
An Exploratory Study on the Lifecycle of Code Clones
During Code Review

Italo Uchoa, Denis Sousa,
Matheus Paixao, Pedro Maia

State University of Ceará
Fortaleza, Brazil

{italo.uchoa,denis.sousa,pedro.ulisses}@
aluno.uece.br,matheus.paixao@uece.br

Anderson Uchôa
Federal University of Ceará

Itapajé, Brazil
andersonuchoa@ufc.br

Chaiyong Ragkhitwetsagul
Mahidol University

Nakhon Pathom, Thailand
chaiyong.rag@mahidol.edu

ABSTRACT
The Modern Code Review (MCR) process is iterative and asyn-
chronous, enabling early identification of several issues during
software development. Overall, code review consists of inspect-
ing code before merging it into the codebase. Code clones are
code fragments that are copied and reused across different (or
the same) codebases, often with minor changes. Developers
must be aware of code clones in their projects, as issues in a
cloned fragment may cause adjustments in all related clones,
which can significantly impact the project’s maintainability.
Nevertheless, there is still a gap in research addressing the
presence and behavior of code clones during code review. By
leveraging the CROP dataset (with over 28k code reviews and
80k revisions) and the Siamese clone detector, we identified
27,656 relevant code clones that underwent code review in 6
different software systems. A manual validation of a represen-
tative sample indicated a predominance of Type-I (46.74%) and
Type-III (45.3%) clones. Based on the clones’ lifecycle within
the review, we categorized the reviews into Single and Re-
curring, according to how the clones are introduced and/or
removed during the review process. We identified 224 reviews
for which clones appear in a single review (Single) and 1,258
reviews for which clones appear in multiple revisions (Recur-
ring). Additionally, 236 code reviews lie at the intersection of
Recurring and Single code reviews. To deepen the analysis,
we introduced two metrics, Duration and Distance, to assess
how clones are introduced or removed during the review. We
observed that, on average, clones are often introduced at the
beginning of the code review, commonly surviving the review
process and being merged into the codebase.

KEYWORDS
Modern Code Review, Code Clones, Empirical Study

1 Introduction
Modern Code Review (MCR) has enabled developers to build
higher-quality systems by providing benefits related to mainte-
nance and knowledge transfer [8, 26]. This practice is common
among large companies such as Microsoft [2], Google [21], and
Facebook [4]. Through MCR, developers are able to analyze
code modifications before they are integrated into the code-
base in a faster and more intuitive manner. Unlike traditional
code inspections, which is a manual practice of reviewing code,

MCR is fully tool-based. Platforms such as Gerrit and GitHub
enable reviews to be performed asynchronously and dynami-
cally. Furthermore, it occurs in an iterative manner, with each
iteration being referred to as a revision. In this way, develop-
ment teams can prevent future issues such as the introduction
of bugs [34], code smells [17], security vulnerabilities [25],
architectural changes [14], among others.

Code clones are fragments of code that are copied and
reused on other (or the same) codebase, often with minor mod-
ifications [1, 20]. Code cloning increases productivity in im-
plementing new features and is often introduced intentionally
into the codebase [31]. However, if an error is identified in the
code clone segment, it means that all clones must be corrected,
which hinders the maintainability of the system [5, 10, 19].
Therefore, it is essential that developers are aware of the copies
that exist in their codebase. Although some clones can be spot-
ted manually, it is more common that code clones are detected
through the use of static analysis tools such as code clone
detectors [35].

Although MCR is designed to help developers manage code
cloning, no studies have examined the link between code
cloning and code review. As a motivating example, we present
a detailed analysis of the code review numbered 22961 from
the eclipse.platform.ui project on the Gerrit platform. In
this review, the developer added a method called getStyleOver-
ride within the StackRenderer class. However, this method was
copied from theWBWRenderer class, and one of the reviewers
identified the duplicated code during the first revision and
suggested a refactoring:

“I like this but perhaps we should be moving the
‘getStyleOverride’ logic into AbstractPartRenderer
(since it doesn’t use SWT) so that we don’t keep
making copies of it.”

As a result, the cloned fragmentwasmoved to the superclass
to eliminate redundancy and improve code maintainability.
This example represents a successful code clone mitigation, as
the code clone was quickly identified, and a corrective action
was proposed through the use of an abstract class.

In review number 101346 of the same project, we observed
a similar scenario. Most of the code from the createButtonsFor-
ButtonBar method in the SaveAsDialog class was copied to the
CustomizePerspectiveDialog class with a few added changes.
However, in this case, there was no discussion regarding the
code duplication. The copied snippet was introduced in the

https://orcid.org/0000-0002-6847-5569

SBES ’25, September 22–26, 2025, Recife, PE Uchoa et al.

protected void createButtonsForButtonBar(

Composite parent) {

okButton = createButton(parent ,

IDialogConstants.OK_ID ,

IDialogConstants.OK_LABEL ,

true);

createButton(parent ,

IDialogConstants.CANCEL_ID ,

IDialogConstants.CANCEL_LABEL ,

false);

}

protected void createButtonsForButtonBar(

Composite parent) {

Button okButton = createButton(parent ,

IDialogConstants.OK_ID ,

WorkbenchMessages.

CustomizePerspectiveDialog_okButtonLabel ,

true);

okButton.setFocus ();

createButton(parent ,

IDialogConstants.CANCEL_ID ,

IDialogConstants.CANCEL_LABEL ,

false);

}

Figure 1: Original (left) and cloned (right) versions of method createButtonsForButtonBar

first revision, lasting until the fifth revision, and was finally
merged into the codebase. Figure 1 depicts the original create-
ButtonsForButtonBar method and the cloned version. These
examples demonstrate that while some clones are detected
and addressed during MCR, others remain undetected.

This paper presents an empirical study on the lifecycle of
code clones in MCR to understand their presence and behavior
during code review. Our goal is to provide insights for devel-
opers, tool builders, and researchers on code cloning in this
context.

By leveraging the CROP dataset [13] and the Siamese [18]
clone detector, we identified 27,656 relevant code clones in
6 different software systems. Next, we took a statistically
significant sample of these relevant clones and performed
a manual validation. As a result, 96.7% of the identified clones
were validated as true clones. In addition, we also manually
classified the clones into Type-I (i.e., exact clones with only
formatting differences), Type-II (i.e., Clones differing only in
names and data types), and Type-III (i.e., clones with added/re-
moved/changed statements). We identified 46.74% and 45.3%
of Type-I and Type-III clones, respectively.

