
Holter: Monitoring Continuous Integration Practices
Jadson Santos

Federal University of Rio Grande do

Norte

Natal, Brazil

jadson.santos@ufrn.br

Daniel Alencar da Costa

University of Otago

Dunedin, New Zealand

danielcalencar@otago.ac.nz

Uirá Kulesza

Federal University of Rio Grande do

Norte

Natal, Brazil

uira.kulesza@ufrn.br

ABSTRACT
Background: Despite widespread adoption and an extensive body

of research evaluating Continuous Integration (CI), there is evidence

that not all CI practices are fully adopted. Aims: To help the full

adoption of CI, we present in this paper Holter - a tool that auto-

matically calculates and monitors a suite of metrics associated with

CI practices. The tool enables developers to continuously access

these metrics and receive alerts regarding the evolution of CI prac-

tices.Method: We illustrate the usage of our tool for monitoring

CI practices and compare the Holter monitoring dashboard with

those of existing CI services and third-party tools. Results: Lead-
ing CI services and complementary tools still offer basic support

for monitoring CI practices. Focusing on monitoring fundamental

information related to the performance of the CI pipeline, Holter

provides a more comprehensive perspective of CI that cannot be

found in other tools. Conclusions: Holter can be used to mon-

itor and improve CI practices in software development projects.

Additionally, it can provide an overview of a project’s CI maturity.

Video link: https://doi.org/10.6084/m9.figshare.25880083

KEYWORDS
CI Practices, Monitoring, Case Study, CI Maturity

1 INTRODUCTION
Continuous Integration (CI) is a software development practice

where team members integrate their work frequently [7]. The inte-

gration process involves an automated build step, which includes

compiling the code and running automated tests. This ensures

the detection of integration errors as quickly as possible. Despite

extensive research into the benefits and costs of Continuous In-

tegration [1–3, 5, 10, 12–14, 17, 21, 22], most of studies focused

in mining repositories and study the overall impact of CI. There

is a lack of studies specifically addressing the monitoring of CI

practices.

Soares et al. [16] conducted a systematic literature review that

identified a lack of criteria for defining the effective use of CI. They

found that 42.5% of the primary studies did not apply or establish

any criteria to determine whether a project uses CI effectively.

Among those projects that did use criteria, 56.25% of the studies

relied on only one criterion. The most common criterion applied

was adopting a CI service, such as Travis CI. In the same direction,

other studies [6] have already demonstrated that some CI projects

do not follow all CI practices. That study found that: (i) 60% of the

projects had infrequent commits; (ii) 85% of the projects had at least

one broken build that took a long time to be fixed; and (iii) most

projects had builds that executed for more than 10 minutes. They

refer to it as a CI Theater [6].

To facilitate the effective usage of CI, our paper aims to provide

a tool that offers a more qualitative and comprehensive view of

monitoring Continuous Integration (CI) practices. To demonstrate

the advantages of our tool compared to existing monitoring tools,

we compared our tool with existing CI monitoring dashboard tools

using Grey Literature [9]. Researchers can use our tool to obtain an

initial and primary overview of a project’s CI maturity. In contrast,

practitioners can use our tool to monitor and improve CI practices

in their projects. The tool initially supports seven CI practices,

described next. These practices were chosen because they cover

most of the practices defined by Duvall et al [4] and Fowler [7].

As well as they cover most of the practices analyzed by Felidré et

al [6], a work that motivated the development of our study about

monitoring CI practices [15].

• Commit Per Weekday/Commit Activity [6]: Mean of

the absolute number of commits according to the weekday

of the analyzed period.

• Coverage [6]: It measures which parts of a program are

executed when running the tests. Represents the percentage

of the program covered by tests.

• Build Duration [6]: It measures the duration of the build

(build finished at timestamp - build started at timestamp).

• Build Activity/Build-frequency [19]: It is a unit interval
(i.e., a closed interval [0,1]) representing the rate of builds

across days, i.e, if builds were made every day in the period

of CI, the value would be 1. If builds were made in half of

the days, the value would be 0.5. If there were no builds, the

value would be 0.

• Build Health/Build Quality [16]: It is a unit interval rep-
resenting the rate of build failures across days. If there were

build failures every day, the value would be 0. if there were

no build failures, the value would be 1.

• Time to Fix a Broken Build [6]: It consists of the median

time in a period that builds remained broken. When a build

breaks, we compute the time in seconds until the build re-

turns to the “passed” status. If the CI period ends and the

build did not return to the “passed” status, we consider the

time since it was broken until the end of the period. When a

period has no broken builds, the value would be 0.

