
Knowledge Islands: Visualizing Developers Knowledge
Concentration

Otávio Cury
otaviocury@ufpi.edu.br

Federal University of Piauí
Teresina, Piauí, Brazil

Guilherme Avelino
gaa@ufpi.edu.br

Federal University of Piauí
Teresina, Piauí, Brazil

ABSTRACT
Current software development is often a cooperative activity, where
different situations can arise that put the existence of a project at
risk. One common and extensively studied issue in the software
engineering literature is the concentration of a significant portion
of knowledge about the source code in a few developers on a team.
In this scenario, the departure of one of these key developers could
make it impossible to continue the project. This work presents
Knowledge Islands, a tool that visualizes the concentration of knowl-
edge in a software repository using a state-of-the-art knowledge
model. Key features of Knowledge Islands include user authenti-
cation, cloning, and asynchronous analysis of user repositories,
identification of the expertise of the team’s developers, calculation
of the Truck Factor for all folders and source code files, and identifi-
cation of the main developers and repository files. This open-source
tool enables practitioners to analyze GitHub projects, determine
where knowledge is concentrated within the development team,
and implement measures to maintain project health. The source
code of Knowledge Islands is available in a public repository1, and
there is a presentation about the tool in video2 3.
Software License: General Public License (GPL)

KEYWORDS
Software repository mining, knowledge concentration, code au-
thorship

1 INTRODUCTION
Managing knowledge distribution among team members is impor-
tant in software development, particularly in large and geographi-
cally dispersed projects. The increasing prevalence of remote work
has exacerbated these challenges by limiting direct interactions
among team members. Identifying which developers possess spe-
cialized knowledge of different source code segments in such envi-
ronments becomes critical [25]. Knowledge concentration, wherein
a few developers hold essential information about the codebase,
poses significant risks [5, 19]. The departure of these key developers
can result in severe disruptions or even project failure [2]. Conse-
quently, understanding and mitigating knowledge concentration is
vital for ensuring project continuity and stability.

Existing techniques for tracking and managing knowledge con-
centration in software development frequently rely on simplistic
metrics, such as the number of commits, number of lines, or the
identity of the last modifier, which do not adequately capture the
depth of a developer’s expertise [11, 26, 27]. Additionally, these

1https://github.com/OtavioCury/knowledge-islands
2https://youtu.be/5iWxRdx6Dp0
3https://doi.org/10.5281/zenodo.11410997

techniques fall short of providing comprehensive insights into the
expertise distribution among developers. This deficiency hinders
project managers from making informed decisions regarding task
assignments, such as bug fixing or onboarding new developers.
Effective management of knowledge distribution ensures that the
team does not rely excessively on any single point of failure, thereby
enhancing the project’s resilience to personnel changes or aban-
donment.

To address these limitations, in this paper, we present Knowledge
Islands4. This open-source tool provides a more comprehensive
and insightful approach to managing knowledge concentration in
software projects. Knowledge Island goes beyond simplistic metrics
by examining a broader range of variables and implementing ad-
vanced analytical techniques and more precise models of expertise
identification. Knowledge Island provides project managers with
better means to monitor and distribute knowledge within their
teams by improving the accuracy of expertise identification and
applying a Truck Factor algorithm. Additionally, the tool provides
a hierarchical visualization of the project knowledge that helps to
identify knowledge islands and manage such risks.

This work is organized as follows: Section 2 presents the main
concepts implemented in Knowledge Island. Section 3 describes
the tool, its key features, and its architecture. Section 4 provides a
usage scenario for Knowledge Island. Section 5 discusses the tool’s
limitations. Section 6 reviews related tools and studies. Finally,
Section 7 concludes the work and outlines future directions.

2 BACKGROUND
This section presents the main concepts and algorithms imple-
mented in this study. Section 2.1 discusses knowledge models from
the literature in the area. Section 2.1.1 explains the Degree of Ex-
pertise (DOE), the knowledge model that we use at Knowledge
Islands, and Section 2.2 explains the AVL Truck Factor algorithm
implemented in the tool.