Following that, the code reviews with more than one revi-
sion and the presence of code clones were categorized as Single
or Recurring. In our data, we identified 224 reviews for which
clones appear in a single revision (Single) and 1,258 reviews
for which clones appear in multiple revisions (Recurring). Ad-
ditionally, 236 code reviews lie at the intersection of Recurring
and Single reviews. From the code reviews classified in these
categories, we carried out an analysis of the clones’ lifecycle,
analyzing the moment in which they appear and disappear in
the code review.

Finally, two metrics are proposed to assess the persistence
and introduction of code clones in code reviews. The Duration
metric measures the number of revisions the clone remained
during the code review. Additionally, Distance measures at
which revision the first occurrence of the clone occurs in the
code review. Overall, the results from Duration and Distance

suggest that clones usually persist throughout much of the
code review and are mostly introduced early in the process.

The main contributions of this paper are listed as follows:

• To the best of our knowledge, this is the first empirical
study of code cloning during code review.

• A dataset [28] of manually validated code clones linked
to code reviews.

• Two novel metrics (Duration and Distance) to measure
clone persistence and introduction timing.

2 Background
2.1 Modern Code Review
Modern Code Review (MCR) was introduced by Cohen [3] and
popularized by Bacchelli and Bird [2]. It is a software devel-
opment practice where team members review code changes
submitted by a developer to identify defects, improve qual-
ity, and promote knowledge sharing. Reviewers typically look
for bugs, performance issues, design flaws, and style viola-
tions [16, 17, 27].

This practice is widely adopted by major companies such as
Microsoft [2], Facebook [4], and Google [21]. MCR is iterative
by nature, as after the initial review of the code changes, re-
viewers provide feedback through comments. The code owner
then adjusts the code based on the comments and resubmits
a revised version of the code for inspection. Thus, code re-
view may go through multiple revisions, which correspond
to intermediate versions of the code that are refined over
time [2]. These revisions serve as temporary versions that are
progressively adjusted until the review is approved and the
code changes are merged into the codebase.

MCR is flexible due to the lack of strict guidelines and
is supported by tools like Gerrit and GitHub, which enable
asynchronous reviews with inline comments. Integration with
version control and CI/CD pipelines further streamlines the
process within agile workflows [36].

An Exploratory Study on the Lifecycle of Code Clones During Code Review SBES ’25, September 22–26, 2025, Recife, PE

2.2 Code Clones
Code Clones are pairs of code fragments that are considered
similar based on a defined notion of similarity. This similarity
can be assessed at different levels of programming abstrac-
tion (e.g., statement, block, method, class, package, or compo-
nent) and within one or across multiple projects. In the study
by Zakeri-Nasrabadi et al. [35], code clones are classified into
four types: (1) Type-I, in which the code fragments are identi-
cal, except for variations in white spaces and comments; (2)
Type-II, in which the code fragments maintain the same struc-
ture, but may differ in in identifiers’ names, data types, white
spaces, and comments; (3) Type-III, where the code fragments
may include changes in identifiers, variable names, data types,
and comments, and parts of the code may be deleted, updated,
or newly added; and (4) Type-IV, in which the code fragments
differ in the text but implement the same functionality.

Clones may be intentionally added to meet specific require-
ments or developer preferences. Several studies propose meth-
ods for identifying different types of code clones by analyzing
code repositories [1, 22, 35], often combining multiple detec-
tion approaches. The literature [1, 35] highlights common
approaches for clone detection. The textual approach uses text
processing to find Type-I and Type-II clones. The token-based
(lexical) approach [7, 18] efficiently detects Type-III clones,
while also identifying Type-I and Type-II clones by breaking
code into symbol sequences for comparison. Tree-based meth-
ods use abstract syntax trees, while graph-based methods rely
on structures like program dependence graphs [32]. The se-
mantic approach, usually based on machine-learning-based
techniques, is more appropriate for detecting Type-IV clones,
which are undecidable in general. There are other approaches
such as metric-based, image-based, test-based, or hybrid.

In this study, we use the token-based Siamese tool [18] to
detect Java code clones in code review. Siamese was chosen for
its scalability and ability to identify Type-I to Type-III clones,
even with minor code changes, in large codebases.

3 Experimental Setup
To conduct the empirical study proposed in this study, we
selected a clone detector and a code review dataset. Both of
which are presented in this section.

3.1 Siamese Clone Detector
Siamese [18] is a scalable and rank-based clone detector de-
signed to enhance both accuracy and efficiency. It combines
multiple techniques, including multiple code representations,
query reduction (QR), and a customized similarity ranking
function to detect clones effectively. The detection process
consists of two main phases: indexing and retrieval. In the
indexing phase, the tool processes the source code corpus by
generating four code representations: (i) the original source
code (𝑟0), (ii) n-gram tokens without renaming (𝑟1), (iii) n-gram
tokens with renamed identifiers, literals, and type tokens (𝑟2),
and (iv) n-gram tokens with all tokens renamed (𝑟3).

These representations are obtained through code tokeniza-
tion, a step in which the source code is broken down into
smaller syntactic elements such as keywords, operators, and
literals. After tokenization, Siamese constructs n-grams, i.e.,
sequences of 𝑛 consecutive tokens, that help capture struc-
tural patterns and local context. This method enhances the
tool’s ability to detect the presence of small code variations
like identifier renaming or command reordering. Additionally,
by using n-grams, Siamese increases the robustness of clone
search and can identify both syntactically and semantically
similar code fragments.

In the retrieval phase, a code snippet is used as a query to
search for potential clones within the indexed corpus. The
query undergoes the same preprocessing as the corpus, in-
cluding tokenization and the generation of the four code rep-
resentations. Then, Siamese applies query reduction to each
representation, removing common or non-informative tokens
and n-grams. This reduction process favors rare and more
distinctive tokens, aiming to increase retrieval precision. The
aggressiveness of this filtering is controlled by the qr threshold
parameter: lower threshold values result in a more selective
reduction.

Refined queries retrieve similar code segments, which are
then ranked and filtered by a similarity threshold (simThresh-
old) to identify clones. Using a two-phase approach with token-
based representations and ranking, Siamese enables scalable
and effective clone search in large codebases.

In this study, we configured Siamese with the following
parameters: an n-gram size of 4, a QR threshold of 10, and a
boosting factor also set to 4. The minimum clone size was set
to 6 tokens, and the similarity thresholds were defined as {50%,
60%, 70%, 80%}. We adopted the parameter values from the
original Siamese study [18]. These parameters control impor-
tant aspects of clone detection, including the granularity of
code representation (n-gram size), the aggressiveness of token
filtering (QR threshold), the weighting of relevant matches
(boosting), the minimum number of tokens required to con-
sider a clone (minCloneSize), and the similarity thresholds used
to filter final results.

