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ABSTRACT
Test-driven development (TDD) and Behavior-driven development
(BDD) approaches address software development issues, propos-
ing the creation of unit tests for each system component before
implementing the code for the corresponding functionality. This
approach results in an objective and compact solution. It ensures
that the entire codebase is tested and enhances the overall quality of
the software. However, the testing process can be time-consuming
and resource-intensive. Some tools were proposed to address those
issues, but they lack functionalities based on User Story in a TDD
approach. In this context, we propose the AutomTest 3.0 tool, which
facilitates unit test case generation from user stories prior to writ-
ing the code base related to the functionality. Built upon previous
versions of AutomTest, this tool extends the other ones by including
generative AI to power the creation of suggestions for methods
the software under test should have. This tool creates test cases
for Java using techniques such as equivalence class partitioning,
natural language processing, and generative artificial intelligence.
To evaluate the effectiveness of AutomTest 3.0, we conducted an
exploratory study with software development professionals. Their
feedback highlighted the tool’s utility in their daily work routines.
AutomTest 3.0 demonstrated promising results in test case genera-
tion, scenario coverage, and speed advantages in test case creation.
https://youtu.be/xoTrvhlfvu8
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1 INTRODUCTION
Software requirements are necessary for addressing real-world
issues including activities automation and business process support
[1]. User stories describe desired user functionalities, being a useful
feature that includes textual explanations, discussions, and testing
for confirmation [4].

Similarly to requirements-related activities, testing is essential in
the software development life cycle. Software testing aims to iden-
tify defects, errors, or missing requirements, providing stakeholders
with accurate knowledge about product quality [9].

To further enhance software quality and ensure robust code
implementation, the Test-Driven Development (TDD) approach
is often employed. According to [12], Test-Driven Development
(TDD) advocates that the practice of creating tests before code
implementation not only ensures comprehensive test coverage
but also promotes a clear understanding of the desired require-
ments and functionalities [12]. Moreover, an incremental testing

approach leads to code quality improvement and a cleaner design
[18] which ultimately results in more reliable and maintainable
software [12][18].

Furthermore, Large Language Model (LLM) strategies are usu-
ally associated with transformer-based models with billions of pa-
rameters, trained on trillions of tokens [17]. These LLMs serve
as response generators and can perform various language-related
tasks accurately, with significant advancements in recent years for
distinct purposes[11].

Numerous automated test-generation tools powered with LLM
were proposed to assist developers in writing tests, aiming to in-
crease coverage and generate exploratory inputs. Despite the many
tools, they often offer implementation techniques dependent on an
already developed code base, which implies an inadequacy to cope
with test-driven development needs, such as in [16][3][10].

Intended to aid in software development and be compatible with
a TDD approach, the initial version of AutomTest [7] was built to
help automatically generate tests for Java-developed software, using
the tester’s expertise without relying on programming abilities. The
JUnit framework is employed to execute the test cases created by
the tool for the Java programming language using the combination
of equivalence class partitioning techniques. AutomTest’s second
version addedNatural Language Processing (NLP) fromUser Stories,
expanding on the features of the first version [5].

This paper presents the third edition of AutomTest, an extension
of version 2.0 that offers enhanced user experience and expanded
language support to accept User Stories in English, in addition to
the Portuguese language support the previous versions provided.
Furthermore, AutomTest 3.0 exploits two LLMs, Google’s Palm 1

API and OpenAI’s GPT-3.5-Turbo 2, to power User Story data ex-
traction, to provide better results regarding the number of method
signatures and returns suggested and their completeness concern-
ing data type definition.

To evaluate Automtest 3.0, we conducted an exploratory study
with five software development professionals. They usedAutomTest
3.0 and evaluated the tool through a questionnaire regarding easi-
ness of use, overall user experience, and relevance in the software
development area. Overall, the tool was perceived as having a
potential utility within the software development area, offering
time-saving possibilities while developing system functionalities
with well-defined user stories.

This paper is structured as follows. Section 2 discusses using
Large Language Models with testing tools and strategies, present-
ing some related works. Section 3 dives into the AutomTest 3.0

1https://ai.google.dev/palm_docs/
2https://platform.openai.com/docs/models/gpt-3-5-turbo/
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functionality, offering a view of the tool’s capabilities. Section 4
presents the tool’s validation process and results. Section 5 presents
the results obtained from the validation process while in section 6
AutomTest’s limitations are introduced. Finally, section 7 discusses
the results obtained and offers possible future work.

