is
detailed as follows: S1 - Source Code Extraction and Commit, S2 - Test
Smells Identification, S3 - Refactoring Assistance, S4 (𝑎, 𝑏) - Mutation
Test Execution and Re-execution, S5 - IDE Plugin Integration, S6 -
Evaluation, S7 - Traceability and Classification, S8 - Analytics, S9 -
Predictive Models for Mutant Validation.

METEOR: A Tool for Monitoring Behavior Preservation in Test Code Refactorings SBES ’24, September 30– October 04, 2024, Curitiba, PR

4.1 Main MeteoR Functionalities
MeteoR was implemented considering the stages S4 (𝑎,𝑏), S5 and
S6 from the workflow proposed by Teixeira et al. [16].

• Stage S4: Pre- and Post-Refactoring Mutation Testing:
– S4𝑎: Before applying corrections, PITclipse (PITest) is used
to generate an initial listing of the state of mutants. The
mutation test data serves as a baseline (𝑎) for comparison
after refactoring.

– S4𝑏: After refactoring, PITclipse is run again to execute
the mutation test with the refactored tests, producing a
post-refactoring listing of the state of mutants (𝑏).

– The mutation score is also collected in both executions (𝑎
and 𝑏) for comparison.

• Stage S5: Refactoring within Eclipse IDE:
– Refactoring is carried out using the Eclipse IDE due to its
extensive range of plugins, including PITclipse and JUnit.

– Post-refactoring, tests are executed in JUnit to ensure 100%
success against the application code without mutations.

• Stage S6: Comparison and Verification:
– The results of the two mutation test executions (pre- and
post-refactoring) are compared (𝑎 = 𝑏).

– If the mutants state and mutation score remain unchanged,
it indicates successful refactoring.

– If the comparison is not positive, meaning there were
any changes in mutants score or in the mutants state
the developer must reassess and correct any issues in the
test code before re-running the mutation test (S4𝑏) and
submitting changes to the GIT repository.

4.2 MeteoR Implementation Details
MeteoR acts as a trigger and handler of mutation test events exe-
cuted by PITclipse. Indirectly, MeteoR is invoking PITest. Therefore,
to facilitate communication between both solutions, OSGi1 devel-
opment resources from the IDE platform were utilized.

Following is presented in Figure 1 the main screen of the Eclipse
IDE with MeteoR running. The UI elements are as follows: (1) the
toolbar menu, (2) the main view, and (3) the final comparative
mutation test report.

In Figure 2, the integration of theMeteoR tool with PITclipse is
highlighted, allowing for the initiation of mutation testing through
the PitLaunchShorcut class and the reception of results upon com-
pletion of mutation testing by the PIT.

The initiation of execution is performed through the runmethod
of the PitMutationAgent class of the MeteoR tool. This involves
invoking the launch method of the PitLaunchShortcut class, where
a selectedResource object is sent as one of the arguments. This
object determines the test class or package to be considered by PIT
during mutation testing execution and is selected by the developer
before starting the refactoring, through the fixation of an entry
point as seen in the menu in the following section.

1Documentation about OSGi is available at: https://eclipse.dev/equinox/

4.3 MeteoR Tool Menu
In Figure 1, item (1) presents the menu of the MeteoR tool. The
numbers from 1 to 5 seen in the menu items indicate a standard
sequence of steps to be performed for each refactoring.

Following each item of menu is detailed:
(1) Set project entry point for test: Define the entry point for

mutation testing, specifying a package or a specific test class
to focus mutation testing efforts.

(2) Create refactoring session: Initiate a new refactoring session,
recording mutation test results before and after refactoring
for comparison.

(3) Run mutation tests: Execute mutation testing using the PIT-
clipse tool, ensuring the project entry point and refactoring
session are properly configured.

(4) Set last run as baseline: Establish the latest mutation test
results as the baseline for future comparisons.

(5) Validate refactoring: Validate the success of refactoring by
comparing mutation test results extracted before and after
the code changes, generating the detailed final comparison
report.

4.4 MeteoR View
The primary function of the view, item (2) of Figure 1, is to dis-
play current and previous refactoring session data in a tree listing.
Following it is presented in details each item of the list.

Refactoring Session: Sequential number of the ongoing or com-
pleted refactoring session. Each refactoring session includes the
following:

• Baseline → Test Mutation Score: Mutation test score set as
the baseline or reference.