Although the optimal configuration of these parameters
may vary depending on the dataset characteristics, we adopted
the default settings proposed in the original Siamese study, as
they have proven effective across a wide range of scenarios.
Furthermore, we manually validated a sample of the detected
clones and observed high precision, which supports the ade-
quacy of these default parameters for the goals of our study.

3.2 The CROP Dataset
CROP is a dataset that stores different code revisions by linking
review data with full code snapshots taken at the moment of
the review [13]. The dataset records code changes made during
the code review process, including their respective revisions.

CROP retrieves snapshots of each revision from projects
hosted on Gerrit. The dataset was built using commits to store
the snapshots of project revisions in repositories traceable via

SBES ’25, September 22–26, 2025, Recife, PE Uchoa et al.

Table 1: Number of code reviews and revisions extracted
from CROP

Projects Code Reviews Revisions Collaborators

jgit 9,676 27,559 304
platform.ui 8,565 26,728 787
egit 7,121 17,196 180
couchbase-java-client 1,313 3,918 28
couchbase-jvm-core 1,179 3,249 23
spymemcached 563 1,456 48

Total 28,417 80,106 1,370

Git. Moreover, CROP labels snapshots as before when they
refer to the state of the project prior to a revision’s submission,
and after when they refer to the state following the submission.
This setup enables a deep analysis of the code review process
since it provides a complete record of the revisions performed.

In this study, we used only the Java projects available in
CROP due to Siamese’s scope. Table 1 shows the projects
included in this study, along with the number of reviews and
revisions considered. For this study, we considered 28,417 and
80,106 reviews and revisions, respectively. Additionally, we
included the number of contributors to provide more context
on the scale and collaborative nature of the studied projects,
in total we had 1,370 collaborators for all projects.

4 Methodology
In this empirical study, we conducted an exploration of code
clones using Siamese [18] on six Java projects extracted from
CROP [13] to investigate the lifecycle of code clones during
code review. We aim to ask the following research questions:

• RQ1: Does code cloning occur during code review?
• RQ2: What types of code clones emerge during code re-
view?

• RQ3: What is the lifecycle of code clones during code
review?

To answer the proposed RQs, we carried out a set of pro-
cesses divided into four phases, as illustrated in Figure 2.

4.1 Phase 1: CROP Update
The original CROP dataset includes code review data up until
2017 [13]. Hence, we first performed an update to include
code reviews from the years 2017 to 2023. The update was
applied exclusively to the Java projects in CROP, through
modifications to the original source code [12]. The following
steps were carried out: Language update and Adaptation
to new Gerrit API.

Language update: The mining code, originally written in
Python 2.7, was migrated to Python 3.10. This update aimed to
ensure compatibility with modern libraries and tools. Adap-
tation to new Gerrit API: CROP, developed in 2017, was
designed to work with the structure and response formats
of the Gerrit API as it existed at the time. However, Gerrit
has since undergone updates that significantly changed its
API, including modifications to URLs, query parameters, and

Figure 2: Empiricalmethodology employed in this study.

data structure. The modifications consisted of updating HTTP
requests and processing the responses returned by the API.

After updating CROP’s source code, as described above, we
ran the mining process to collect the new code review data.
The updated mining process took approximately three months
to execute. Table 1 showcases the code review data considered
in this study. The updated CROP dataset, alongside all other
artifacts created in this study, is available in our replication
package [28].

4.2 Phase 2: Diffs Processing and Clone
Detection

The goal of this phase is to identify code clones across revisions.
To achieve this, we performed the same clone detection process
for each of the 80,106 revisions extracted from CROP. For each
revision, CROP provides the before and after snapshots of the
codebase, representing the state of the code as it was right
before and right after the revision, respectively. Hence, a diff
between the after and before snapshots contains only the code
changes made by the developers in the respective revision.
This is necessary to avoid the Rebasing problemwhenworking
with code review data [15]. In short, to find potential clones
introduced in a certain revision, we need to i) identify the
newly added code, and ii) use Siamese to find clones between
the new code and the existing code (before snapshot). This
process is detailed next.

First, we take the revision’s before snapshot and index it
into Siamese. Internally, Siamese parses the entire codebase,
preparing the code snippets to be compared against a cer-
tain query, as detailed in Section 3.1. Next, we generate a diff

An Exploratory Study on the Lifecycle of Code Clones During Code Review SBES ’25, September 22–26, 2025, Recife, PE

between the after and before snapshots, representing the set
of changes performed in the revision. Once we generate the
diff file for the revision, we extract the corresponding code
blocks. We organize the code blocks into added and removed
code blocks. Since we want to identify clones that are intro-
duced, we discard the removed code blocks. Finally, we also
discard all added code blocks smaller than six lines of code
This is the minimum snippet size commonly used to detect
code clones [9, 23, 30].

In the next step, we use the added code blocks longer than
six lines as queries into Siamese. This way, if Siamese returns
a match, it indicates that an added code block is a potential
clone of an existing snippet in the codebase. This process is
repeated for all added code blocks of all revisions considered
in this study. This procedure took approximately two weeks
to execute. In total, considering the 80,106 revisions, Siamese
reported 38,490 code clones.

In our preliminary analysis, we found that some clones
reported by Siamese were actually code snippets moved within
the codebase, not true duplicates. Because diff files represent
moved code as separate additions and removals, these cases
appeared as new code. To address this, we cross-checked all
reported clones with their original diff files and discarded
2,282 clones that came from moved snippets.

Siamese detects clones across the entire codebase, but not
all are relevant to this study. Since cloning is common in test
code [29], we excluded 8,275 clones from test files and directo-
ries. Additionally, 277 clones moved within test files were also
discarded.

All clones not from moved or test code were considered
relevant, resulting in 27,656 relevant clones, which represent
approximately 72% of those reported by Siamese. These clones
appeared in 2,321 code reviews. This set of clones and reviews
was used in Phases 3 and 4 of our methodology, as described
next.

4.3 Phase 3: Manual Validation
For this phase, initially, we filtered the 27,656 relevant clones
identified in our methodology, as presented in Section 4.2.
Since clone detection is performed independently for each
revision, the same code snippet may be cloned multiple times
within the same revision, across consecutive revisions, and
across consecutive reviews. Hence, a manual validation that
includes duplicated clones would not be representative.

To address this, we applied a filtering step to identify unique
clones, i.e., unique code snippets that do not repeat within
the set of detected relevant clones. Thus, for each relevant
clone, we generated a hash value based on the code content.
This approach allowed us to group identical clone instances
together and reduce the set to a collection of entirely distinct
clones. As a result, we obtained 6,954 unique clones.

