An Empirical Study on the Effectiveness of Iterative LLM-Based
Improvements for Static Analysis Issues

Joao Carlos Gongalves
Universidade Federal de Uberlindia
Uberlandia - MG, Brasil
jecarlosptc@live.com

ABSTRACT

Maintaining and evolving software systems often demands more
effort than their initial development. Improving source code qual-
ity through automated support can significantly reduce technical
debt, increase maintainability, and enhance developer productivity.
This paper presents an experimental approach that integrates static
analysis with Large Language Models (LLMs) to automate source
code improvement. The proposed pipeline iteratively processes
Java classes by extracting issues detected by SonarQube and trans-
forming them into prompts for LLMs, which generate improved
code versions. Each version is reanalyzed, and the process repeats
until convergence or a predefined iteration limit is reached.

The experimental setup includes multiple configurations com-
bining two LLMs (GPT-4-mini and Gemini), variation in temper-
ature, prompt style, and number of iterations. Evaluations were
conducted using multiple Java datasets, with three repeated runs
for the Commons Lang repository to identify behavioral patterns.
The analysis focuses on the number of issues reduction, decrease in
technical debt (measured in a SonarQube metric), and the evolution
of issue severity. Functional correctness was assessed manually by
inspecting and executing the improved code to ensure behavior
preservation.

The results demonstrate that combining SonarQube with LLMs is
effective in reducing code issues—achieving over 58% average reduc-
tion in key scenarios—while preserving functionality. The iterative
process proved successful in guiding the models to incrementally
improve code quality based on real static analysis feedback. This
work contributes a reproducible and extensible pipeline, offering in-
sights into the impact of LLM configurations and supporting further
research in the integration of Al and software quality engineering.

KEYWORDS

Code Quality, Code Readability, Static Analysis, Software Engineer-
ing, LLM, ChatGPT, Gemini, SonarQube, Issues.

1 Introduction

Maintenance and evolution are core activities in the software devel-
opment lifecycle, often consuming more resources than the initial
system construction [5]. In this context, the continuous improve-
ment of source code quality becomes essential to ensure readability,
maintainability, and the reduction of technical debt. Among the
strategies widely adopted to achieve these goals are static analysis
tools, such as SonarQube [42], and, more recently, the use of Large
Language Models (LLMs) as support tools for code improvement
and correction tasks [4, 11, 28].
LLMs specifically trained on programming data, such as Codex [37],

CodeGen [2], StarCoder [31], and Code LLaMA [35], have shown

Marcelo de Almeida Maia
Universidade Federal de Uberlandia
Uberlandia - MG, Brasil
marcelo.maia@ufu.br

promising performance in source code generation, explanation, and
correction [10, 14, 16, 38]. Recent studies have explored the use of
these tools as assistants in software development, demonstrating
advances in contextual understanding, defect identification, and the
automated application of patches [20]. Despite their potential, the
practical adoption of LLMs in real-world environments still faces
challenges related to the reliability of their suggestions, the preser-
vation of original functionality, and integration with traditional
code quality analysis tools [24].

Moreover, SonarQube remains one of the most widely used tools
for static analysis, extensively adopted in both public and private
software projects [43]. Its rule-based approach enables the detec-
tion of security flaws, vulnerabilities, maintainability issues, and
code smells. However, despite offering detailed and contextualized
diagnostics, SonarQube does not perform automatic fixes, requiring
developers to manually apply the recommended improvements.

In this context, given the relevance of SonarQube for software
development, it is worthwhile to investigate approaches that com-
bine the precision of static analysis with the generative capabilities
of LLMs.

This work proposes and evaluates an experimental approach
for automatic source code improvement through the integration
of SonarQube and LLMs in an iterative, automated, and controlled
process. To operationalize this proposal, a pipeline was developed
to orchestrate static analysis, prompt generation for the models,
code replacement, reanalysis, and result logging in successive cy-
cles. SonarQube diagnostics serve as the underlying instructions
for constructing prompts submitted to the LLMs, which return re-
fined versions of the code while preserving its original functional
behavior. Each generated version is reanalyzed, forming a contin-
uous improvement cycle that proceeds until convergence or the
maximum number of iterations is reached.