2.1 Code Knowledge Models
Source code knowledge models play a crucial role in understanding
expertise within software projects, especially in identifying "Knowl-
edge Islands" – areas where knowledge is concentrated in a small
number of developers. These models are vital for addressing issues
like knowledge loss, developer onboarding, and risk mitigation. By
accurately identifying experts, organizations can make informed
decisions regarding code maintenance, bug resolution, and project
management.

4https://github.com/OtavioCury/knowledge-islands



SBES ’24, September 30– October 04, 2024, Curitiba, PR Cury, Avelino

Current research on source code knowledge models has explored
several techniques, primarily focusing on data extracted from Ver-
sion Control Systems (VCS). Some studies are based mainly on
information about changes such as the number of commits and
who made the last change to identify expertise. Hossen et al. [18]
presented an approach that identifies experts in a change request
based on who last changed the files. Others count the number of
changes made on source code [6, 10, 17]. Other models, such as the
one proposed by Sülün et al., use the number of commits in the
code artifact and related ones to recommend code reviewers [28].

In addition to the number of changes, other studies also use the
number of interactions a developer has with a file. For example,
the Degree of Knowledge (DOK) model, proposed by Fritz et al.,
considers both the developer’s authorship, the Degree of Authorship
(DOA), and their interactions with a file, the Degree of Interest (DOI)
[15]. Although the authors demonstrated that interaction data can
enhance expert identification, the computation of DOI requires
plugins in the development environment, which complicates its
usage in large studies.

2.1.1 Degree of Expertise. TheDegree of Expertise (DOE) is a knowl-
edge model proposed by Cury et al. that uses four variables from the
development history of a file to measure a developer’s knowledge
[13]. Differentiating itself from existing models in the literature,
DOE combines fine-grained measures of change, authorship, re-
cency of modification, and file characteristics, for greater precision
in calculating knowledge.

This model was proposed in a study that used historical data
from public and private projects. The DOE model demonstrated
better performance in both identifying file experts and applying
it in Truck Factor algorithm application [12, 13]. Knowledge Is-
lands implements this model in an algorithm to calculate the Truck
Factor of software in different levels: repositories, modules, and
files. To use this linear model in the Knowledge Islands we used
the coefficients empirically found in a related study [12]. Finally,
The knowledge of a developer d in the version v of a file f is given
by Equation 1.

DOE(d, f(v)) = 5.28223 + 0.23173 · ln(1 + Adds𝑑,𝑓 (𝑣) )

+ 0.36151 · (FA𝑓 )

− 0.19421 · ln(1 + NumDays𝑑,𝑓 (𝑣) )

− 0.28761 · ln(Size𝑓 (𝑣) ) (1)

where,
• Adds: number of lines added by developers d on file f ;
• FA: 1 if developer d is the creator of the file f, 0 otherwise;
• NumDays: Number of days since the last commit of a de-
veloper d on file f ;
• Size Number of lines of code (LOC) of the file f.

In addition to identifying key developers, Knowledge Islands
also uses DOE to identify important files in the project. The con-
cept is that files that were the focus of major modifications during
the project’s evolution have a greater significance, as supported
by works in the literature[23, 24]. In our implementation, we call
importance score the sum of the DOE of the contributors of a file.

2.2 Truck Factor Algorithm
Truck Factor, also called Bus Factor, is a measure that indicates
the minimum number of developers who need to leave a software
project for it to stall [20]. This metric helps practitioners identify
the concentration of knowledge in their projects and has already
been the focus of different studies in the software engineering
literature [4, 11, 12, 14, 16, 20]. Some studies focused on proposing
newways of estimating the Truck Factor. Of these studies, Avelino’s
algorithm [4] stands out, highlighted in previous works with the
best performance in comparison with two other algorithms [14],
and used in studies that validate its results [1, 7, 9].

The Avelino’s Truck Factor algorithm follows a greedy approach
that relies on an authorship metric to identify the top authors of
a system and iteratively estimate the impact of removing the top
developers. First, in the original approach, the experts of each file
in the project are identified by adopting the Degree of Authorship
(DOA) model [15]. Then, the algorithm iteratively removes the
developer who is the expert in the largest number of files and
checks how many files become abandoned, i.e. files without experts
after the removal. Whenmore than half of the projects’ files have no
expert, the algorithm stops, returning the Truck Factor estimation
of the number of experts removed. This procedure is represented
in Algorithm 1.