2 LARGE LANGUAGE MODELS AND TESTING
Considering the impressive performance on several tasks related to
NLP and programming [2], different NLP-related studies [14][13][8]
and LLM-powered test automation tools have been proposed [16][3][10].
While this combination is promising, the field is still at an early
stage and requires further investigation [14].

A user acceptance testing framework based on user stories and
acceptance criteria is presented in [13], essentially for manual test-
ing. This approach creates a test case diagram linking the affected
user to the relevant functionality. The authors recommend using
this framework to generate comprehensive acceptance test cases
in natural language, based on acceptance criteria. This would en-
able the evaluation of acceptance criteria fulfillment in percentage
terms.

In [8], Güneş and Aydemir address the issue of user stories’
simple structure hindering the capture of relationships between
them, which complicates understanding and organizing backlog
items. They propose constructing goal models to establish explicit
relationships, using NLP to extract information from user stories.
Like AutomTest, the author employs NLP to process user stories,
although their result is not a test suite but a set of heuristics for gen-
erating goal models from user stories, leveraging NLP to produce
models comparable to those created manually.

Schafer et al. [16] extensively evaluated LLM’s effectiveness,
specifically using OpenAI’s gpt-3.5-turbo, for automated unit test
generation in JavaScript. Their approach involves providing the
LLM with prompts that include function signatures, implementa-
tions, and usage examples from documentation. The result demon-
strates the feasibility of automation in unit test generation.

In [10] Kang et al. propose the framework LIBRO (LLM Induced
Bug ReprOduction), a framework that uses LLMs to generate tests,
process the results, and suggest solutions from general bug reports.

The ChatUniTest [3] is an automated unit test generation tool
based on ChatGPT developed within the Generation-Validation-
Repair framework. ChatUniTest analyzes the project, extracts es-
sential information, and creates an adaptive context that includes
the focal method and its dependencies within a predefined token
limit. This context is incorporated into a prompt and submitted to
ChatGPT [3].

All these works share similarities with AutomTest 3.0. As in [8],
AutomTest uses NLP to extract data from user stories, and, as in
[16][3][10], AutomTest also generates tests using LLM. However,
AutomTest generates the test suite from software requirements
presented in user stories and, therefore, is a tool adequate to use
with the Test-Driven Development (TDD) methodology. The other
tools, however, focus on generating tests for already developed
code bases, which implies an inherent inadequacy to cope with test
development iterations.

3 AUTOMTEST TOOL: A UNIT TEST
GENERATOR

Seeking to assist in software development, the AutomTest was
created to enable the automated generation of tests for software
developed in Java using the tester’s perception without requiring
programming skills and even by individuals who do not have tech-
nical knowledge of coding tests in Java programming language
[7].

The tool generates test cases for the Java programming language
to be executed using the JUnit framework. It combines equivalence
class partitioning techniques and boundary value analysis, which
are particularly effective in finding software failures [6].

To use AutomTest, the user provides the tool with the data from
the software specification to be developed and receives as output
an executable Java code containing a suite of tests based on the
software’s functional requirements.

3.1 Overview of previous versions
Automtest is currently in its third version. Some functionalities of
AutomTest have existed since earlier versions, while others are new
additions in the third version presented in this paper.

In its initial version, AutomTest supported software develop-
ment by creating test cases based on the information provided for
each equivalence class. However, the test method input is manually
entered by the user. Likewise, the main contribution proposed by
AutomTest’s second version is information extraction from User
Stories using NLP to automatically compose method signatures
compatible with the equivalence class partitioning technique [5].
That enhancement leads to a reduction in the time and effort re-
quired to use the tool.

Although AutomTest 2.0 made significant advances with NLP, it
had limitations in suggesting data types for method parameters and
return types, which implies more manual input before generating
test suites. Additionally, the previous version could not process all
types of user stories, such as listings, updates, and user stories for
exclusion processes.

Additionally, during the validation process of AutomTest 2.0, [5]
highlighted some suggestions for improvement from participants.
Firstly, participants suggested enhancing the method selection in-
terface to make the information-filling process more intuitive. Sec-
ondly, they recommended allowing the manual addition of new
methods and parameters in the interface that displays the methods
extracted from the user story. Finally, there was a suggestion to
make the creation of equivalence classes more intuitive.