The experiments were conducted using different models (GPT-4-
mini and Gemini) and configurations (temperature, prompt, num-
ber of iterations), applied to widely used Java repositories such as
Commons Lang, Commons IO, and Google Guava. The analysis
of the results considered the reduction in the total number of is-
sues, the decrease in estimated technical debt, and the evolution of
issue severity across iterations. Functional preservation was veri-
fied manually through inspection and execution of the improved
methods.

The results demonstrate the potential of combining static analy-
sis with LLMs to automate the code improvement process, reducing
the manual effort associated with fixing the code and contributing
to the enhancement of software quality. The proposed approach
aims to address existing gaps in the literature, particularly regarding

SBES 25, September 22-26, 2025, Recife, PE

the iterative use of LLMs guided by static analysis tools, the evalu-
ation of the impact of different configurations, and the systematic
execution of experiments with functional assessment.

The remainder of this paper is organized as follows. Section 2 in-
troduces the background concepts. Section 3 describes the method-
ology, including the proposed pipeline, the experimental setup, and
the evaluation metrics. Section 4 presents and discusses the results.
Section 5 reviews related work. Section 6 outlines the threats to
validity and limitations. Finally, Section 7 presents the conclusions.

2 Background

This section presents fundamental concepts for understanding the
proposal of this work.

2.1 Static Code Analysis

Static code analysis is a widely used technique for inspecting source
code without executing it, aiming to identify defects, bad practices,
and potential vulnerabilities [32]. This approach provides an effi-
cient way to detect quality issues in the early stages of development,
helping to reduce maintenance costs and increase software reliabil-
ity [34].

One of the most commonly used tools for static analysis is Sonar-
Qube, an open-source platform that automatically evaluates source
code based on predefined rules, classifying issues into different
severity levels (e.g., bugs, code smells, and security vulnerabilities) [8].
In addition, SonarQube provides quantitative metrics such as cy-
clomatic complexity, test coverage, code duplication, and technical
debt [1, 42].

Despite its effectiveness in identifying problems, SonarQube does
not automatically apply fixes. This leaves developers responsible
for manually reviewing and resolving the reported issues, which
can be time-consuming and error-prone — especially in large-scale
projects [1]. This scenario has motivated research exploring the
automation of the repair process based on reports generated by
tools like SonarQube [11].

2.2 Large Language Models

Large Language Models (LLMs) have been gaining increasing at-
tention in the field of Software Engineering. Trained on massive
amounts of natural language and source code data, these models
are capable of understanding and generating code with a high de-
gree of fluency and coherence [13, 14]. Popular examples include
Codex [37], used in GitHub Copilot [29], as well as CodeT5 [26]
and CodeBERT [27].

LLMs have been applied to a variety of software development
tasks, such as code generation, function summarization, auto—
completion, code explanation, and even automated program re-
pair [14, 19]. In the latter case, the model receives as input either a
fault description or a defective code snippet and returns a corrected
version. Recent studies show that LLMs can achieve promising suc-
cess rates in code repair tasks, especially when guided by carefully
designed prompts [6, 7, 33].

In the context where LLMs and static analysis intersect, oppor-
tunities emerge for hybrid solutions that use tools like SonarQube
to detect issues and then trigger an LLM to propose fixes — an
approach adopted in this work — considering that LLMs are not yet

Gongalves and Maia

capable of fully replacing static analysis tools [3]. This orchestration
model represents a step toward intelligent automation in software
maintenance by combining the precise diagnostics of static analysis
with the generative capabilities of language models [4, 9].

The application of LLMs in iterative code improvement cycles —
progressively adapting to static analysis reports — has also been
investigated as an alternative to traditional manual improvement
approaches, offering a new paradigm for quality-driven develop-
ment [17, 33].

These investigations reinforce the potential of integrating static
analysis with generative models as a promising path for automating
maintenance tasks and improving overall source code quality.

3 Methodology

This research adopted an experimental approach using both quanti-
tative and qualitative data analysis to investigate the effectiveness
of Large Language Models (LLMs) in the automated improvement
of source code based on recommendations issued by a static anal-
ysis tool. The study was conducted in four main stages: (i) the
development of an automated iterative improvement pipeline, (ii)
the systematic execution of experiments on real-world repositories,
(iii) the quantitative analysis of results based on metrics extracted
from SonarQube evaluations applied to the improved versions, and
(iv) the qualitative analysis of functionality preservation after the
code improvements.