Algorithm 1 High-level pseudo-code of the algorithm proposed
by Avelino for computing the Truck Factor of a software project.
𝐸 ← 𝑔𝑒𝑡𝐸𝑥𝑝𝑒𝑟𝑡𝑠 ()
𝐹 ← 𝑔𝑒𝑡𝐹𝑖𝑙𝑒𝑠 (𝐸)
𝑡 𝑓 ← 0
while 𝐸 ≠ ∅ do

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ← 𝑔𝑒𝑡𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (𝐹, 𝐸)
if 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ≤ 0.5 then

break;
end if
𝐸 ← 𝑟𝑒𝑚𝑜𝑣𝑒𝑇𝑜𝑝𝐴𝑢𝑡ℎ𝑜𝑟 ()
𝑡 𝑓 ← 𝑡 𝑓 + 1;

end while
return tf ;

In our implementation of this algorithm in the Knowledge Is-
lands tool, we modified the original Avelino algorithm by replacing
DOA with DOE (Section 2.1.1) as the expert identification model.
This same modification was made in a previous study using public
and private projects, resulting in increased accuracy of Avelino’s
algorithm [12].

3 KNOWLEDGE ISLANDS
In this section, we present Knowledge Island, a web tool designed
to identify the concentration of knowledge within source code
repositories. This open-source tool enables developers and project
managers to asynchronously clone GitHub repositories and iden-
tify knowledge concentrations by calculating the Truck Factor of
each project component. By pinpointing components with a low
Truck Factor, Knowledge Island highlights areas where knowledge
is concentrated in a single developer or small group, potentially



Knowledge Islands: Visualizing Developers Knowledge Concentration SBES ’24, September 30– October 04, 2024, Curitiba, PR

posing a risk to project stability. Figure 1 provides a visual overview
of the main actions and components of Knowledge Island.

The tool follows a simple client-server architecture divided into a
front-end and back-end. The front-end is responsible for acquiring
user input data, such as information from the repository to be
cloned and analyzed, and presenting the processed results. The
back-end consists of a RESTful API along with access to a relational
database to store user data and their repositories.

The front-end is implemented using the React5 Javascript library,
version 18. To help with the build of web components such as tables
and forms and their styling, we mainly use the component libraries
React Bootstrap6 and Material UI7. The main components of the
front-end include a form for repository cloning and analysis, a list
of cloned repositories with their analysis process status, a detail
page containing repository knowledge concentration information,
and pages/components for user registration and authentication.

On the other hand, the back-end is implemented in the Java pro-
gramming language (version 17) and uses a PostgreSQL database
for data persistence. We employ the Spring Boot8 framework to
build the API and its endpoints. The back-end of Knowledge Islands
provides a set of endpoints for managing and retrieving information
about GitHub repository cloning and analysis results, as presented
in Table1. The first endpoint allows users to initiate the cloning and
analysis process for a specified GitHub repository by providing the
GitHub URL and specific branch name. The second one retrieves
a list of all cloning and analysis processes started by a particular
user, enabling users to track the status of their requests. The third
endpoint provides access to the analysis results of a specific reposi-
tory, including the knowledge concentration information and Truck
Factor calculations.

Finally, to clone and manipulate repositories in the back-end, we
utilize the Java library JGit9. This library allows the handling of Git
operations programmatically. We employ a set of publicly available
scripts to assist in extracting development history data, which is
essential for identifying knowledge within the code. These scripts
are included in our application repository10 and play an important
role in analyzing and processing the historical data needed for our
analysis.

4 USAGE SCENARIO
In this section we present a usage scenario following the main
features of Knowledge Islands, briefly represented in Figure 1. In
this example, we will use data from the Spring-Data-JPA11 project,
an important repository in the Spring Ecosystem12, and Apache
Kafka13, another popular project for web development.

After completing the registration and authentication process,
the user is directed to the Knowledge Islands Home page (see Figure
2). This page features a form that initiates a process of cloning and
analysis of a public GitHub repository. The form, which interacts

5https://react.dev/
6https://react -bootstrap.netlify.app/
7https://mui.com/
8https://spring.io/projects/spring-boot
9https://www.eclipse.org/jgit/
10https://github.com/OtavioCury/knowledge-islands
11https://github.com/spring-projects/spring-data-jpa
12https://github.com/spring-projects
13https://github.com/apache/kafka

Figure 1: Knowledge Islands operation diagram.

with the first endpoint described in Table 1, includes two fields: a
mandatory field for entering the GitHub URL of the repository to
be analyzed and an optional field for specifying the desired branch
to be cloned and analyzed. The project’s main branch will be cloned
by default if the branch field is blank.