Next, we selected a statistically representative sample from
the set of unique clones. The sample was calculated using a
95% confidence level and a 5% margin of error, resulting in
a set of 365 clones. We adopted uniform stratified sampling,

Table 2: Distribution of the total number of unique
clones and the proportional selection of blocks for the
sample and pilot per project.

Project Population Sample Pilot

jgit 1031 54 5
platform.ui 4092 215 21
egit 998 52 5
couchbase-java-client 347 18 2
couchbase-jvm-core 192 11 1
spymemcached 294 15 2

Total 6954 365 36

where the distribution of sampled clones was proportional to
the number of unique clones in each project. This ensured the
sample was not dominated by clones from specific projects.

With the sample selected, we conducted a manual analysis
of the relevant clones detected by Siamese. Although Siamese
showed high accuracy in detecting code clones in its original
study [18], clone detectors can still produce false positives [30],
which may affect the reliability of our empirical study. Fur-
thermore, even though Siamese is capable of detecting Type-I
to Type-III clones, it does not report the clone type when a
clone match is found.

The manual analysis aimed to validate whether the sampled
clones were true clones or false positives. In case of a true
clone, the clone type (Type-I, Type-II or Type-III) was also
indicated. The validation was conducted by three researchers
with experience in code clone analysis. First, two researchers
independently analyzed each clone. In cases of disagreement,
either in terms of clone validity or type, a third researcher was
consulted to make the final decision.

To ensure consistency and agreement among the evaluators,
we conducted a pilot study with 37 clones (approximately 10%
of the minimum required sample size). The clones included in
the pilot study were not part of the representative sample.

Table 2 presents the total number of unique clones per
project, along with the number of clones selected for the sam-
ple and pilot study.

4.4 Phase 4: Lifecycle of Clones
After our manual analysis of the clones presented in Sec-
tion 4.3, we proceeded with the analysis of the lifecycle of
the relevant code clones that appear during code review, i.e.,
how long the clones stay in the code review process, with the
goal of answering RQ3 introduced in Section 4. The following
describes the steps performed for code review classification
according to the clones’ behavior.

We initially used the 2,321 relevant code reviews and the
27,656 relevant code clones presented in Section 4.2. For the
lifecycle analysis, we selected only the code reviews that con-
tained more than one revision.

SBES ’25, September 22–26, 2025, Recife, PE Uchoa et al.

Table 3: Categories used to assess a clone’s lifecycle

Type Category Description

Single
Early Stage Code reviews where clones appeared only at the beginning.
Mid Stage Code reviews where clones appeared only in the middle.
Late Stage Code reviews where clones appeared only at the end.

Recurring

Emerging Cycle Code reviews where clones appeared from the beginning to the middle.
Central Cycle Code reviews where clones appeared repeatedly during the middle.
Closing Cycle Code reviews where clones appeared from the middle to the end.
Full Cycle Code reviews where clones appeared throughout all revisions.
Unstable Cycle Code reviews where clones appeared, disappeared, and reappeared.

As a result, we collected 1,718 relevant code reviews with
more than one revision. We used these code reviews and cate-
gorized them by analyzing the number of times a clone appears
across revisions. Code reviews in which a clone appears in
only one revision were categorized as Single, while those in
which clones appear in more than one revision were catego-
rized as Recurring. We identified 224 and 1,258 code reviews as
Single and Recurring, respectively. Additionally, a code review
may include more than one clone. In cases where one clone
appeared in only one revision and another persisted through
multiple revisions, the code review is classified as belonging
to the intersection of Single and Recurring. In this scenario,
236 code reviews were identified.

After categorizing the code reviews into Single and Recur-
ring, we analyzed the clones in each category and identified
their lifecycle, i.e., we determined when clones appeared and
disappeared during a code review. Table 3 presents the cate-
gories used to assess the clone lifecycle. The Single category
includes cases where clones appear in only one specific stage
of the review process: at the beginning (Early Stage), middle
(Mid Stage), or end (Late Stage).

The Recurring category captures more complex behaviors,
including clones that span multiple stages, such as from the
beginning to the middle (Emerging Cycle), from the middle, but
not persisting to the end (Central Cycle), from the middle to the
end (Closing Cycle), or throughout the entire review process
(Full Cycle). Additionally, Unstable Cycle refers to reviews in
which clones appear, disappear, and later reappear throughout
revisions.

After categorizing the clone lifecycle, we conducted an
investigation into the length of the period that clones remain
in a code review and also the moment at which they appear.
For this, we introduce two new metrics: Duration (𝐷𝑢) and
Distance (𝐷𝑖), as described next.

Let 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑛} be the ordered set of 𝑛 revisions in a
review. Consider a clone 𝑐 that appears in a subset of revisions
𝑅𝑐 ⊆ 𝑅. The Duration of clone 𝑐 is defined as the proportion
of revisions in which 𝑐 is present.

The Distance metric evaluates the relative position of the
first appearance of clone 𝑐 within the revision sequence. Let 𝑖
be the index in the revision sequence at which clone 𝑐 is first

introduced during the code review. The Duration and Distance
metrics are defined in Equation 1.

𝐷𝑖 (𝑐) =
{
0 if 𝑖 = 1
𝑖
|𝑅 | if 𝑖 > 1

𝐷𝑢 (𝑐) =
|𝑅𝑐 |
|𝑅 | (1)

Thus, the values of 𝐷𝑢 and 𝐷𝑖 range from 0 to 1. Higher
values of 𝐷𝑢 (𝑐) indicate that clone 𝑐 persists throughout the
review, while lower values of 𝐷𝑖 (𝑐) indicate clones that ap-
peared earlier in the revision process. Together, these metrics
provide insight into the lifecycle and the moment of introduc-
tion of clones in reviews composed of multiple revisions. We
disregarded code reviews with only a single revision, as these
do not allow us to understand the Duration and Distance of a
clone within a code review.

4.4.1 Duration and Distance Computation. To illustrate the
computation of the Duration and Distance metrics, we use re-
view number 22961 from our motivating example. This review
comprises four revisions, denoted as 𝑅 = {𝑟1, 𝑟2, 𝑟3, 𝑟4}. The
clone under consideration was introduced in the first revision
(𝑟1) and removed in the second revision (𝑟2), thus appearing
only in 𝑟1. Accordingly, the subset of revisions where the clone
is present is 𝑅𝑐 = {𝑟1}.

To compute the Duration of this clone, we consider the
proportion of revisions in which it appeared: 𝐷𝑢 (𝑐) = |𝑅𝑐 |

|𝑅 | =

1
4 = 0.25. The Distance is calculated based on the revision in
which the clone is introduced: since the clone appears in the
initial revision (𝑖 = 1), we apply the case 𝐷𝑖 (𝑐) = 0.