3.1 Automated Iterative Improvement Pipeline

The automated pipeline developed for this research was respon-
sible for orchestrating the analysis, generation, and evaluation of
improvements. Its goal was to ensure reproducible, iterative, and
scalable executions over different combinations of experimental
configurations. The pipeline architecture consisted of the following
main modules:

3.1.1 Input File Reading: This module initiates the iterative
improvement cycle for each code class in the selected dataset. The
pipeline operates over a set of files organized by repository and
experiment.

During execution, each Java file is read as raw text using the
r+ead_f1ile function. Its content is copied into a predefined project
structure, replacing the content of a fixed main file — typically
Main.java — located at code/src/main/java/project/. This al-
lows isolated static analysis using SonarQube without requiring
multiple Java projects to be configured.

This modular design makes the pipeline reusable and indepen-
dent of the original repository structure, enabling standardized
iterative processing across thousands of classes. Additionally, us-
ing a single entry point per analysis simplifies version tracking,
metric collection per class, and validation of improvements at each
iteration.

3.1.2 Static Analysis with SonarQube: Static code analysis is
performed using SonarQube, executed through the SonarScanner.
After each iteration and class update, the scanner is triggered to
assess the improved code based on the project’s preconfigured
quality rules.

An Empirical Study on the Effectiveness of Iterative LLM-Based Improvements for
Static Analysis Issues

Once the scan is completed, the pipeline waits for 60 seconds
(sleep(60)) to ensure that analysis data is indexed and made avail-
able by the SonarQube instance (running in a Docker container).
This delay accounts for propagation time between analysis comple-
tion and API data availability.

The pipeline then queries the SonarQube API to retrieve the list
of issues identified in the last scan. These results guide the filtering,
prompt generation, and metric registration steps in the following
iterations.

Examples of real SonarQube messages retrieved during the ex-
periments include:

e Remove this unused "STRING_ON_OFF" private field.
(line 17)

e Replace the usage of the literal "true" by a named
constant or an enum. (line 32)

e Add a default case to this switch. (line 41)

3.1.3 Custom Prompt Construction: After issue identification,
the pipeline dynamically constructs a natural language prompt and
sends it to the selected LLM to guide the code improvement. The
prompt aims to clearly communicate the issues found in the code
and specify the required improvements.

Two prompt templates were used across experiments:

Prompt 1 (zero-shot)

Apply the following improvements to the code and return
only the Java code: {issues_message}.

Prompt 2 (role-based)

You are acting as a software development assistant and
must apply improvements to the code using the following
list of issues: {issues_message}. You should only modify
the code to fix the reported issues, without removing any
functionality unless explicitly stated. Only the Java code
must be returned, with no additional explanations or text,
and no loss of any previously implemented behavior.

The variable {issues_message} is dynamically filled with the
list of issue messages extracted from SonarQube in the current itera-
tion. This prompt variation was used as an experimental parameter
to evaluate the impact of instruction formulation on the quality of
the generated improvements.

3.1.4 Interaction with the Configured LLM:. The constructed
prompt is sent to the LLM (GPT-4-mini or Gemini) via API, along
with defined parameters (temperature, token limit, etc.). The ex-
pected output is the improved code only, without any additional
text.

3.1.5 Code Replacement and Reevaluation: The returned code
replaces the original version, and a new SonarQube analysis is
triggered to assess the impact of the improvement in the current
iteration.

3.1.6 Metric Logging and Execution Control: Iteration data
(e.g., number of issues, severity levels, technical debt, execution

SBES 25, September 22-26, 2025, Recife, PE

time) is stored in .csv files per experiment and execution. All
improved versions are also saved as . txt files for further validation
and historical tracking.

3.1.7 Convergence or Iteration Limit: The iterative process
terminates when either (i) no new issues are reported, or (ii) the
maximum number of iterations is reached (2 or 5, depending on
the experimental configuration).