The analysis process begins asynchronously once the user clicks
the "Start Analysis" button (see Figure 2). The initiated tasks are then
listed in a table beneath the form, allowing users to managemultiple
analyses simultaneously. Each row in the table provides detailed
information about the ongoing tasks, including the repository URL,
the date and time the analysis started, and the current stage of the
process. The stages range from "Process Initialized" to "Process
Finished," providing a clear and concise overview of the analysis
progress for each repository. This setup ensures that users can
easily track the status of their analyses and manage their workflows
efficiently.

Only after a process has successfully completed ("Process Fin-
ished") can the user access the detailed analysis results via a button
in the last column of the table (see Figure 2). Upon clicking the "De-
tails" button for a repository listed on the home page (Figure 2), the
user is directed to the repository analysis detail page (Figure 3). This
page presents a comprehensive view of the analyzed repository.

At the top of this repository detail page, the users find key in-
formation such as the analyzed version data, the repository size -
measured by the number of developers, commits, and files - and
the overall project Truck Factor. At the bottom of the page, the user
will find a list of all developers and analyzed files.

At the center of the page, a tree component displays the project’s
directory structure, allowing users to navigate through folders and
files. Alongside each item (directory or file), a readily visible Truck
Factor value indicates the level of knowledge concentration within
that component (see Figure 3).

The label visually represents the Truck Factor of each item using
a gradient scale of orange hues. A darker shade of orange signifies
a lower Truck Factor, indicating a greater risk of knowledge loss or
project disruption. This visual cue facilitates the identification of
potential knowledge islands and enables proactive risk mitigation
efforts.



SBES ’24, September 30– October 04, 2024, Curitiba, PR Cury, Avelino

Table 1: Main endpoints of the Knowledge Islands API

Endpoint Method Description

/git-repository-version-process/start-git-repository-version-process POST
Initiates the cloning and analysis of a repository.
Receives JSON form with GitHub URL of the repository, and
the name of the branch.

/git-repository-version-process/user/<id> GET Lists the repository analysis processes initiated by a user.
/git-repository-version/<id> GET Returns the analysis results of a repository.

Figure 2: Page for cloning and listing analyzed repositories.

Figure 3: Repository analysis details page.

The users can select a specific item in the tree component and
click the "See Details" button to access more in-depth information
about its Truck Factor. A modal window then displays a table listing
the Truck Factor developers responsible for that component, their
names, email addresses, and the number of files they authored. This

table is sorted in descending order by the number of files authored
(see Figure 4). The user can then click the button in the last column
"Authored files" to expand the row and see a list of files. In short,
this feature, in addition to indicating the main developers, indicates
how many and which files they maintain.



Knowledge Islands: Visualizing Developers Knowledge Concentration SBES ’24, September 30– October 04, 2024, Curitiba, PR

Figure 4: Modal displaying the Truck Factor details of a specific artifact.

The Truck Factor developer table includes a column indicating
whether each developer is currently active in the project. The tool
defines, by default, inactive developers as those who have not made
any commits within the past year, following established criteria
from the literature [3, 12]. This information enables users to identify
potential knowledge gaps and address them proactively.

Still in the Truck Factor details modal, beneath the list of Truck
Factor developers, users will find a list of files along with their
corresponding importance scores—as explained in Section 2.1.1—and
the number of active authors associated with each file. This feature
allows users to identify files with greater significance to the project
and correlate this with the number of developers knowledgeable
about these files. Consequently, users can pinpoint key files at risk
of being left without experts, potentially leading to project progress
and maintenance complications.

5 LIMITATIONS
Knowledge Island effectively analyzes a software repository’s source
code knowledge concentration. However, we acknowledge limita-
tions in the current version of the tool that will be addressed in
future implementations.