• Last Result→ Test Mutation Score: Score of the last mutation
test executed.

• Refactoring Result: After refactoring validation, the final re-
sult is presented along with the path where the detailed re-
port, comparing mutation score and mutants state extracted
before and after refactoring, is saved.

4.5 MeteoR Final Comparative Mutation Report
The item (3) of Figure 1 that is the final validation and comparative
report of mutants state in csv format is the most important artifact
handled and generated in the MeteoR tool, which can be further
detailed in Table 1.

Fields that aid in identifying mutants that have undergone some
state change are highlighted in red in Table 1. In case of changes in
state of any mutant the field Changed Behaviour can be used as a
filter to recover the mutants affected by the change in test behav-
ior. Other important fields include Previous Killing Tests and After
Killing Tests, which allow for the concrete identification of which
test methods were involved in eliminating the mutant revealing
whether a refactored test still appears on the list of killers after
refactoring.

4.6 MeteoR Usage
The usage of theMeteoR tool begins with opening the Java project
in the Eclipse IDE. The developer sets the entry point, representing

https://eclipse.dev/equinox/

SBES ’24, September 30– October 04, 2024, Curitiba, PR Teixeira et al.

Figure 1: IDE Eclipse with the MeteoR and PITclipse integrated.

Figure 2: Component Diagram of theMeteoR.

the test class or package where the test to be refactored are located.
After pining down the entry point, the developer runs the first
round of mutation testing to collect data of mutants, necessary as a
baseline. The tool suggests creating a refactoring session if one has
not been previously created.

After completing this step, the developer proceeds to refactor
the tests and conducts a second round of mutation testing. The
resulting data is then compared with the baseline. If no changes
are identified in the state of mutants, mutation score, or killing
tests listings, the success of the refactoring is determined. The tool
generates a detailed final comparison report in csv format for further
analysis, as outlined in Section 4.5.

4.7 Adaptations on PITest and PITclipse code
It was necessary to adapt a portion of the code from PITclipse and
PITest so that PITclipse could run in the full mutation matrix mode

Table 1: Description of Fields of the Final Comparative Mu-
tation Report

Field Description
Line of Code Line number where the mutation was applied.
Class Name Name of the class where the mutation was applied.
Method Name Name of the method where the mutation was applied.
Mutator Type of mutation applied, specified by the mutation

operator.
Description Detailed description of the mutation performed.
Previous Killing Tests Tests that previously eliminated this mutant before

refactoring.
After Killing Tests Tests that eliminated this mutant after refactoring.
Previous Detection State State of the mutant before refactoring (e.g., “survived,”

“killed,” ...).
After Detection State State of the mutant after refactoring (e.g., “survived,”

“killed,” ...).
Changed Behaviour Was there a change in the mutant state before and after

refactoring? This field receives a boolean value that
acts as a flag allowing for quick filtering of unwanted
state changes, bringing up mutants that were impacted
by refactoring.

Source File Source file of the code where the mutation was applied.

provided by PITest[4], which had not yet been integrated into PIT-
clipse. In this mode, a complete list of the killing tests involved in
eliminating the mutant is returned. This detailed information is
necessary to improve the reliability of test behavior evaluation
and address the masking effect discussed by Parsai et al. [13]. This
masking occurs when another test fails during the mutation test ex-
ecution, thereby masking an error in refactoring, as will be detailed
further ahead.

METEOR: A Tool for Monitoring Behavior Preservation in Test Code Refactorings SBES ’24, September 30– October 04, 2024, Curitiba, PR

5 TOOL PRELIMINARY EVALUATION
To make a preliminary evaluation the tool, it was adopted a pro-
cedure as proposed by Parsai et al. [13] and Teixeira et al. [16].
Therefore, we will perform a correct refactoring and an incorrect
one. It will be up to the tool to identify the correct refactoring that
must not show any changes in the mutants, meaning it will not
reveal any alterations in test behavior. Additionally, we will con-
duct an incorrect refactoring, where the tool should detect changes
in some of mutants, indicating alterations in test behavior, thus
flagging a problem in the refactoring. The changes are identified in
the level of mutation score, mutants state or killing tests listings.