3.2 Research Questions

To investigate the effectiveness of using Large Language Models
(LLMs) in the automated improvement of source code based on
static analysis feedback, this study was guided by the following
research questions:

¢ RQ1: What is the percentage reduction of issues? This
question evaluates the ability of LLMs to reduce the number
of defects identified by static analysis tools after applying
automated improvements.

e RQ2: Does the reduction in issues proportionally im-
pact the reduction of technical debt? This question ex-
amines whether the observed reduction in defects directly
translates into a corresponding decrease in the estimated
technical debt of the project.

¢ RQ3: How does the experimental configuration impact
code improvement? This question analyzes the effect of
varying experimental parameters (language model, tempera-
ture, prompt formulation, and number of iterations) on the
quality of the generated improvements.

e RQ4: Is there any functional breakage throughout the
iterations of the improvement process? This question
investigates whether the iterative improvement process com-
promises the original functionality of the code, introducing
regressions or semantic faults.

These research questions were formulated to provide a compre-
hensive analysis of the impacts, limitations, and potential of LLMs
as agents for continuous software quality improvement.

3.3 Experimental Configurations and Design
Justification

The experiments were systematically designed to evaluate the effec-
tiveness of LLM-assisted automatic improvement under different
parameter combinations, as well as to understand how the variation
of datasets influences the results. Each experimental setup involved
four main parameters: the language model used (GPT-4-mini or
Gemini), the generation temperature (0.1 for more deterministic
behavior or 0.3 for more exploratory responses), the prompt for-
mulation (direct vs. contextualized), and the maximum number
of iterations per class (2 or 5). These combinations defined eight
unique experimental scenarios, numbered 1 through 8.

The selection of these scenarios followed a structured experi-
mental design methodology based on Fractional Factorial Design
(FFD) [36]. FFD was adopted to enable a systematic yet cost-effective
exploration of the experimental space, allowing the estimation of
the main effects and selected interaction effects of the studied
factors.

SBES 25, September 22-26, 2025, Recife, PE

By evaluating a representative subset of all possible combina-
tions, FFD made it feasible to assess the influence of multiple param-
eters — such as model, temperature, prompt style, and number of
iterations — on the performance of the refactoring process, while re-
ducing the total number of required executions and computational
effort.

This approach was crucial for:

e Isolating the individual impact of each factor (e.g., model,
prompt type, iteration count) on the reduction of issues and
technical debt;

o Identifying significant interactions between factors, such as
whether the effect of a higher number of iterations depends
on the model or prompt used;

e Maximizing experimental robustness with a feasible number
of executions, given resource and time constraints.

Each experiment was executed over a set of Java classes. For
the Commons Lang dataset, all eight configurations were executed
three times to ensure statistical robustness, enabling the analysis
of means, standard deviations, and behavioral patterns. For the
exploratory phase using Commons IO and Guava, each configura-
tion was executed once to provide a complementary perspective
on how code diversity and project style influence improvement
effectiveness.

The entire experimental process was fully automated through
the developed pipeline, which handled input reading, static anal-
ysis via SonarQube, prompt generation, model interaction, code
replacement, and metric logging — including the number of issues,
severity levels, estimated effort (technical debt), and iteration count.
The output data were stored in structured . csv files, and each code
version generated throughout the iterations was saved in .txt
format to enable inspection, validation, and historical traceability.

3.4 Repositories and Data Sources

The experiments used real Java repositories extracted from pop-
ular open-source projects with active maintenance histories. The
main repositories selected were Apache Commons Lang, Apache
Commons IO, and Google Guava.

Apache Commons Lang extends core Java functionalities with
utilities for string, number, and object manipulation. Apache Com-
mons IO offers I/O utilities for file operations. Google Guava is a
comprehensive core library set from Google, featuring collections,
immutables, graph support, and concurrency, hashing, and string
utilities.

These repositories were selected due to their popularity, diversity
of code constructs, active maintenance history, and compatibility
with SonarQube. Additionally, the presence of automated test suites
(although not used in this study) and documented code quality
issues provided a rich environment for evaluating LLM-based im-
provements. These factors contribute to both the relevance and the
potential generalizability of the findings within the Java ecosystem.