Currently, the repository directory structure under analysis is
presented only using the tree component, as shown in Figure 3.
However, there are other ways to present this information, such
as zoomable bubble plots, which can facilitate the visualization of
the structure and knowledge concentration information. Offering
different repository viewing options will provide users with a more
flexible and intuitive experience.

Additionally, the knowledge model used in the tool is another
feature that could offer more options for users. As explained in
Section 2.1.1, the tool currently employs the Degree of Expertise
(DOE) in the Truck Factor algorithm. Consequently, our imple-
mentation inherits all the limitations of the model discussed in the
study that proposed it [12]. Therefore, the tool can incorporate

other knowledge models from the literature, allowing users to con-
duct knowledge concentration assessments that consider different
variables from the development history.

Another current limitation is that Knowledge Island does not
have direct integration with GitHub, such as through the login
process. The tool can use the GitHub API with OAuth 2.0 to au-
thenticate users, thereby facilitating the process of analyzing data
from their repositories.

6 RELATEDWORK
Some tools have been proposed in studies examining developer
expertise in source code. This section will present some of these
tools and explain how Knowledge Islands differ from them.

SonarQube14 is a well-known open-source platform designed
to manage and enhance code quality by identifying poorly written
code that violates coding rules or best coding practices[8]. It comes
equipped with a wide array of features in its standard installation
and can be further expanded through the use of both free and
commercial plug-ins.

One of these extensions that complements Sonarqube’s func-
tionalities is the SoftVis3D15 plugin, which allows you to visualize
the directory and file structure of a project such as a city. Using a
combination of colors and building heights, the tool indicates hot
spots in the code according to different metrics such as coverage,
complexity, and number of authors. The metric number of authors
of a file is related to the Truck Factor concept, but different from
the metrics used in Knowledge Islands, only Blame measures of the
files are taken into account, not considering other variables that
make the identification of expertise more robust.

In addition to plugins, there are also web tools specialized in
code analysis. CodeScene16 is a proprietary code analysis web tool
that offers a variety of code quality metrics [29, 30]. Among these
14http://www.sonarqube.org
15https://softvis3d.com/
16https://codescene.com/



SBES ’24, September 30– October 04, 2024, Curitiba, PR Cury, Avelino

quality metrics, there are some related to the concentration of
knowledge, identification of experts, and calculation of lost knowl-
edge, simulating a Truck Factor situation. However, like the tools
presented previously, CodeScene only uses LoC (number of lines
of code) to identify authors [21], which represents a gap for tools
that implement improvements.

There are also other less commercial tools aimed at specific
studies. For example, Avelino presents a tool17, together with a
new algorithm for calculating Truck Factor [4]. Haratian et al. pre-
sented BFSig18, another tool for calculating the Truck Factor, with
the difference of taking into account the importance of software
components in the calculation [16]. Almarimi et al. in the study
present the tool named CsDetector19, which, among other commu-
nity smells, is capable of estimating the Truck Factor [1]. Finally,
Klimov et al. introduce Bus Factor Explorer20, a web application
with an interface and an API to analyze and visualize Truck Factor
information using theDegree of Authorship (DOA) as the knowledge
model [22]. However, even though each of these tools represents
an advancement in the field, they are either not web-based, which
makes their use by practitioners more difficult, or they do not im-
plement the knowledge model and file importance metrics used in
this study.

7 CONCLUSION AND FUTUREWORK
In this work, we present Knowledge Islands, a tool for visualizing
the concentration of knowledge in software repositories. Utilizing
state-of-the-art models and algorithms from the literature, Knowl-
edge Islands assists developers and software managers in decision-
making by providing metrics on the importance of developers and
files in a repository.

In the presented usage case, using data from public repositories,
we demonstrated the process of downloading, extracting, and pre-
senting data to the user. Knowledge Islands effectively showcased
the repository’s Truck Factors at various granularities: project, mod-
ule, and file levels. The tool also highlighted the top developers
associated with each artifact, along with the top files. This usage sce-
nario illustrates the efficiency of Knowledge Islands as a knowledge
distribution analysis tool.