For this experiment, the Apache Commons-csv project2 was se-
lected, and refactorings were applied to the CSVPrinterTest class,
which was then subjected to both evaluation procedures.

5.1 Correct Refactoring - Session (#1)
In the test code of the CSVPrinterTest class, particularly within the
testTrimOnOneColumn method, it was observed that the assertion
lacked an explanation. Consequently, following the suggestion of
Van Deursen et al. [18] to include an explanation in the assertion,
the refactoring was carried out. This process is illustrated in code
snippets 1 and 2. Subsequently, the refactored code was validated in
MeteoR, as depicted in Figure 3. As expected,MeteoR recognized
the refactoring as successful.

Code Snippet 1: Test method before proper refactoring
1 @Test
2 public void testTrimOnOneColumn() throws IOException {
3 final StringWriter sw = new StringWriter();
4 try (final CSVPrinter printer = new CSVPrinter(sw, CSVFormat.

↩→ DEFAULT.withTrim())) {
5 printer.print(" A ");
6 assertEquals("A", sw.toString());
7 }
8 }

Code Snippet 2: Test method after proper refactoring
1 @Test
2 public void testTrimOnOneColumn() throws IOException {
3 final StringWriter sw = new StringWriter();
4 try (final CSVPrinter printer = new CSVPrinter(sw, CSVFormat.

↩→ DEFAULT.withTrim())) {
5 printer.print(" A ");
6 assertEquals("A", sw.toString(), "Verify string A without spaces");
7 }
8 }

5.2 Incorrect Refactoring - Session (#2)
It was identified in the test code of classCSVPrinterTest, specifically
in the method testPrintRecordsWithCSVRecord, that the assertion
could be improved. Therefore, by applying the technique of sur-
rounding assertions with assertAll method as related by Martins et al.
[9], the refactoring was conducted. This process is illustrated in
2https://github.com/apache/commons-csv

code snippets 3 and 4. Subsequently, the refactoring was validated
to check for any encountered issues. As expected,MeteoR identified
the refactoring as unsuccessful.

Code Snippet 3: Test method before unproper refactoring
1 @Test
2 public void testPrintRecordsWithCSVRecord() throws IOException {
3 final String[] values = {"A", "B", "C"};
4 final String rowData = StringUtils.join(values, ',');
5 final CharArrayWriter charArrayWriter = new CharArrayWriter(0);
6 try (final CSVParser parser = CSVFormat.DEFAULT.parse(new

↩→ StringReader(rowData));
7 final CSVPrinter csvPrinter = CSVFormat.INFORMIX_UNLOAD.

↩→ print(charArrayWriter)) {
8 for (final CSVRecord record : parser) {
9 csvPrinter.printRecord(record);
10 }
11 }
12 assertEquals (6, charArrayWriter.size());

13 assertEquals ("A|B|C" + CSVFormat.INFORMIX_UNLOAD.
↩→ getRecordSeparator(), charArrayWriter.toString());

14 }

As seen in line 14 of Code Snippet 4 the refactoring was per-
formed improperly, we simulate a situation where the developer
erroneously wrapped the previous assertions with assertAll. Dur-
ing the refactoring, he/she commented out the second assertion,
affecting the test behavior.

Code Snippet 4: Test method after unproper refactoring
1 @Test
2 public void testPrintRecordsWithCSVRecord() throws IOException {
3 final String[] values = {"A", "B", "C"};
4 final String rowData = StringUtils.join(values, ',');
5 final CharArrayWriter charArrayWriter = new CharArrayWriter(0);
6 try (final CSVParser parser = CSVFormat.DEFAULT.parse(new

↩→ StringReader(rowData));
7 final CSVPrinter csvPrinter = CSVFormat.INFORMIX_UNLOAD.

↩→ print(charArrayWriter)) {
8 for (final CSVRecord record : parser) {
9 csvPrinter.printRecord(record);
10 }
11 }
12 assertAll ("Grouped assertions to validate size and data separated

↩→ records",
13 () −> assertEquals(6, charArrayWriter.size()),
14 //() −> assertEquals("A|B|C" + CSVFormat.INFORMIX_UNLOAD.