These values demonstrate a short-lived clone that appeared
early in the review process and was promptly removed, il-
lustrating an effective review practice that addresses code
duplication at an early stage.

5 Results
5.1 RQ1: Does code cloning occur during

code review?
This research question serves as a sanity check for this empiri-
cal study. To investigate code cloning in code reviews, we first
verify the presence of code duplication in MCR. Thus, RQ1 is
addressed through manual analysis of a representative sample
of 365 relevant clones, as detailed in Section 4.3.

An Exploratory Study on the Lifecycle of Code Clones During Code Review SBES ’25, September 22–26, 2025, Recife, PE

Table 4: Results of the manual validation of clones re-
ported by Siamese

Project True Clones False Positives

jgit 51 3
platform.ui 213 2
egit 45 7
couchbase-java-client 18 0
couchbase-jvm-core 10 0
spymemcached 15 0

Total 353 12

Table 4 presents the number of true clones and false posi-
tives identified in the manual validation. We can observe that
353 clones were validated as true clones, representing a pre-
cision rate of about 96.7%. This is in line with the precision
reported in the original Siamese publication [18]. Hence, this
result shows that Siamese is a suitable tool for this study.

With this level of precision, when extrapolating to the entire
population, it is estimated that at least 26,743 true relevant
clones were detected by Siamese. These clones were detected
in a total of 2,321 code reviews. Hence, the average number of
clones per review in which cloning occurs is 12. These results
indicate that code cloning occurs during MCR.

Although jgit has the highest number of code reviews (9,676),
as shown in Table 1, it is platform.ui that has the most true
clones detected (213). This suggests that the quantity of clones
does not directly correlate with the number of code reviews
or revisions, but rather depends on other factors.

Additionally, platform.ui focuses on GUI components, sug-
gesting that GUI projects may be more prone to code dupli-
cation due to repetitive layouts, widgets, and event handling.
Developers often replicate similar UI patterns, such as dialogs
or menus, across modules. This points to a new research direc-
tion: investigating whether visual interface systems generate
more clones than other domains.

Answer to RQ1: Code cloning occurs during code
review. In our study, wemanually validated 365 clones
and found 353 to be true positives. Considering this
high precision, we estimate that approximately 26,743
of the 27,656 relevant clones identified are true clones.

5.2 RQ2: What types of code clones emerge
during code review?

To address RQ2, we used the 353 true clones observed in the
sample of 365 unique clones. Table 5 presents the number of
clone types identified per project. We observed that 46.74%
were Type-I clones, 7.9% were Type-II, and 45.3% were Type-
III. These findings indicate that the most frequently occurring
clone types during code review are Type-I and Type-III.

We observed that platform.ui has many Type-I clones, likely
due to its focus on UI components where developers often

Table 5: The number of clone types detected per project.

Project Type-I Type-II Type-III

jgit 7 5 39
platform.ui 123 5 85
egit 17 11 17
couchbase-java-client 5 0 13
couchbase-jvm-core 3 4 4
spymemcached 10 3 2

Total 165 28 160

duplicate code structures. The larger contributor base in plat-
form.ui may also increase reuse of familiar solutions, resulting
in more exact duplicates. In contrast, jgit shows more Type-III
clones, reflecting different project characteristics.

The low proportion of Type-II clones (7.9%) indicates that
small edits to copied code are uncommon within the same
project. As shown by Svajlenko et al. [24], who analyzed mil-
lions of clones in 25,000 Java projects, Type-I and Type-III
clones are far more frequent, with only 0.06% of benchmark
clones classified as Type-II. This suggests developers typically
either reuse code exactly or make substantial changes, rarely
just renaming elements.

Answer to RQ2: It is observed that the most frequent
clone types are Type-I and Type-III, together repre-
senting more than 92% of the manually investigated
clone samples.

5.3 RQ3: What is the lifecycle of code clones
during code review?

We answer RQ3 by analyzing the clones and the relevant code
reviews identified in Section 4.2.

Although our manual analysis was based on a representa-
tive 95% sample of the clone population, the high precision
achieved by the Siamese clone detector gives us sufficient
confidence to extend our lifecycle analysis to the broader pop-
ulation of clones identified in our dataset. We believe this
approach offers a comprehensive perspective on how code
clones behave during the review process. This is particularly
relevant for syntactically identical clones that, despite their
structural similarity, may follow distinct lifecycle patterns
across different code reviews.

Table 6 presents the number of code reviews per project
classified as Single, Recurring, and the intersection between
these categories. In total, 224 and 1,258 code reviews were
identified as Single and Recurring, respectively. The results
show that most projects have Recurring code reviews. Without
considering the code reviews intercessions, approximately
84.89% of the code reviews contain clones that persist across
multiple revisions.

By categorizing code reviews as either Single or Recurring,
we were able to evaluate their respective lifecycles. Thus, Ta-
ble 7 shows the distribution of clone lifecycle stages within

SBES ’25, September 22–26, 2025, Recife, PE Uchoa et al.

Single code reviews. A total of 287 clones were observed in
the Early Stage, 140 in the Mid Stage, and 131 in the Late Stage.
With 51.44%, the majority of clones tend to appear in the first
revision. The chance of a clone appearing in the middle or at
the end of the code review is similar, at 25.09% and 23.48%,
respectively. In other words, if a clone is not recurrent, it will
not be submitted to the final project in 76.53% of cases.

In sequence, Table 8 presents the distribution of clone life-
cycle stages within Recurring code reviews. We identified 224
clones in the Emerging Cycle, 134 in the Central Cycle, and 426
in the Closing Cycle. Additionally, 967 clones completed the
Full Cycle, and 31 were categorized as undergoing an Unsta-
ble Cycle. Clones that span the entire code review (Full Cycle)
represent themajority, accounting for 54.3% of the cases. Mean-
while, clones found primarily toward the final stages of the
review (Closing Cycle) constitute the second-largest group,
with 24.50%. Clones emerging or concentrating in the earlier
stages of the review (Emerging Cycle and Central Cycle) to-
gether account for 21.01%. These data show that if the clone
is recurrent, in 80.07% of cases the clone was submitted to the
final project. Finally, clones with unstable behavior during the
review are relatively rare, representing only 1.78% of the total.