• Comments Per Change [18, 20]: Mean of the number of

comments grouped by Merge Request or Issue. This practice

seeks to measure the level of communication between the

team.

The tool was developed for a multiple case study research
1
in-

volving three Brazilian public sector organizations. Our case study

1
The study is being submitted for publication at the moment of this writing.

https://doi.org/10.6084/m9.figshare.25880083

SBES ’24, September 30– October 04, 2024, Curitiba, PR Santos et al.

reveals that monitoring CI practices highlights potential issues, pro-

vides an overview of CI states, and motivates developers to improve

their CI related processes. Developers strongly desire CI monitoring

dashboards integrated with popular tools like GitLab, GitHub, and

Jenkins, suggesting that seamless integration could optimize the

development workflow. This study is part of a doctoral thesis in

which we provide strong evidence of the need for monitoring CI

practices and demonstrate the usefulness of our tool [15].

2 MONITORING CONTINUOUS INTEGRATION
PRACTICES

Elazhary et. al. [5] investigated the extent to which three software

organizations implement ten Continuous Integration (CI) practices

defined by [7]. They explored the benefits these practices bring

and the challenges encountered during their implementation. This

inquiry was conducted through a multiple-case study with mixed

methods, focusing on three small to medium-sized software-as-a-

service organizations. The study revealed that four practices ex-

hibited significant differences in adoption between organizations:

(i) For “Maintain a single source repository” practice: dealing with
merge conflicts had a higher priority than the unclear benefit of

using a single source repository; (ii) For “Make the build self-testing”
practice: the perceived work required for integration tests out-

weighs the perceived benefits; (iii) For “Keep the build fast” practice:
doing comprehensive testing outweighs having shorter builds); and

(iv) For “Automate deployment” practice: enhancing security by

enforcing deployment privileges for some organizations outweighs

a sense of change ownership.

Our paper aligns with previously cited work. However, we de-

veloped a dashboard tool that automates the collection and visu-

alization of the CI practices, including sending alerts via email,

facilitating the full adoption of CI. In addition, our tool calculates

different CI practices than Elazhary et al.’s [5] work.

3 HOLTER AT A GLANCE
We developed a CI monitoring dashboard tool called Holter. It

was designed as an extensible platform to collect and analyze data

from a variety of CI tools used in the projects under investigation.

The tool is designed to integrate seamlessly with various CI tools,

including popular platforms like GitHub, GitLab, Jenkins, CodeCov,

and Sonarqbe, among others. In addition, the tool offers flexibility

in automatic data collection. Users can configure the tool to perform

scheduled data mining, providing automatic updates on project

status. There is also a functionality to send an alert email each time

the collection runs.

3.1 Holter Architecture
Holter was developed using Vue.js in the front-end, offering a

responsive and intuitive interface for users. On the back-end, the

tool uses Kotlin and Spring Boot framework to ensure data col-

lection and management efficiency, reliability, and scalability. To

store and manage the collected data, the tool utilizes an embedded

H2 database, providing a lightweight and robust solution for data

storage that facilitates the implementation of the projects’ environ-

ment. The tool also allows it to be run inside a Docker container,

which makes it possible to install and start monitoring with a sim-

ple command. Figure 1 exemplifies the architecture schema of the

tool.

Figure 1: Architecture of CI Practice Monitoring Tool

Figure 1 shows that the actions executed by the tool can be

triggered by the Controller layer from user web requests or auto-

matically from the Schedulers layer. These actions are executed

by the Services available in the Domain layer. A Service requests

the appropriate collector from the Collectors layer using a Collec-

tors Factory object. A Collector is an entity that collects a specific

measurement associated with a CI practice (such as Build Duration,

Coverage, Commit Activity, etc) in a particular repository (such

as GitHub, GitLab, Jenkins, SonarQube, etc). Given the variety of

repositories where information about a project can be stored, the

tool was developed to support the implementation of new Col-

lectors for CI practices in specific Repositories without having

to make major changes to other parts of the tool. The “Collector

part” uses the Factory and Template Method Design Patterns,

as shown in the diagram in Figure 2. The abstract class defines a

base algorithm to collect measurements associated with a CI prac-

tice in the collect(p: Project) method and an abstract method

calcMetricValue(p: Project) : BigDecimal.
A concrete collector class should then extend the abstract class

Collector and implement calcMetricValue(p: Project) :
BigDecimal method to provide a way to connect to a repository

and calculate the CI measurement, returning a BigDecimal that

represents the value associated with a CI practice that will be stored

in the history for a specific project. One should implement a new

concrete Collector class to support measuring new CI practices.