3.2 AutomTest 3.0
An important new feature the tool presented by this paper intro-
duces is the integration of LLMs with the Automtest enabling auto-
matic retrieval of additional information for method suggestions.
The integration with LLMs allows the tool to suggest parameters
and method return data types, reducing the need for manual in-
put and increasing application efficiency. Another limitation of
previous versions that AutomTest 3.0 with LLM overcomes is the
generation of methods for different user story types, not limited to
creation-related user stories.
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Another improvement provided by AutomTest 3.0 is the multi-
language support, English and Portuguese. Moreover, to address the
user experience improvement suggestions made by AutomTest 2.0
testers, the tool’s third version presented by this paper rebuilds the
Graphic User Interface with a larger display, help texts, enhance-
ments in the equivalence class definition, and better control over
the methods suggestions and equivalence class creations.

3.3 Navigating AutomTest 3.0

Figure 1: Activity diagram corresponding to the test genera-
tion process using AutomTest 3.0

The core functionality of AutomTest 3.0 is the automated gener-
ation of a Java unit test suite from a user story, with the processing
aided by employing LLMs. To use AutomTest, the user must follow
the depicted process in Figure 1. As starting input, users are pre-
sented with two possibilities: (i) providing a user story as input or
(ii) inserting methods information manually.

Figure 2: User Story screen of AutomTest 3.0

One of the possibilities is to start by inputting a user story, en-
hanced with acceptance criteria, into the AutomTest tool, which
accepts user stories written in English and Portuguese (Figure 2).
Using the user story as input, AutomTest leverages LLMs’ NLP capa-
bilities to extract relevant methods directly, which the system under

test will likely need to meet the user story specification and accep-
tance criteria. The user can then choose which suggested methods
are useful and discard any unwanted suggestions. This technique
allows LLMs to generate test cases and method suggestions for the
system under test by effectively processing the provided user story.

Figure 3: Methods Information list screen of AutomTest 3.0

By providing method information directly instead of using a
user story, the application user must study the system under test
specification to provide AutomTest 3.0 with some information about
each method the system is likely to have for the functionality to be
tested. The required information on each method is the class name,
method name, parameter names, their data types, plus the return
data type.

Concerning AutomTest’s input possibilities, choosing either way
it is possible to create or edit the methods the AutomTest 3.0 pro-
cessing generated. Either by user story or manual definition, the
two possibilities to start using the tool will result in method infor-
mation being added to the application. Those methods informations
can be managed by AutomTest 3.0. It is possible to create or delete
method information in the application. It is also possible to edit a
method information definition by pressing the Edit button, shown
in Figure 3.

Regarding the method parameter possibilities, AutomTest 3.0
accepts parameters with the following types: int, double, float,
boolean, char, String, and Date. If any parameter field is incor-
rectly filled, AutomTest checks and alerts before proceeding. This
validation behavior is employed in every AutomTest screen.

The next step then is to define the equivalence partitioning. An
equivalence partition refers to a subset of possible values for a
variable or set of variables in a test case, where all values within
the partition are treated similarly. In other words, the values within
the partition are considered "equivalent" in how they are handled.
This approach is relevant in software testing, aiming to ensure that
the system reacts consistently to different sets of inputs considered
equivalent. Each method can have multiple equivalence classes.
Figure 4 shows the creation of an equivalence class.

Once the user inputs all the relevant equivalence classes, it is
possible to generate the test suite, choosing the location where
the Java test classes will be created, with a runnable test code.
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Figure 4: Equivalence class creation screen of AutomTest 3.0

Additionally, AutomTest always verifies the specified boundaries,
as boundary values are more likely to contain errors [6].

AutomTest 3.0 can be used in the TDD approach by providing
developers with the test suite for the functionality under develop-
ment. To achieve that the user can provide the tool with a user
story depicting the expected functionality and acceptance criteria,
or the user can directly provide the expected methods information
soon-to-be developed. With that approach, the user can easily gen-
erate a unit test suite for the functionality about to be constructed
without the need for manual construction of each unit test.

3.4 AutomTest 3.0 Architecture
Written in Python 3, React, and Electron, AutomTest 3.0 is a soft-
ware built upon the evolution of AutomTest 2.0 (available at [15])
under the MIT License). The tool’s source code is available at 3 and
4, front-end and back-end, respectively. Separated in Models, Views,
and Controllers, the software architecture was designed using the
MVC pattern, focusing on separating concerns.

The application front-end is developed using React, a JavaScript
library for building user interfaces, and Electron, which allows for
creating cross-platform desktop applications using web technolo-
gies. The React components render the user interface and handle
user interactions, serving as the View in the MVC architecture.
Electron enables the application to run as a desktop application,
providing access to native operating system functionalities.