3.5 Evaluation Metrics

To assess improvement effectiveness, the following metrics were
extracted per iteration:

e Total number of issues (SonarQube)
e Percentage reduction in issues

Gongalves and Maia

e Reduction by severity (BLOCKER, CRITICAL, MAJOR)
e Reduction in technical debt (estimated effort in minutes)

Code functionality preservation was evaluated manually through
the execution of improved methods and visual inspection. Although
no functional failures were observed in the evaluated samples, a sys-
tematic semantic validation was not performed, which constitutes
a methodological limitation.

4 Results and Discussion

This section presents the results obtained from the application of
Large Language Models (LLMs) in the task of automated source
code improvement based on issues reported by SonarQube.

4.1 RQ1— What is the percentage reduction of
issues?

To answer RQ1, we evaluated the percentage of issues identified
by SonarQube that were successfully corrected by Large Language
Models (LLMs) through iterative cycles of improvements. The anal-
ysis considered the percentage difference between the number of
issues in the initial iteration (0) and the last recorded iteration in
each execution. Due to financial and computational resource limita-
tions, most experiments were executed only once; thus, the analysis
prioritizes the variation across different datasets and experimen-
tal configurations, providing a comparative view of the models’
effectiveness.

Figure 1 presents the average percentage reduction of issues per
experiment for the Apache Commons Lang dataset. It is observed
that seven out of eight experiments achieved reductions above 50%,
with one experiment exceeding 80%. Figure 2 illustrates the results

Issue ion per i - C lang

= Temperature 0.1
= Temperature 0.3
= Average

Reduction (%)

Experiment

Figure 1: Average issue reduction observed in the Apache
Commons Lang dataset.

obtained from experiments using the Apache Commons IO dataset.
In this case, an average reduction greater than 70% was achieved,
with variations between 55% and 83% depending on the config-
uration. Figure 3 depicts the results obtained from experiments
using the Google Guava dataset, where an average reduction of
46% was observed, with variations between 41% and 51% depending
on the configuration adopted. The differences in average reduction
percentages across datasets can be explained by the number and
severity of issues present in each case. Although such differences
exist, we observed that the configuration directly impacts the re-
sults. For example, the parameters (temperature, prompt type, and

An Empirical Study on the Effectiveness of Iterative LLM-Based Improvements for
Static Analysis Issues

Issue ion per i -C

= Temperature 0.1
80 m—Temperature 0.3
= average

Reduction (%)
8

Experiment

Figure 2: Average issue reduction observed in the Apache
Commons IO dataset.

Issue ion per iment - Google-g

= Temperature 0.1
== Temperature 0.3
= Average

Reduction (%)

0 2
Experiment

Figure 3: Average issue reduction observed in the Google
Guava dataset.

number of iterations) used in Experiments 1 and 2 for the Commons
Lang dataset are the same as those used in Experiments 9, 10, 17,
and 19, resulting in similar trends across executions.

Another important aspect in the analysis of issue reduction is the
severity of the issues, as some types of problems are inherently more
complex to correct. Cyclomatic complexity, for instance, requires
splitting a function into several others while preserving the original
behavior. Table 1 presents the average reduction by severity level,
considering all experiments. These results indicate that the models
are more effective at correcting issues of intermediate and high
severity (CRITICAL and MAJOR), but were not able to efficiently
handle BLOCKER-type issues, which even showed a slight increase
in one of the experiments. This suggests that deeper structural
improvements still present a significant challenge for LLMs.

Thus, although LLMs proved effective in addressing a substantial
portion of problems detected by static analysis — often surpassing
50% issue reduction — their effectiveness varies according to the
severity of the issue and the experimental configuration, highlight-
ing the need for carefully tuned parameters to achieve optimal
results.

4.2 RQ2 — Does the Reduction of Issues
Proportionally Impact the Reduction of
Technical Debt?

To assess the proportionality between issue reduction and techni-
cal debt reduction, the percentage reduction of each metric was

SBES 25, September 22-26, 2025, Recife, PE

calculated for the experiments conducted on three distinct datasets:
Commons Lang, Commons IO, and Google Guava. The analysis
considered the comparison between the values from the first and
last iteration of each experimental execution, using a single run per
configuration.