All the logic and infrastructure necessary to collect and calculate

measurements about CI practices must be contained within a con-

crete Collector. The tool supports 17 standard measurements (7 CI

+ 4 DORA + 6 Basics) and integrates with four repository types

(GitHub/GHActions, GitLab, SonarQube, and CodeCov). Regardless,

our work focuses specifically on measurements associated with CI

practices (e.g., as opposed to DORA). Holter collects metrics from

various CI tools using REST APIs
2

2
https://www.redhat.com/en/topics/api/what-is-a-rest-api

Holter: Monitoring Continuous Integration Practices SBES ’24, September 30– October 04, 2024, Curitiba, PR

Figure 2: Class Diagram of CI Practice Monitoring Tool

In this way, Holter handles variations in CI environments, pro-

gramming languages, and build systems by using a flexible archi-

tecture that supports the implementation of new Collectors for

different CI practices and repositories. The tool seeks to be as adapt-

able as possible; all practices are configurable, and the user can

choose which practices will be analyzed for a specific project.

3.2 Holter Scheduler
Holter allows you to make a series of configurations in the way

it collects measurements for CI practices. As illustrated in Figure

3, the tool has the concept of Scheduler. Each project has its own

Scheduler. Thus, it is possible to configure the collection execution

period between 3 possible values: WEEKLY, MONTHLY, and AN-

NUAL. It is also possible to configure the date when the CI metrics

will start to be collected and whether this collection will be carried

out automatically or not.

A Scheduler has association one to many with Collectors. It is

possible, at any time, to choose which practices are monitored for

a given project by adding or removing Collectors associated with

the project Scheduler.

3.3 Holter Dashboard
Holter has a dashboard that allows the project team to monitor

the evolution of CI practices, Figure 4 shows a part of the tool’s

dashboard screen.

Each box at the bottom of the Figure 4 corresponds to a CI prac-

tice. Inside the box, the participants can view the current measure-

ment value associated with the practice (the average of all entries

collected in the last period) and the project reference value for that

practice. The reference values are used as parameters by the tool

to issue alerts if any practice measurement do not comply with

the expected value. The reference values are editable and can be

assigned values that best suit the project context. In the upper part

of Figure 4, a status bar is shown, indicating the number of practices

that have reached the reference value, serving as a primitive gauge

for the project’s level of CI maturity.

Inside each box, there is also a button, which, when clicked,

shows to the participants a modal panel with details of the practice

measurement’s evolution. Figure 5 shows an example of the Build

Duration CI practice. The modal panel shows the complete graph

of the evolution of the CI practice measurement during the selected

period, the description of the practice measurement, the formula

used for its calculation, the unit in which it is calculated, the current

value, the mean value for all period, some categories where the

practice measurement is classified, and the last five values of the

practice measurement. Furthermore, the tool calculates the prac-

tice measurement trend (a delta that indicates in percentage how

much the value has grown or decreased in relation to the previous

period
3
), an indication of whether the practice measurement val-

ues inclined to increase or decrease over time, and the stability of

the practice measurement in three possible values, represented by

icons: SUNNY, CLOUDY, or RAINING.

To calculate the CI practice measurement trend, we use the for-

mula described in the CircleCi CI service documentation
4
: “Trends

displayed in the CircleCI UI are calculated as 100 * (current value -
previous value) / prior-value”. For the practice stability, we compare

Mean Absolute Deviation
5
values (𝑀𝐴𝐷 =

∑ |𝑥𝑖−𝑥 |
𝑛) with quartiles

of measurement values to classify its stability. When theMAD value

is below the first quartile, it is considered low (SUNNY). Between

the second and third quartiles is indicated as medium (CLOUDY).

3
https://circleci.com/docs/insights-glossary/#trends

4
https://circleci.com/docs/insights-glossary/

5
https://www.khanacademy.org/math/statistics-probability/summarizing-

quantitative-data/other-measures-of-spread/a/mean-absolute-deviation-mad-review

SBES ’24, September 30– October 04, 2024, Curitiba, PR Santos et al.

Figure 3: Scheduling CI practice measurement collection

Finally, above the third quartile is considered high (RAINING). A

lower MAD suggests higher data stability. This association with

the weather is inspired by how Jenkins shows the status of building

jobs
6
. This approach can provide a contextually relevant way to

understand the variability of our data.