After analyzing the life cycle of the clones, we used the 353
true clones identified in the sample presented in Section 4.3.
We analyzed the distribution of clone types across their re-
spective life cycle stages. Table 9 presents the results of this
analysis. A joint analysis of Tables 7, 8, and 9 reveals a notable
consistency between the population data and the sample. The
Full Cycle and Early Stage categories remain the most frequent

Table 6: Distribution of code reviews with multiple re-
visions by project, classified as Single, Recurring and
Intersection

Project Single Recurrings Intersection

jgit 74 312 61
platform.ui 60 391 67
egit 73 355 64
couchbase-java-client 7 92 21
couchbase-jvm-core 7 85 13
spymemcached 3 23 10

Total 224 1,258 236

Table 7: Distribution of Clone Life Cycle Stages in Single
Code Reviews

Project Early Stage Mid Stage Late Stage

jgit 77 44 45
platform.ui 74 43 38
egit 93 36 36
couchbase-java-client 21 7 3
couchbase-jvm-core 14 5 2
spymemcached 8 5 7

Total 287 140 131

in both sets, reinforcing the robustness of the identified pat-
terns. This proportionality also gave us greater confidence
to extend the analysis to the entire clone population, using
the proposed metrics to evaluate the clone lifecycle in the
code review process. The clones that appear in Single code
reviews are mostly Type-III clones, representing 64.52% of the
cases. In Recurring code reviews, Full Cycle clones are the most
prevalent, especially among Type-I (131 clones), followed by
Type-III (94) and Type-II (19), indicating that most clones per-
sist throughout the review. Emerging Cycle behavior is more
common in Type-III clones (15), suggesting greater activity
of syntactically dissimilar clones early in the review. Central
Cycle clones are less frequent but again concentrated among
Type-III clones (9). For Closing Cycle, Type-I leads with 10
instances, showing that exact duplicates often gain relevance
toward the review’s end. Overall, Type-I clones exhibit greater
stability, while Type-III clones show more dynamic behavior
across review stages.

Figure 3 compares the Duration and Distance of clones in
Single and Recurring code reviews. In Single reviews,Mid Stage
clones have the shortest andmost variable duration, while Late
Stage clones persist longer and appear farther from insertion.
In Recurring reviews, Central Cycle, Closing, and especially
Full Cycle clones have greater duration and distance, indicat-
ing more stability. Unstable Cycle clones always show zero
duration, and Full Cycle have a fixed duration of one. Distance
is zero for Early Stage, Emerging Cycle, and Full Cycle clones,
and one for Late Stage clones.

The results presented in Table 10 indicate that, on average,
clones persist throughout a significant portion of the review
process, as reflected by an overall mean Duration of 0.71. More-
over, the low overall meanDistance of 0.17 suggests that clones
are typically introduced at early stages of the review.

Among the analyzed projects, platform.ui shows the highest
mean Duration of 0.85 and the earliest mean Distance of 0.09,
indicating that clones are introduced early and tend to per-
sist throughout the review process. This persistence suggests
challenges in promptly resolving duplication issues, despite a
code review culture.

In contrast, spymemcached exhibits the lowest mean Dura-
tion of 0.30 and the latest mean Distance of 0.37, indicating that
clones are introduced relatively early and persist for a short
period, possibly reflecting a more structured review process.

Answer to RQ3: We found that 54.3% of clones that
appear in Full Cycle category. In general, clones sur-
vive the review process (0.71 average Duration) and
emerge early (0.17 average Distance).

6 Discussion
In this section, we discuss our findings, limitations, and poten-
tial future directions of this study.

Our qualitative analysis showed that Type-I and Type-III
clones are predominant during code review. Despite modern
practices and tools, code duplication is still frequent. Detecting

An Exploratory Study on the Lifecycle of Code Clones During Code Review SBES ’25, September 22–26, 2025, Recife, PE

Table 8: Distribution of Clone Lifecycle Stages in Recurring Code Reviews

Project Emerging Cycle Central Cycle Closing Cycle Full Cycle Unstable Cycle

jgit 67 50 105 214 13
platform.ui 79 43 138 300 8
egit 58 27 116 275 8
couchbase-java-client 8 5 34 86 1
couchbase-jvm-core 4 5 24 71 1
spymemcached 8 4 9 21 0

Total 224 134 426 967 31

Table 9: Distribution of Clone Lifecycle Stages by Clone Type

Single Recurring

Type Early Stage Mid Stage Late Stage Emerging Cycle Central Cycle Closing Cycle Full Cycle Unstable Cycle

Type-I 4 2 0 8 1 10 131 0
Type-II 3 1 1 0 2 2 19 0
Type-III 12 6 2 15 9 9 94 1

Total 19 9 3 23 12 21 244 1

Ea
rly

 St
ag

e

Mid
Sta

ge

Lat
e S

tag
e

0.0

0.2

0.4

0.6

0.8

1.0

Du
ra

tio
n

an
d

Di
st

an
ce

Duration - Single

Em
erg

ing
 Cycl

e

Cen
tra

l C
ycl

e

Clos
ing

 Cycl
e

Ful
l C

ycl
e

Unst
ab

le
Cycl

e

Duration - Recurrings

Ea
rly

 St
ag

e

Mid
Sta

ge

Lat
e S

tag
e

Distance - Single

Em
erg

ing
 Cycl

e

Cen
tra

l C
ycl

e

Clos
ing

 Cycl
e

Ful
l C

ycl
e

Unst
ab

le
Cycl

e

Distance - Recurrings

Figure 3: Boxplots illustrating Duration and Distance metrics across the lifecycle stages of Single and Recurring code
review clones.

Table 10: Mean Duration and Distance of the Clones.

Project Duration Distance

jgit 0,59 0,24
platform.ui 0,85 0,09
egit 0,67 0,22
couchbase-java-client 0,73 0,18
couchbase-jvm-core 0,77 0,17
spymemcached 0,30 0,37

All Projects 0,71 0,17

clones early is important, as they often persist after merging,
complicating maintenance and debugging. Two main factors
contribute to this.

(1) Lack of Perception: Developers and reviewers may
simply not perceive the presence of duplicated code. Without
clear indications or tool support, these clones can easily go
unnoticed during code review. As a result, developers might
be unaware that a duplicated fragment exists elsewhere in
the codebase. This unawareness becomes especially critical
when a bug is introduced, as developers may fix the issue in
one location but overlook its cloned counterpart, potentially
leaving the system vulnerable to failures.

(2) Subtle Differences in Type-III Clones: Detecting
clones manually is particularly difficult when the duplicated
code has slight structural or syntactic variations. Type-III
clones, by nature, often contain subtle edits that obscure their
similarity. These differences imply a reduced likelihood of
identification during manual reviews, increasing the chance
that such clones will merged into the final project without due
consideration.

SBES ’25, September 22–26, 2025, Recife, PE Uchoa et al.

7 Threats to the Validity
We discuss the threats to our study’s validity according to
Wohlin et al. [33] guidelines on experimentation.