Table 2 summarizes the average values of issue reduction, tech-
nical debt reduction, the absolute difference between these metrics,
and the relative proportion of technical debt reduction in relation to
issue reduction. The data indicate that although issue reduction is
strongly correlated with technical debt reduction, this relationship
is not proportional in all cases. The Commons IO dataset showed the
highest relative efficiency, with an average reduction of 69.03% in is-
sues and 63.33% in technical debt, resulting in an absolute difference
of only 5.70 percentage points and a proportion of 0.91, indicating
that nearly every corrected issue contributed to the reduction of
technical debt.

In contrast, the Commons Lang dataset presented a more sig-
nificant difference: despite achieving a 58.81% reduction in issues,
the reduction in technical debt was only 42.08%, resulting in a dif-
ference of 16.73 percentage points and a proportion of 0.71. This
suggests that, in this context, language models tend to prioritize
fixing issues with lower technical impact, leaving problems with
higher estimated effort (in minutes) partially or fully unaddressed.

The Google Guava dataset, in turn, exhibited the lowest absolute
reduction rates (46.13% for issues and 42.14% for technical debt),
but maintained a high relative proportion (0.92), demonstrating
a more balanced behavior between the two metrics, albeit with a
lower overall impact.

These results highlight that while issue reduction can serve
as a good indicator of code improvement, it does not, by itself,
guarantee a proportional reduction of technical debt. The observed
discrepancy between the metrics underscores the importance of
considering both aspects in automated software quality assessments
assisted by LLMs.

4.3 RQ3 — How Does the Experimental
Configuration Impact Code Improvement?

This research question investigates the extent to which experi-
mental configurations — composed of the combination of the LLM
model, generation temperature, prompt type, and number of itera-
tions — influence the effectiveness of automated code improvement.
The analysis was conducted based on three executions per experi-
ment to obtain more stable estimates of the average behavior for
each configuration.

Table 3 presents the average percentage reduction of issues for
each experiment, along with the corresponding standard deviations.
The results demonstrate that experimental configurations substan-
tially influence the effectiveness of automated code improvement.
Among all the evaluated combinations, Experiment 7 — which used
the Gemini model with a temperature of 0.1, prompt type 1, and
five iterations — achieved the best average performance, reaching
an 81.29% reduction in issues. This outcome suggests that com-
bining a robust model, a more conservative temperature, greater
iterative depth, and a well-formulated prompt provides a favorable
environment for effective improvement.

SBES 25, September 22-26, 2025, Recife, PE

Gongalves and Maia

Table 1: Analysis of Issue Reduction by Severity

Dataset Blocker Reduction (%) Critical Reduction (%) Major Reduction (%)
Commons Lang -1.25 67.45 60.00
Commons IO 50.66 76.30
Google Guava 42.61 47.17

Table 2: Comparison of Issue Reduction and Technical Debt Reduction by Dataset

Dataset

Reduction of Issues (%) Reduction of Technical Debt (%) Absolute Difference (%) Relative Proportion (x)

Commons IO
Commons Lang
Google Guava

69.03 63.33 5.70 0.91
58.81 42.08 16.73 0.71
46.13 42.14 3.99 0.92

Table 3: Average Results of Percentage Reduction of Issues per Experiment

Experiment Model Temperature Prompt Iterations Average Reduction (%) Standard Deviation (%)
1 GPT-4-mini 0.1 1 2 57.65 4.54
2 GPT-4-mini 0.3 2 2 49.49 5.52
3 GPT-4-mini 0.1 2 5 62.58 1.94
4 GPT-4-mini 0.3 1 5 70.41 7.52
5 Gemini 0.1 2 2 53.40 6.89
6 Gemini 0.3 1 2 61.90 5.14
7 Gemini 0.1 1 5 81.29 7.94
8 Gemini 0.3 2 5 70.26 5.91

At the opposite extreme, Experiment 2, configured with GPT-4-
mini, a temperature of 0.3, prompt type 2, and only two iterations,
resulted in the lowest average reduction (49.49%). This configu-
ration highlights the risks associated with suboptimal parameter
combinations, where a higher temperature — while potentially
beneficial for response diversity — when combined with a less tar-
geted prompt and fewer cycles, undermines the model’s ability to
converge toward qualified solutions.

Moreover, the results reveal internal consistency among con-
figurations with multiple iterations, particularly in Experiments
3, 4, 7, and 8, reinforcing the notion that controlled repetition of
the analysis and improvement cycle tends to improve outcomes.
However, the observed variability between models and the interac-
tion between parameters demonstrate that performance does not
depend on any single factor in isolation but rather on the synergy
among all experimental elements.