Python 3 was used to implement the back-end. It is accountable
for all the logic of user story conversion, with calls to LLM APIs, as
depicted in Figure 5. Furthermore, the back-end is responsible for
the equivalence classes processing, and Java test case generation,
both happening in the generator component, shown in Figure 5’s
left-hand side.

The front-end and back-end communicate through RESTful APIs.
Figure 5 shows the AutomTest API at the top of the back-end com-
ponent. The React front-end sends HTTP requests to the Python
back-end, which processes these requests and returns the appro-
priate responses. The back-end also provides services responsible
3https://github.com/JoandersonG/AutomTest.git
4https://github.com/JoandersonG/automtest3.0-frontend.git

Figure 5: AutomTest 3.0’s architecture

for integrating with external APIs allowing communication with
LLMs.

The Controllers are responsible for handling HTTP requests
and the model classes are used to model the business logic, with
equivalence classes, methods, and parameters.

The method caching component depicted in Figure 5 relates
as a part of user story processing logic, encompassing all of the
services for NLP and LLM API calls. The NlpService uses SpaCy5,
an open-source NLP library for Python.

The external LLM APIs currently in use in AutomTest 3.0 are
Google’s Palm API and OpenAI’s GPT-3.5-Turbo API to power
User Story data extraction (external LLM API component, bottom
of Figure 5). The PalmLlmService and the GptTurboService were
created specifically to handle the API requests for each of the LLMs
and are called after a user story input and subsequent API call to
AutomTest’s back-end.

As the project was designed, there was a preoccupation to keep
the LLM integration services loosely coupled with the rest of the
application. That concern guarantees the easy evolution and adap-
tation of AutomTest 3.0 to include or replace the available LLMs
integrated into the tool without extensive code modification.

5https://spacy.io/
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4 TOOL EVALUATION
To evaluate the AutomTest 3.0 we performed a pilot study to gather
valuable feedback from users to identify potential improvements
regarding easiness of use, overall user experience, and relevance
in the software development. We conducted the pilot study in four
steps with five software development professionals. Firstly, we
performed the presentation step, followed by the tool installation.
Each participant needed to install and run AutomTest 3.0 locally
on their computer. Next, the users had the opportunity to utilize
and explore the tool. In the final step, they answered a survey.

Regarding user profiles, two of them work or used to work with
software testing, and three individuals work as software develop-
ers. Four of them have two to five years of working in software
development-related areas, and the fifth participant has less than a
year of experience. All of the five professionals have worked with
unit testing previously.

The participants were invited by convenience through e-mail
to distinct appointments. Initially, they were presented with basic
instructions on key aspects handled by AutomTest. Following this
introduction, users were provided with executables of the software
tool to install and test on their computers.

For the presentation step, we prepared slides as a guide. We intro-
duced software testing, test-driven development, and equivalence
class partitioning concepts. Additionally, we gave an introduction
to AutomTest 3.0 and its functionalities. These software demonstra-
tions allowed users to experience the tool firsthand and understand
its capabilities in a practical setting. Participants could ask ques-
tions at any point during the presentation and were encouraged to
explore the tool’s features, including manual methods definition,
user story input, performing test case generation, and interacting
with all the functionalities of AutomTest 3.0.

In the user testing step, participants were provided with two
specific user stories previously used in AutomTest 2.0’s validation.
The user stories included detailed scenarios and tasks that the users
needed to perform, in the form of acceptance criteria in the for-
mat given-when-then allowing for a structured and comprehensive
evaluation of the tool. The participants were assigned to generate
a test for the second user story without the assistance of the re-
searcher who conducted the pilot study. This step was crucial in
assessing how effectively users could utilize AutomTest 3.0 to gen-
erate test cases. After the testing step, users were asked to complete
a survey with questions designed to capture users’ experiences,
identify any issues encountered, and gather suggestions for future
improvements.

Users interacted with AutomTest 3.0 by first inputting the pro-
vided user story into the tool. The tool then generated a set of
methods based on the user story. Users analyzed these generated
methods, selecting those that were most relevant to the scenarios
described in the user story. Next, they created equivalence classes
to categorize and organize possible input/output sets for testing.
This process allowed users to structure their tests systematically
and ensure comprehensive coverage of possible input variations.

Finally, users analyzed the test cases generated by AutomTest 3.0
based on their input, equivalence classes, and expectations. They
assessed the accuracy and completeness of the test cases, comparing
them to the expectations set by the user story and their testing

objectives. As a final step, users were conducted to a survey6, in an
online environment using Google Meet.