In Figure 5, we notice that the Build Duration practice measure-

ment has increased greatly in the latest collected period, more than

5000% (using the CircleCI formula). As for specific Build Duration

measurements, given that an increase is considered bad, the tool

highlights this value in red. As it constantly fluctuates, one week

it is low, the next it increases; stability is shown with the CLOUD

icon.

6
https://www.jenkins.io/doc/book/blueocean/dashboard/#pipeline-health

Figure 4: CI Practice Monitoring Tool Dashboard

4 COMPARATIVE ANALYSIS WITH OTHER CI
TOOLS

We compared our tool with existing CI monitoring dashboard tools

using Grey Literature [9]. We conducted an analysis using Grey

Literature, as we believe that the official documentation of CI tools

offers a more comprehensive description of their monitoring capa-

bilities than academic papers.

As an initial step, we conduct a search on the official documen-

tation of the most popular CI services, as this is the most intuitive

thing a developer does when she/he wants to learn about these CI

services. In our analysis, we focused on the seven most popular

CI services, covering 99% of all observed instances of CI usage as

described by [11]: TravisCI, GHActions, CircleCI, AppVeyor,

Azure, GitLab and Jenkins.

According to [8], these documents can be classified as “2nd tier

Grey Literature”, which provides “Moderate credibility/Moderate

outlet control”. Using a specific data source also allows the study to

be reproducible. Subsequently, we meticulously examined the docu-

mentation and selected documents that explicitly showed images of

CI-related dashboards. Next, we included the analysis of third-party

tools, as these tools may have features not present in the main CI

services. We collect all references to third-party tools cited in the

official CI services documentation obtained from the previous step.

Then, similar to the first step, we provided URLs of documentation

Holter: Monitoring Continuous Integration Practices SBES ’24, September 30– October 04, 2024, Curitiba, PR

Figure 5: CI Practice’s Evolution Details Panel

for third-party tools. We discover monitoring dashboard evidence

in 14 documents, with 11 being primary documents and 3 being

snowballing third-party tools documents.

As a complementary step, given the low number of results re-

turned by our first search criteria, we use the query string “ (Dash-
board) AND (“continuous integration” OR “CI”) ” on google.com,

using incognito windows to collect official documentation from

third-party tools. We then performed a Grey Literature review

within the official tools documentation that appeared on the first 20

research results. We increased our list to 22 documents by adding

more than 8 documents obtained using query string search.

4.1 Comparative Analysis Results
This subsection describes our main findings about state-of-the-

art CI monitoring practices dashboard tools, comparing them to

Holter.

Most of the dashboards found in our comparative analysis pro-

vide fairly rudimentary and limited metrics for accurately assessing

CI practices. For example, the Sumo Logic Dashboard from Circle

CI, shown in Figure 6, offers an overview of the health and usage

of a project’s build processes, including time-series and aggregated

data on credit usage, success rates, and pipeline duration. Similarly,

tools like the Build Monitor Dashboard, CloudBees CI dash-

board, and Jenkins - Blue Ocean Dashboard follow the same

approach.

Other tools like Gitlab and Build Pulse do not focus on CI

practices. They prioritize monitoring metrics directly related to

Figure 6: Circle CI - Partial Sumo Logic Dashboard

Continuous Delivery (CD) or DevOps, such as the DORA metrics
7
.

Figure 7 shows partially the “ GitLab - Value Streams Dashboard”,

which is a customizable tool used to identify trends, patterns, and

opportunities for digital transformation improvements. The Value

Streams Dashboard includes several panels that visualize the fol-

lowing metrics: DORAmetrics, Value Stream Analytics (VSA) - flow

metrics, Vulnerabilities metrics, and GitLab Duo AI Code Sugges-

tions.

Figure 7: Gitlab - Partial Value Streams Dashboard

The “AWS - Code Changes Dashboard” provides a different per-

spective on the developer area. It displays the number of code

changes made by the author and repository, allowing users to an-

swer questions such as who makes the most code changes and

which repositories are the most active over time. This perspective

can help provide insights into CI practices related to developers’

tasks not covered by other dashboard tools.

Figure 9 shows components of the “DataDog CI Visibility Dash-

board”, which integrates information about CI tests and pipeline

results, along with data on CI performance (error rates or long

build duration), trends, and reliability. The DataDog dashboard

also allows you to monitor your tests across all builds, identify

common errors, and visualize test performance over time.