↩→ getRecordSeparator(), charArrayWriter.toString())
15);
16 }

5.3 Result Analysis
In case of succesfull refactoring (as seen in Figure 3) in the refactor-
ing session (#1), the results indicates no changes was observed
in the mutation score and in the mutants state pre- and post-
refactoring. In the case of refactoring session (#2), the issue with the
behavior change was signaled by the list of killing tests, as shown
in Table 2.

Although the mutation score provides an objective evaluation,
theMeteoR tool also assessed the state of all mutants, along with
the list of killing tests extracted before and after refactoring.

SBES ’24, September 30– October 04, 2024, Curitiba, PR Teixeira et al.

Figure 3: MeteoR displaying the results of evaluation of the
two refactoring sessions.

During the development of theMeteoR tool, it was observed that
in cases where a test improperly refactored could not be correctly
validated if mutants previously killed by it were now being killed
by another test that was not part of the refactoring scope. This
symptom reflects the masking effect problem approached by Parsai
et al. [13]. As PITclipse does not support the selection of only the
relevant test methods in a more restrictive manner in the mutation
test execution, it became necessary to apply these comparison in
the listings of killing tests, in addition to validating the state of
mutants as discussed by Teixeira et al. [16].

In the case of the incorrect refactoring section, despite not nec-
essarily indicating a change in the state of mutants and in the
mutation score, as demonstrated in the MeteoR view (as seen in
Figure 3) in the refactoring session (#2), a change was identified in
the listing of killing tests, as seen in Table 2.MeteoR pointed out
that the refactored test method no longer eliminated the mutant
that was previously being eliminated. The mutants were eliminated
by other tests that were not refactored.

Table 2: Comparison between killing tests pre- and post refac-
toring in one mutant state masked on incorrect refactoring

Killing Tests Before Refactoring Killing Tests After Refactoring
testPrintRecordsWithCSVRecord –

testParseCustomNullValues testParseCustomNullValues
testJdbcPrinter testJdbcPrinter
testJira135_part1 testJira135_part1

testJdbcPrinterWithResultSet testJdbcPrinterWithResultSet
testJira135_part3 testJira135_part3

testJdbcPrinterWithResultSetHeader testJdbcPrinterWithResultSetHeader
testJdbcPrinterWithResultSetMetaData testJdbcPrinterWithResultSetMetaData

other test methods ... other test methods ...

6 TOOL LIMITATIONS
Given the masking effect was not extensively discussed by Parsai
et al. [13], we assume that when referring to the issue of masking,
Parsai et al. [13] was addressing the situation where the validation
result could be compromised by a different test failing on a mutant
that should have been killed by the refactored test.

To address this, comparing killing tests data before and after
refactoring is crucial. Focusing mutation tests on the refactored test
methods helps prevent contamination from irrelevant tests. Despite
limitations in PITclipse for isolated mutation testing, using killing
tests listings comparisons proved effective.

For a thorough tool evaluation, adopting a comprehensive refac-
toring catalog is essential. This approach will enable a broader as-
sessment of MeteoR’s usage and limitations, revealing constraints
not explored in this preliminary study focused solely on two types
of test refactoring.

7 CONCLUSION
This work highlighted the nuances in the evaluation of test code
refactoring applying mutation testing, emphasizing the importance
of a tool designed to aid developers and avoid manual and exhaus-
tive analysis. The primary objective, which was to implement and
provide such a tool for use by both research and industrial contexts
adopting mutation testing as proposed by [13, 16, 19], has been
successfully accomplished. This addresses a significant gap in the
availability of an integrated tool capable of assisting developers in
assessing test code during the refactoring process. Prior endeavors
in this area had not fully achieved this objective, as they addressed
the issues without offering a finalized solution that provides fast
feedback to developers within the IDE during refactoring.

The paper comprehensively covers all the essential aspects re-
lated to implementing of the MeteoR, including architectural de-
sign, integration strategy, and implementation details of the code.
Additionally, lessons learned during the development phase were
discussed, which involved enhancing the accuracy of previously
proposed approaches. Moreover, the preliminary evaluation suc-
cessfully assessed the tool’s capability to identify both proper and
improper refactorings.

8 FUTUREWORKS
For future work, expanding the scope of tool evaluation to include
broader catalogs of refactoring and assessing it in typical production
scenarios with real projects and diverse teams would be beneficial.