5 RESULTS
Overall, the pilot studywas instrumental in highlighting the strengths
of AutomTest 3.0 and identifying areas for improvement. The direct
interaction with the tool enabled users to provide informed and
constructive feedback.

Both user stories provided, available at 7, were successfully em-
ployed by all the users of AutomTest 3.0 during the pilot study. Key
observations and insights, gathered from the user testing sessions,
provided valuable feedback for further development, including the
usefulness of being able to edit methods information, in comments
such as “I found it very useful to be able to edit parameters, classes,
methods, and return types.; " and “It’s useful to be able to edit and
create methods regardless of the user story”.

Some challenges arose and were noticed during the software
demonstrations. Themain point is the difficulty users non-familiarized
with equivalence classes encountered when understanding its use.
One user encountered difficulties with the installation process due
to varying system configurations. These issues were addressed
promptly through troubleshooting sessions, ensuring all users could
proceed with their testing.

Users found the interface to be generally user-friendly, although
some suggested improvements enhancing the guidance provided
during the creation of string patterns for equivalence classes, high-
lighting the need for more intuitive support features.

The functionality of the tool was highly appreciated, with users
noting the efficiency of the method information generation pro-
cess. The methods produced were generally useful for their testing
needs, demonstrating the tool’s capability to effectively translate
user stories into relevant test components. This positive feedback
underscored the practical utility of AutomTest 3.0 in real-world
testing scenarios.

Regarding performance, the tool handled the processing of user
stories and the generation of test cases well. However, a few users
experienced longer processing times due to extended calls to LLM
APIs. This indicated a need for further optimization, particularly in
parallelizing back-end tasks to enhance performance and reduce
latency.

Relevance was another strong point noted by users. The test
cases generated by AutomTest 3.0 were deemed useful and straight-
forward, suggesting that the tool could be effectively integrated into
their work environment. This feedback affirmed the tool’s potential
to improve testing processes and its applicability in professional
settings.

Overall, this study pointed to the tool feasibility and these in-
sights were crucial for identifying both the strengths and areas
for improvement in AutomTest 3.0. The feedback gathered from
user testing sessions provided a foundation for making targeted
enhancements to the tool, ensuring it better meets the needs of
its users in future iterations and indicating it’s a useful tool for
software development workers.

6https://docs.google.com/document/d/1R5lphUtaIFxWMZmhAUua3RvQMK-
RAYjzjALqk10mg7I
7https://drive.google.com/file/d/1zC8r8Rl-s5wbTlQRkqafnVKKA1HftZ4g/
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5.1 AutomTest 3.0’s Limitations
Although the evolution of the AutomTest 3.0 tool has resulted in
improvements, certain constraints were identified during the devel-
opment and testing phases. For instance, the method suggestions
provided by AutomTest 3.0 are contingent upon the LLM’s capacity
to process the user story, which in turn necessitates calls to the
LLM’s APIs, ultimately resulting in delays in the application’s re-
sponse to the user’s input. Additionally, AutomTest 3.0 requires
manual input of equivalence classes, which represents a further
limitation. Furthermore, the tool is only compatible with Java test
generation, which precludes testing generation for other program-
ming languages. These limitations underscore the necessity for
further improvement and highlight the challenges to be addressed.

6 CONCLUSIONS AND FUTUREWORK
This paper presented the evolution of the AutomTest 2.0 test case
generator tool, incorporating the capabilities of large language
models (LLMs) to enhance its functionality. The AutomTest 3.0,
now integrating LLMs for NLP, aims to generate test cases with
less manual intervention.

The results of this research project indicate that the integration
of LLMs into AutomTest 2.0 enhances its ability to understand and
process user stories, leading to the generation of test cases with
less need for manual intervention, as AutomTest 3.0 can suggest
methods with their associate data types included, without the need
for manual input on that information.

As future work, some enhancements can be considered to further
improve AutomTest 3.0. Something noticed during the validation
steps was the time AutomTest takes to process the user story, and
some work can be done to parallelize the LLM API calls to achieve
better performance. Besides that, studying the integration of large
language models within the equivalence class creation step could
leverage automation, help reduce manual intervention, and help
provide faster results for users. Finally, expanding language support
beyond Java is also something that could enhance utility for a larger
audience. Moreover, we intend to perform a regular exploratory
study considering threats to validity.
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