Conclusion and Internal threats: During code review, moved
code blocks can be misidentified as clones, since only added
blocks are considered. To address this, we analyze the removed
blocks. However, small refactorings still hinder detection. As
future work, we propose using Siamese to detect moved blocks
with minor changes. The analysis considered only code blocks
with at least six lines, excluding comments and other non-code
elements. Despite challenges distinguishing comments from
operators like /, we removed lines containing only comments.
Isolated lines like closing braces () were kept, as they represent
micro clones that may affect development [11].

A possible threat to validity is that the clone lifecycle anal-
ysis used the entire dataset, while manual validation covered
only a sample. However, the high accuracy in manual inspec-
tion, where 353 out of 365 clones were confirmed as true posi-
tives, and similar lifecycle distributions between the sample
and full dataset give us confidence in our analysis. Still, minor
differences could exist if all data were manually validated.

Construct threats: Clone type classification can be imprecise,
as Siamese returns whole methods even if only parts are added,
making manual validation challenging. To reduce ambiguity,
two researchers independently analyzed each case, with a third
resolving disagreements. All researchers have experience in
code clone analysis.

External threats: The dataset used CROP [13] which is
specifically built from code review data hosted on the open-
source platform Gerrit. Although Gerrit is widely adopted
by large open-source communities and companies, its review
workflows and usage patterns may differ from those observed
in other platforms, such as GitHub, GitLab, or Phabricator.
Furthermore, other threat stems from the clone detection tool
employed in this study. Siamese [18] is specifically designed
to work with code written in Java. As such, our analysis and
findings are restricted to Java projects.

8 Related Work
This section discusses related empirical studies focusing on
other aspects of code quality in code review.

Uchôa et al. [27] analyze the evolution of design degradation
during reviews and across revisions, using review discussions
and 16 metrics to assess its relation to code review practices.
Approximately 14,971 code reviews from 7 software projects
are analyzed. Paixão et al. [16] present an empirical study
that inspects and classifies developers’ intentions regarding
refactorings performed during code review. In this study, 1,780
code changes across 6 open-source applications are analyzed,
and developers’ intentions are categorized into 7 groups.

Pascarella et al. [17] examined the impact of code review on
code smells and convention violations across 21,000 reviews.
Assessing severity with codemetrics, they found that, in 16,442
Eclipse reviews and 1,268 manually analyzed cases, only a

minority of convention violations were addressed after review
comments.

Jiang et al. [6] analyze how changes made to pull requests
affect the code review process in pull request-based devel-
opment projects. By examining 104,307 pull requests from
9 GitHub projects, the authors observed that approximately
34.56% of the pull requests analyzed had modifications after
their initial submission.

Although prior studies address aspects of code quality like
refactoring, design degradation, and code smells, none specifi-
cally examine the lifecycle of code clones during code review.
To fill this gap, this study propose two novel metrics (Dura-
tion and Distance) to quantify clone persistence and timing
within the review process, offering new insights not explored
in previous work.

9 Conclusion
In this paper, we conducted an empirical study on the life-
cycle of code clones during the modern code review process.
We leveraged the Siamese clone detector to analyze six open-
source projects from the CROP dataset, for which we detected
a total of 38,490 code clones. We analyzed 27,656 relevant
code clones and their corresponding code reviews.

After removing duplicate clones from our set of relevant
clones, we identified approximately 6,954 unique clones and
performed a manual analysis on them. We found that 96.7%
of the clones were true positives, with the majority being
classified as Type-I (46.74%) and Type-III (45.3%) clones.

We analyzed the lifecycle of relevant clones in code reviews
with multiple revisions, calculating Duration and Distancemet-
rics. With an average Duration of 0.71, we found that most
clones tend to survive the code review process and are merged
into the project. Furthermore, we observed that most clones
emerge early in the code review, as the average Distance is
0.17.

As future work, we plan to qualitatively analyze discus-
sion threads from code reviews containing relevant clones. Our
goal is to understand whether and how developers address
code clones during reviews, specifically, if clones are explicitly
mentioned, what concerns or actions are raised, and which
strategies or practices are used when reviewers acknowledge
them. This analysis may provide deeper insights into developer
awareness, communication, and decision-making regarding
code cloning in practice.

ARTIFACT AVAILABILITY
All artifacts, including datasets, scripts, and documentation
from this study are available in our replication package [28].

ACKNOWLEDGMENTS
This work received partial funding from CNPq-Brazil, Uni-
versal grant 404406/2023-8, and support from FUNCAP (BP6-
00241-00276.01.00/25).

An Exploratory Study on the Lifecycle of Code Clones During Code Review SBES ’25, September 22–26, 2025, Recife, PE

REFERENCES
[1] Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar, Farooque

Azam, and Bilal Maqbool. 2019. A systematic review on code clone detec-
tion. IEEE access 7 (2019), 86121–86144.

[2] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and
challenges of modern code review. In 2013 35th International Conference
on Software Engineering (ICSE). IEEE, 712–721.

[3] Jason Cohen. 2010. Modern code review. Making Software: What Really
Works, and Why We Believe It (2010), 329–336.

[4] Dror G Feitelson, Eitan Frachtenberg, and Kent L Beck. 2013. Development
and deployment at facebook. IEEE Internet Computing 17, 4 (2013), 8–17.

[5] Judith F Islam, Manishankar Mondal, and Chanchal K Roy. 2016. Bug
replication in code clones: An empirical study. In 2016 IEEE 23Rd interna-
tional conference on software analysis, evolution, and reengineering (SANER),
Vol. 1. IEEE, 68–78.

[6] Jing Jiang, Jiangfeng Lv, Jiateng Zheng, and Li Zhang. 2021. How develop-
ers modify pull requests in code review. IEEE Transactions on Reliability
71, 3 (2021), 1325–1339.

[7] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder:
A multilinguistic token-based code clone detection system for large scale
source code. IEEE transactions on software engineering 28, 7 (2002), 654–
670.

[8] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan.
2016. An empirical study of the impact of modern code review practices
on software quality. Empirical Software Engineering 21 (2016), 2146–2189.

[9] ManishankarMondai, Chanchal K Roy, and Kevin A Schneider. 2018. Micro-
clones in evolving software. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 50–60.

[10] Manishankar Mondal, Banani Roy, Chanchal K Roy, and Kevin A Schneider.
2019. Investigating context adaptation bugs in code clones. In 2019 IEEE
International conference on software maintenance and evolution (ICSME).
IEEE, 157–168.

[11] Manishankar Mondal, Chanchal K. Roy, and Kevin A. Schneider. 2018.
Micro-clones in Evolving Software. In 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
70–80. doi:10.1109/SANER.2018.8330196

[12] Matheus Paixao, Jens Krinke, Donggyun Han, and Mark Harman. [n. d.].
Codebase Repository of CROP. https://github.com/crop-repo/crop

[13] Matheus Paixao, Jens Krinke, Donggyun Han, and Mark Harman. 2018.
CROP: Linking Code Reviews to Source Code Changes. In Proceedings of
the IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR) (Gothenburg, Sweden). IEEE, 46–49.