METEOR AND ARTIFACT AVAILABILITY
All the data related toMeteoR, such as code, evaluation data, and
installation files, are available at https://github.com/meteortool.
The installation instructions can be found at https://meteortool.
github.io/binaries.

TheMeteoR is distributed under the MIT license3.

ACKNOWLEDGMENTS
The authors thank the São Paulo Research Foundation (FAPESP) –
grant 2023/04581-0 – for financial support.

REFERENCES
[1] Stevão A. Andrade, Claudinei Brito, Misael Júnior, Ana Claudia Marciel, Gabriel

Abdalla, and Márcio E. Delamaro. 2019. Analyzing the effectiveness of One-Op
Mutation against the minimal set of mutants. In Proceedings of the IV Brazilian
Symposium on Systematic and Automated Software Testing (Salvador, Brazil) (SAST
’19). Association for Computing Machinery, New York, NY, USA, 22–31. https:
//doi.org/10.1145/3356317.3356321

[2] M. Aniche. 2022. Effective Software Testing: A developer’s guide. Manning, NY.
https://www.manning.com/books/effective-software-testing

[3] Brent van Bladel and Serge Demeyer. 2018. Test Behaviour Detection as a Test
Refactoring Safety. In Proceedings of the 2nd International Workshop on Refactoring
(Montpellier, France) (IWoR 2018). Association for Computing Machinery, New
York, NY, USA, 22–25. https://doi.org/10.1145/3242163.3242168

3Available at: https://opensource.org/license/mit

https://github.com/meteortool
https://meteortool.github.io/binaries
https://meteortool.github.io/binaries
https://doi.org/10.1145/3356317.3356321
https://doi.org/10.1145/3356317.3356321
https://www.manning.com/books/effective-software-testing
https://doi.org/10.1145/3242163.3242168
https://opensource.org/license/mit

METEOR: A Tool for Monitoring Behavior Preservation in Test Code Refactorings SBES ’24, September 30– October 04, 2024, Curitiba, PR

[4] Henry Coles. [n. d.]. How to get killing tests against each mutant or a complete
killing matrix with PIT? https://stackoverflow.com/questions/74190816/how-to-
get-killing-tests-against-each-mutant-or-a-complete-killing-matrix-with-p

[5] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. PIT: a practical mutation testing tool for Java (demo). In
Proceedings of the 25th International Symposium on Software Testing and Analysis
(Saarbrücken, Germany) (ISSTA 2016). Association for Computing Machinery,
New York, NY, USA, 449–452. https://doi.org/10.1145/2931037.2948707

[6] M. Fowler. 2019. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, USA.

[7] Eduardo Martins Guerra and Clovis Torres Fernandes. 2007. Refactoring Test
Code Safely. In International Conference on Software Engineering Advances (ICSEA
2007). 44–44. https://doi.org/10.1109/ICSEA.2007.57

[8] Rogério Marinke, Eduardo Martins Guerra, Fábio Fagundes Silveira, Rafael Mon-
ico Azevedo, Wagner Nascimento, Rodrigo Simões de Almeida, Bruno Ro-
drigues Demboscki, and Tiago Silva da Silva. 2019. Towards an Extensible
Architecture for Refactoring Test Code. In Computational Science and Its Ap-
plications – ICCSA 2019, Sanjay Misra, Osvaldo Gervasi, Beniamino Murgante,
Elena Stankova, Vladimir Korkhov, Carmelo Torre, Ana Maria A.C. Rocha, David
Taniar, Bernady O. Apduhan, and Eufemia Tarantino (Eds.). Springer Interna-
tional Publishing, Cham, 456–471.

[9] Luana Martins, Taher Ghaleb, Heitor Costa, and Ivan Machado. 2024. A com-
prehensive catalog of refactoring strategies to handle test smells in Java-based
systems. Software Quality Journal (03 2024), 1–39. https://doi.org/10.1007/s11219-
024-09663-7

[10] Gerard Meszaros. 2007. xUnit Test Patterns: Refactoring Test Code. Pearson
Education.