As future improvements, as pointed out in Section 5, we intend to
facilitate integration with GitHub. By enabling authentication using
GitHub credentials, users will have faster and more seamless access
to their repositories’ data. Additionally, we aim to enhance the
tool’s visual design by offering new ways to present metrics related
to knowledge concentration through various graphics, such as
zoomable bubble plots21. This will provide users with more intuitive
and interactive visualizations. We plan to incorporate additional
knowledge models, offering users different perspectives on code
knowledge and further enriching the tool’s analytical capabilities.

Finally, we plan to make the tool available to the community
and collect feedback from practitioners. This information will help
us identify the strengths and weaknesses of the application and
determine new requirements for a knowledge analysis tool.

17https://github.com/aserg-ufmg/Truck-Factor
18https://github.com/JetBrains-Research/file-importance
19https://github.com/Nuri22/csDetector
20https://github.com/JetBrains-Research/bus-factor-explorer
21https://observablehq.com/@d3/zoomable-circle-packing

As a final note, we invite the community of developers and
researchers to contribute to Knowledge Islands, to improve the
features previously mentioned. The tool is publicly available on
GitHub22, along with documentation on its main endpoints, fea-
tures, and scripts.

REFERENCES
[1] Nuri Almarimi, Ali Ouni, Moataz Chouchen, and MohamedWiem Mkaouer. 2021.

csDetector: an open source tool for community smells detection. In 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 1560–1564.

[2] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander
Serebrenik. 2019. On the abandonment and survival of open source projects: An
empirical investigation. In 13th International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE, 1–12.

[3] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander
Serebrenik. 2019. On the abandonment and survival of open source projects: An
empirical investigation. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 1–12.

[4] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. 2016.
A novel approach for estimating truck factors. In 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). IEEE, 1–10.

[5] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. 2019.
Measuring and analyzing code authorship in 1 + 118 open source projects. Science
of Computer Programming 176 (5 2019), 14–32. https://doi.org/10.1016/j.scico.
2019.03.001

[6] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and
Premkumar Devanbu. 2011. Don’t touch my code! Examining the effects of
ownership on software quality. In 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. 4–14.

[7] Fabio Calefato, Marco Aurelio Gerosa, Giuseppe Iaffaldano, Filippo Lanubile, and
Igor Steinmacher. 2022. Will you come back to contribute? Investigating the
inactivity of OSS core developers in GitHub. Empirical Software Engineering 27,
3 (2022), 1–41.

[8] G Ann Campbell and Patroklos P Papapetrou. 2013. SonarQube in action. Manning
Publications Co.

[9] Edna Dias Canedo, Rodrigo Bonifácio, Márcio Vinicius Okimoto, Alexander
Serebrenik, Gustavo Pinto, and Eduardo Monteiro. 2020. Work practices and
perceptions from women core developers in oss communities. In 14th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). 1–11.

[10] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebastiano
Panichella. 2012. Who is going to mentor newcomers in open source projects?.
In ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. 1–11.

[11] Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2015. Assessing
the bus factor of git repositories. In 2015 IEEE 22nd International Conference on
Software Analysis, Evolution, and Reengineering (SANER). IEEE, 499–503.

[12] Otávio Cury, Guilherme Avelino, Pedro Santos Neto, Marco Túlio Valente, and
Ricardo Britto. 2024. Source code expert identification: Models and application.
Information and Software Technology (2024), 107445.

[13] Otávio Cury, Guilherme Avelino, Pedro Santos Neto, Ricardo Britto, and Marco
Túlio Valente. 2022. Identifying source code file experts. In 16th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement.
125–136.

[14] Mívian Ferreira, Marco Tulio Valente, and Kecia Ferreira. 2017. A comparison of
three algorithms for computing truck factors. In 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC). IEEE, 207–217.

[15] Thomas Fritz, Gail C Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily
Hill. 2014. Degree-of-knowledge: Modeling a developer’s knowledge of code.
ACM Transactions on Software Engineering and Methodology (TOSEM) 23, 2 (2014),
1–42.

[16] Vahid Haratian, Mikhail Evtikhiev, Pouria Derakhshanfar, Eray Tüzün, and
Vladimir Kovalenko. 2023. BFSig: Leveraging File Significance in Bus Factor
Estimation. In 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1926–1936.

[17] Lile Hattori and Michele Lanza. 2010. Syde: a tool for collaborative software
development. In 32nd ACM/IEEE International Conference on Software Engineering-
Volume 2. 235–238.