Figure 10 gives an overview of CI tool areas related to support for

dashboard tools. We observed that most tools focus on monitoring

7
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-

measure-your-devops-performance

SBES ’24, September 30– October 04, 2024, Curitiba, PR Santos et al.

Figure 8: AWS - Partial Code Changes dashboard

Figure 9: Data Dog - Partial CI Visibility Dashboard

CI pipeline aspects, while some concentrate on aspects related to

source code, such as test writing and coverage. Few tools address

both of these practice areas. However, there is a notable absence of

tools specifically targeting monitoring practices related to develop-

ers, such as commit frequency. The Holter tool aims to cover all

these areas and provide a broader view of monitoring CI practices.

Holter monitors pipeline-related practices like Build Duration

and Build Health, source code-related practices like Coverage, and

developer-related practices like Commit Activity. Integrating these

areas can offer a broader and more comprehensive view of CI.

5 LIMITATIONS
Holter currently implements 7 CI practices. While we aim to

provide diversity to address different areas of CI, it is important to

notice that the practices supported by Holter may not cover all

aspects of CI. The inclusion criteria for dashboard tools used in our

Comparative Analysis may not include all existing CI monitoring

tools, and furthermore, some relevant documents may not have

Figure 10: CI Areas according to monitoring dashboard

been included in the review. These factors can affect the robustness

of our evaluation.

6 CONCLUSION
In this paper, we introduced the Holter - a CI practices monitor-

ing tool. The tool provides a dashboard where users can monitor

the evolution of seven CI practices. It automatically executes data

collection and can send an alert email each time the collection runs.

We plan to integrate Holter with Continuous Integration (CI)

services in future work. For example, creating Actions for GitHub

Actions to enhance CI practices for a wider range of projects, thus

facilitating the adoption of CI practice monitoring.

AVAILABILITY OF ARTIFACTS
We have made available the documentation generated by this paper,

the Grey Literature review URLs, and the tool source code at: https:

//doi.org/10.6084/m9.figshare.25883674. The tool is available under

the MIT License
8
. URL of the tool code repository

9
.

ACKNOWLEDGMENTS
This work is partially supported by INES (www.ines.org.br), CNPq

grant 465614/2014-0, CAPES grant 88887.136410/2017-00, and

FACEPE grants APQ-0399-1.03/17 and PRONEX APQ/0388-1.03/14.

REFERENCES
[1] Thomas Bach, Artur Andrzejak, Ralf Pannemans, and David Lo. 2017. The

Impact of Coverage on Bug Density in a Large Industrial Software Project. In

2017 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). 307–313. https://doi.org/10.1109/ESEM.2017.44

[2] João Helis Bernardo, Daniel Alencar da Costa, and Uirá Kulesza. 2018. Studying

the Impact of Adopting Continuous Integration on the Delivery Time of Pull

Requests. In Proceedings of the 15th International Conference on Mining Software
Repositories (Gothenburg, Sweden) (MSR ’18). Association for Computing Ma-

chinery, New York, NY, USA, 131–141. https://doi.org/10.1145/3196398.3196421

[3] Nathan Cassee, Bogdan Vasilescu, and Alexander Serebrenik. 2020. The Silent

Helper: The Impact of Continuous Integration on Code Reviews. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER). 423–434. https://doi.org/10.1109/SANER48275.2020.9054818

8
https://opensource.org/license/mit

9
https://github.com/jadsonjs/holter-devops

https://doi.org/10.6084/m9.figshare.25883674
https://doi.org/10.6084/m9.figshare.25883674
https://doi.org/10.1109/ESEM.2017.44
https://doi.org/10.1145/3196398.3196421
https://doi.org/10.1109/SANER48275.2020.9054818

Holter: Monitoring Continuous Integration Practices SBES ’24, September 30– October 04, 2024, Curitiba, PR

[4] Paul Duvall, StephenM.Matyas, andAndrewGlover. 2007. Continuous Integration:
Improving Software Quality and Reducing Risk (The Addison-Wesley Signature
Series). Addison-Wesley Professional.

[5] Omar Elazhary, Colin Werner, Ze Shi Li, Derek Lowlind, Neil A Ernst, and

Margaret-Anne Storey. 2021. Uncovering the benefits and challenges of continu-

ous integration practices. IEEE Transactions on Software Engineering 48, 7 (2021),

2570–2583.