[11] Ricardo Monteiro, Vinicius Humberto Serapilha Durelli, Marcelo Eler, and Andre
Endo. 2022. An Empirical Analysis of Two Mutation Testing Tools for Java. In
Proceedings of the 7th Brazilian Symposium on Systematic and Automated Software
Testing (Uberlandia, Brazil) (SAST ’22). Association for Computing Machinery,

New York, NY, USA, 49–58. https://doi.org/10.1145/3559744.3559751
[12] A. Jefferson Offutt and Roland H. Untch. 2001. Mutation 2000: Uniting the Or-

thogonal. Springer US, Boston, MA. 34–44 pages. https://doi.org/10.1007/978-1-
4757-5939-6_7

[13] Ali Parsai, Alessandro Murgia, Quinten David Soetens, and Serge Demeyer. 2015.
Mutation Testing as a Safety Net for Test Code Refactoring. In Scientific Workshop
Proceedings of the XP2015 (Helsinki, Finland) (XP ’15 workshops). Association for
Computing Machinery, New York, NY, USA, Article 8, 7 pages. https://doi.org/
10.1145/2764979.2764987

[14] Adriano Pizzini. 2022. Behavior-based test smells refactoring : Toward an auto-
matic approach to refactoring Eager Test and Lazy Test smells. In 2022 IEEE/ACM
44th International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion). 261–263. https://doi.org/10.1145/3510454.3517059

[15] Adriano Pizzini, Sheila Reinehr, and Andreia Malucelli. 2023. Sentinel: A process
for automatic removing of Test Smells. In Proceedings of the XXII Brazilian Sympo-
sium on Software Quality (, Brasília, Brazil,) (SBQS ’23). Association for Computing
Machinery, New York, NY, USA, 80–89. https://doi.org/10.1145/3629479.3630019

[16] Tiago Samuel Rodrigues Teixeira, Fábio Fagundes Silveira, and Eduardo Mar-
tins Guerra. 2023. Moving towards a Mutant-Based Testing Tool for Verify-
ing Behavior Maintenance in Test Code Refactorings. Computers 12, 11 (2023).
https://doi.org/10.3390/computers12110230

[17] Brent van Bladel and Serge Demeyer. 2017. Test Refactoring: a Research Agenda.
In Proceedings SATToSE.

[18] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. 2001.
Refactoring test code. In Proc. Int’l Conf. eXtreme Programming and Flexible
Processes in Software Engineering (XP), M. Marchesi (Ed.).

[19] Jifeng Xuan, Benoit Cornu, Matias Martinez, Benoit Baudry, Lionel Seinturier,
and Martin Monperrus. 2016. B-Refactoring: Automatic test code refactoring to
improve dynamic analysis. Information and Software Technology 76 (2016), 65–80.
https://doi.org/10.1016/j.infsof.2016.04.016

https://stackoverflow.com/questions/74190816/how-to-get-killing-tests-against-each-mutant-or-a-complete-killing-matrix-with-p
https://stackoverflow.com/questions/74190816/how-to-get-killing-tests-against-each-mutant-or-a-complete-killing-matrix-with-p
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/ICSEA.2007.57
https://doi.org/10.1007/s11219-024-09663-7
https://doi.org/10.1007/s11219-024-09663-7
https://doi.org/10.1145/3559744.3559751
https://doi.org/10.1007/978-1-4757-5939-6_7
https://doi.org/10.1007/978-1-4757-5939-6_7
https://doi.org/10.1145/2764979.2764987
https://doi.org/10.1145/2764979.2764987
https://doi.org/10.1145/3510454.3517059
https://doi.org/10.1145/3629479.3630019
https://doi.org/10.3390/computers12110230
https://doi.org/10.1016/j.infsof.2016.04.016

	Abstract
	1 Introduction
	2 Background
	2.1 Mutation Testing
	2.2 Test Refactoring

	3 Related Work
	3.1 Test Behavior Observability Approaches
	3.2 Approach Selected

	4 Meteor
	4.1 Main MeteoR Functionalities
	4.2 MeteoR Implementation Details
	4.3 MeteoR Tool Menu
	4.4 MeteoR View
	4.5 MeteoR Final Comparative Mutation Report
	4.6 MeteoR Usage
	4.7 Adaptations on PITest and PITclipse code

	5 Tool Preliminary Evaluation
	5.1 Correct Refactoring - Session (#1)
	5.2 Incorrect Refactoring - Session (#2)
	5.3 Result Analysis

	6 TOOL LIMITATIONS
	7 CONCLUSION
	8 FUTURE WORKS
	Acknowledgments
	References