[14] Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul,
and Mark Harman. 2019. The impact of code review on architectural
changes. IEEE Transactions on Software Engineering 47, 5 (2019), 1041–
1059.

[15] Matheus Paixao and Paulo Henrique Maia. 2019. Rebasing in code review
considered harmful: A large-scale empirical investigation. In 2019 19th
international working conference on source code analysis and manipulation
(SCAM). IEEE, 45–55.

[16] Matheus Paixão, Anderson Uchôa, Ana Carla Bibiano, Daniel Oliveira,
Alessandro Garcia, Jens Krinke, and Emilio Arvonio. 2020. Behind the
intents: An in-depth empirical study on software refactoring in modern
code review. In Proceedings of the 17th International Conference on Mining
Software Repositories. 125–136.

[17] Luca Pascarella, Davide Spadini, Fabio Palomba, and Alberto Bacchelli.
2019. On the effect of code review on code smells. arXiv preprint
arXiv:1912.10098 (2019).

[18] Chaiyong Ragkhitwetsagul and Jens Krinke. 2019. Siamese: scalable and
incremental code clone search via multiple code representations. Empirical
Software Engineering 24, 4 (2019), 2236–2284.

[19] Chaiyong Ragkhitwetsagul, Jens Krinke, Matheus Paixao, Giuseppe Bianco,
and Rocco Oliveto. 2019. Toxic code snippets on stack overflow. IEEE
Transactions on Software Engineering 47, 3 (2019), 560–581.

[20] Chanchal K Roy, Minhaz F Zibran, and Rainer Koschke. 2014. The vision
of software clone management: Past, present, and future (keynote paper).
In 2014 Software Evolution Week-IEEE Conference on Software Maintenance,
Reengineering, and Reverse Engineering (CSMR-WCRE). IEEE, 18–33.

[21] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Al-
berto Bacchelli. 2018. Modern code review: a case study at google. In
Proceedings of the 40th international conference on software engineering:
Software engineering in practice. 181–190.

[22] G Shobha, Ajay Rana, Vineet Kansal, and Sarvesh Tanwar. 2021. Code clone
detection—a systematic review. Emerging Technologies in Data Mining and
Information Security: Proceedings of IEMIS 2020, Volume 2 (2021), 645–655.

[23] Denis Sousa, Matheus Paixao, Chaiyong Ragkhitwetsagul, and Italo Uchoa.
2024. Code Clone Configuration as a Multi-Objective Search Problem. In
Proceedings of the 18th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. 503–509.

[24] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and
Mohammad Mamun Mia. 2014. Towards a big data curated benchmark of
inter-project code clones. In 2014 IEEE International Conference on Software
Maintenance and Evolution. IEEE, 476–480.

[25] Christopher Thompson and David Wagner. 2017. A large-scale study of
modern code review and security in open source projects. In Proceedings
of the 13th International Conference on Predictive Models and Data Analytics
in Software Engineering. 83–92.

[26] Anderson Uchôa, Caio Barbosa, Daniel Coutinho, Willian Oizumi, Wes-
ley KG Assunçao, Silvia Regina Vergilio, Juliana Alves Pereira, Anderson
Oliveira, and Alessandro Garcia. 2021. Predicting design impactful changes
in modern code review: A large-scale empirical study. In 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR). IEEE,
471–482.

[27] Anderson Uchôa, Caio Barbosa, Willian Oizumi, Publio Blenílio, Rafael
Lima, Alessandro Garcia, and Carla Bezerra. 2020. How does modern
code review impact software design degradation? an in-depth empirical
study. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 511–522.

[28] Italo Uchoa, Denis Sousa, Matheus Paixão, Pedro Maia, Anderson Uchôa,
and Chaiyong Ragkhitwetsagul. 2025. Replication Package for the pa-
per: ‘An Exploratory Study on the Lifecycle of Code Clones during Code
Review”. https://zenodo.org/records/16746835

[29] Brent van Bladel and Serge Demeyer. 2021. A comparative study of test
code clones and production code clones. Journal of Systems and Software
176 (2021), 110940.

[30] Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke. 2013. Search-
ing for better configurations: a rigorous approach to clone evaluation.
In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering. 455–465.

[31] Wei Wang and Michael Godfrey. 2014. Investigating intentional clone
refactoring. Electronic Communications of the EASST 63 (2014).

[32] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting code
clones with graph neural network and flow-augmented abstract syntax tree.
In 2020 IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 261–271.

[33] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Reg-
nell, and Anders Wesslén. 2012. Experimentation in software engineering.
Springer Science & Business Media.

[34] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. 2016. Reviewer rec-
ommendation for pull-requests in GitHub: What can we learn from code
review and bug assignment? Information and software technology 74 (2016),
204–218.

[35] Morteza Zakeri-Nasrabadi, Saeed Parsa, Mohammad Ramezani, Chanchal
Roy, and Masoud Ekhtiarzadeh. 2023. A systematic literature review
on source code similarity measurement and clone detection: Techniques,
applications, and challenges. Journal of Systems and Software 204 (10 2023),
111796. doi:10.1016/j.jss.2023.111796

[36] Fiorella Zampetti, Gabriele Bavota, Gerardo Canfora, and Massimiliano
Di Penta. 2019. A study on the interplay between pull request review and
continuous integration builds. In 2019 IEEE 26th international conference
on software analysis, evolution and reengineering (SANER). IEEE, 38–48.

https://doi.org/10.1109/SANER.2018.8330196
https://github.com/crop-repo/crop
https://zenodo.org/records/16746835
https://doi.org/10.1016/j.jss.2023.111796

	ABSTRACT
	1 Introduction
	2 Background
	2.1 Modern Code Review
	2.2 Code Clones

	3 Experimental Setup
	3.1 Siamese Clone Detector
	3.2 The CROP Dataset

	4 Methodology
	4.1 Phase 1: CROP Update
	4.2 Phase 2: Diffs Processing and Clone Detection
	4.3 Phase 3: Manual Validation
	4.4 Phase 4: Lifecycle of Clones

	5 Results
	5.1 RQ1: Does code cloning occur during code review?
	5.2 RQ2: What types of code clones emerge during code review?
	5.3 RQ3: What is the lifecycle of code clones during code review?

	6 Discussion
	7 Threats to the Validity
	8 Related Work
	9 Conclusion
	ACKNOWLEDGMENTS
	REFERENCES