[6] Wagner Felidré, Leonardo Furtado, Daniel A. da Costa, Bruno Cartaxo, and Gus-

tavo Pinto. 2019. Continuous Integration Theater. In 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). 1–10.
https://doi.org/10.1109/ESEM.2019.8870152

[7] Martin Fowler. 2006. Continuous Integration. Retrieved november 24, 2021 from

https://martinfowler.com/articles/continuousIntegration.html

[8] Vahid Garousi, Michael Felderer, and Mika V Mäntylä. 2019. Guidelines for

including grey literature and conducting multivocal literature reviews in software

engineering. Information and software technology 106 (2019), 101–121.

[9] Vahid Garousi, Michael Felderer, Mika V Mäntylä, and Austen Rainer. 2020. Bene-

fitting from the grey literature in software engineering research. In Contemporary
Empirical Methods in Software Engineering. Springer, 385–413.

[10] Taher Ahmed Ghaleb, Daniel Alencar Da Costa, and Ying Zou. 2019. An empirical

study of the long duration of continuous integration builds. Empirical Software
Engineering 24 (2019), 2102–2139.

[11] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. 2022. On the rise and fall of

CI services in GitHub. In 2022 IEEE International Conference on Software Anal-
ysis, Evolution and Reengineering (SANER). 662–672. https://doi.org/10.1109/

SANER53432.2022.00084

[12] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny

Dig. 2017. Trade-Offs in Continuous Integration: Assurance, Security, and Flex-

ibility. Association for Computing Machinery, New York, NY, USA. https:

//doi.org/10.1145/3106237.3106270

[13] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.

2016. Usage, costs, and benefits of continuous integration in open-source projects.

In 2016 31st IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). 426–437.

[14] Eero Laukkanen, Maria Paasivaara, and Teemu Arvonen. 2015. Stakeholder

Perceptions of the Adoption of Continuous Integration – A Case Study. In 2015
Agile Conference. 11–20. https://doi.org/10.1109/Agile.2015.15

[15] Jadson Santos. 2024. A Deep Dive into Continuous Integration Monitoring Practices.
Ph.D. Dissertation. PPGSC/UFRN.

[16] Eliezio Soares, Gustavo Sizílio, Jadson Santos, Daniel Alencar da Costa, and Uirá

Kulesza. 2021. The Effects of Continuous Integration on Software Development:

a Systematic Literature Review. CoRR abs/2103.05451 (2021). arXiv:2103.05451

https://arxiv.org/abs/2103.05451

[17] Daniel Ståhl and Jan Bosch. 2013. Experienced benefits of continuous integration

in industry software product development: A case study. In The 12th iasted
international conference on software engineering,(innsbruck, austria, 2013). 736–
743.

[18] Daniel Ståhl and Jan Bosch. 2013. Experienced benefits of continuous integration

in industry software product development: A case study. In The 12th iasted
international conference on software engineering,(innsbruck, austria, 2013). 736–
743.

[19] Daniel Ståhl and Jan Bosch. 2014. Modeling continuous integration practice

differences in industry software development. Journal of Systems and Software
87 (2014), 48–59. https://doi.org/10.1016/j.jss.2013.08.032

[20] Christopher Thompson. 2017. Large-Scale Analysis of Modern Code Review

Practices and Software Security in Open Source Software. In Proceedings of the
13th International Conference on Predictive Models and Data Analytics in Software
Engineering (2017). 83–92.

[21] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir

Filkov. 2015. Quality and Productivity Outcomes Relating to Continuous Integra-

tion in GitHub. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Comput-

ing Machinery, New York, NY, USA, 805–816. https://doi.org/10.1145/2786805.

2786850

[22] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu.

2019. A Conceptual Replication of Continuous Integration Pain Points in the

Context of Travis CI. Association for Computing Machinery, New York, NY, USA.

https://doi.org/10.1145/3338906.3338922

https://doi.org/10.1109/ESEM.2019.8870152
https://martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1109/Agile.2015.15
https://arxiv.org/abs/2103.05451
https://arxiv.org/abs/2103.05451
https://doi.org/10.1016/j.jss.2013.08.032
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1145/3338906.3338922

	Abstract
	1 Introduction
	2 Monitoring Continuous Integration Practices
	3 Holter at a Glance
	3.1 Holter Architecture
	3.2 Holter Scheduler
	3.3 Holter Dashboard

	4 Comparative Analysis with Other CI Tools
	4.1 Comparative Analysis Results

	5 Limitations
	6 Conclusion
	Acknowledgments
	References