[18] Md Kamal Hossen, Huzefa Kagdi, and Denys Poshyvanyk. 2014. Amalgamating
source code authors, maintainers, and change proneness to triage change requests.
In 22nd International Conference on Program Comprehension. 130–141.

22https://github.com/OtavioCury/knowledge-islands

https://doi.org/10.1016/j.scico.2019.03.001
https://doi.org/10.1016/j.scico.2019.03.001


Knowledge Islands: Visualizing Developers Knowledge Concentration SBES ’24, September 30– October 04, 2024, Curitiba, PR

[19] E. Jabrayilzade, M. Evtikhiev, E. Tuzun, and V. Kovalenko. 2022. Bus Factor in
Practice. In 2022 IEEE/ACM 44th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEEComputer Society, Los Alamitos,
CA, USA, 97–106. https://doi.org/10.1109/ICSE-SEIP55303.2022.9793985

[20] Elgun Jabrayilzade, Mikhail Evtikhiev, Eray Tüzün, and Vladimir Kovalenko. 2022.
Bus factor in practice. In 44th International Conference on Software Engineering:
Software Engineering in Practice. 97–106.

[21] Andreas Karlsson. [n. d.]. Driving Development Resilience: Analyzing Truck
Factors across Proprietary and Open-Source Projects. ([n. d.]).

[22] Egor Klimov, Muhammad Umair Ahmed, Nikolai Sviridov, Pouria Derakhshanfar,
Eray Tüzuü, and Vladimir Kovalenko. 2023. Bus Factor Explorer. In 2023 38th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 2018–2021.

[23] Segla Kpodjedo, Filippo Ricca, Philippe Galinier, and Giuliano Antoniol. 2008.
Not all classes are created equal: toward a recommendation system for focusing
testing. In Proceedings of the 2008 international workshop on Recommendation
systems for software engineering. 6–10.

[24] H Maen, ML Collard, and J Maletic. 2010. Measuring class importance in the con-
text of design evolution. In ProgramComprehension (ICPC), IEEE 18th International
Conference on. IEEE.

[25] Paul Ralph, Sebastian Baltes, Gianisa Adisaputri, Richard Torkar, Vladimir Ko-
valenko, Marcos Kalinowski, Nicole Novielli, Shin Yoo, Xavier Devroey, Xin Tan,
et al. 2020. Pandemic programming: how COVID-19 affects software developers
and how their organizations can help (2020). arXiv preprint arXiv:2005.01127
(2020).

[26] Filippo Ricca, AlessandroMarchetto, andMarco Torchiano. 2011. On the Difficulty
of Computing the Truck Factor. Vol. 6759 LNCS. 337–351. Issue ii. https://doi.org/
10.1007/978-3-642-21843-9_26

[27] Peter C Rigby, Yue Cai Zhu, Samuel M Donadelli, and Audris Mockus. 2016.
Quantifying and mitigating turnover-induced knowledge loss. 38th International
Conference on Software Engineering (ICSE), 1006–1016. https://doi.org/10.1145/
2884781.2884851

[28] Emre Sülün, Eray Tüzün, and Uğur Doğrusöz. 2019. Reviewer recommendation
using software artifact traceability graphs. In 15th International Conference on
Predictive Models and Data Analytics in Software Engineering. 66–75.

[29] Adam Tornhill. 2015. Your code as a crime scene: use forensic techniques to
arrest defects, bottlenecks, and bad design in your programs. Your Code as a
Crime Scene (2015), 1–218.

[30] Adam Tornhill. 2018. Assessing technical debt in automated tests with code-
scene. In 2018 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, 122–125.

https://doi.org/10.1109/ICSE-SEIP55303.2022.9793985
https://doi.org/10.1007/978-3-642-21843-9_26
https://doi.org/10.1007/978-3-642-21843-9_26
https://doi.org/10.1145/2884781.2884851
https://doi.org/10.1145/2884781.2884851

	Abstract
	1 Introduction
	2 Background
	2.1 Code Knowledge Models
	2.2 Truck Factor Algorithm

	3 Knowledge Islands
	4 Usage Scenario
	5 Limitations
	6 Related Work
	7 Conclusion and Future Work
	References