4.3.1 Model Impact. The comparison between the models — GPT-
4-mini and Gemini — reveals relevant differences in both average
performance and stability across executions. The Gemini model,
particularly in configurations with five iterations (Experiments 7
and 8), achieved the best overall results, with Experiment 7 standing
out by obtaining the highest average issue reduction (81.29%) among
all tested configurations. Furthermore, even in less optimized setups
(such as Experiment 6, with only two iterations), Gemini maintained
competitive performance (61.90%), indicating greater robustness
and resilience to variations in experimental parameters.

On the other hand, GPT-4-mini demonstrated greater sensitivity
to temperature, prompt type, and the number of iterations. Its aver-
age performance varied significantly across experiments, ranging
from 49.49% (Experiment 2) to 70.41% (Experiment 4). This ampli-
tude reveals that the model can either perform excellently or yield
limited results depending on the calibration of the experimental
parameters. In particular, the combination of a higher tempera-
ture and a less effective prompt (as in Experiment 2) negatively
impacted performance, even compared to simpler configurations
of the Gemini model.

These findings indicate that, while both models are capable of
code improvement with some level of success, the Gemini model
tends to be more consistent and reliable, especially in scenarios
with greater iterative depth. Conversely, GPT-4-mini exhibits higher
potential variability, requiring greater attention in experimental
design to achieve satisfactory results.

4.3.2 Temperature and Prompt: A Determinant Interaction.
The analysis of experiments shows that generation temperature
and prompt type should not be evaluated independently but as in-
terdependent components that, when well combined, can maximize
— or compromise — the quality of automatic improvement.
Generally, higher temperatures, such as 0.3, increase the diversity
and fluency of model responses, which can be beneficial for tasks re-
quiring creativity, such as code rewriting. However, this additional
freedom demands clearer, more objective, and better-structured

An Empirical Study on the Effectiveness of Iterative LLM-Based Improvements for
Static Analysis Issues

prompts capable of guiding the model despite the broader genera-
tion space. This is evidenced when comparing Experiments 2 and
4, both using GPT-4-mini with a temperature of 0.3 but different
prompts: Experiment 4 (Prompt 1) achieved a 70.41% reduction in
issues, while Experiment 2 (Prompt 2) achieved only 49.49%. The
difference of over 20 percentage points, despite using the same
model and temperature, highlights that the prompt was decisive in
guiding the improvement process.

This behavior is also observed with the Gemini model, although
with less variability. Comparing Experiments 7 and 8, both with
five iterations but different prompts, shows that Prompt 1, when
combined with a temperature of 0.1 (Experiment 7), led to the
best overall performance (81.29%), while Prompt 2 (Experiment 8)
resulted in 70.26%. Although both presented high reduction rates,
the difference further reinforces the moderating role of the prompt
over the effects of temperature.

Thus, empirical evidence demonstrates that temperature en-
hances generation flexibility but only produces real gains when
associated with prompts that adequately contextualize and con-
strain the task scope. Models exposed to vague or generic prompts,
even with greater creative freedom, tend to produce inconsistent
results. Therefore, the temperature’s effect is not linear, and its effec-
tiveness is intrinsically tied to the quality of the prompt engineering
employed.

4.3.3 Number of Iterations: Incremental and Conditioned
Impact. The data analysis reveals that the number of iterations
exerts a positive incremental effect on the quality of improvement,
but this impact is conditioned on the presence of other good ex-
perimental decisions. Configurations with five iterations, such as
Experiments 3 and 4, achieved higher average reductions (62.58%
and 70.41%, respectively) compared to configurations with only two
iterations, such as Experiments 1, 2, and 5.

However, increasing the number of iterations alone is not suffi-
cient to guarantee better results. For instance, Experiment 2, with
only two iterations, showed the worst performance (49.49% av-
erage reduction) — a result attributed to the combination of low
iterativity with an ineffective prompt. In contrast, Experiment 4,
combining more iterations with a clearer prompt and a temperature
that favored diversity, achieved one of the best results.

These findings suggest that additional iterations enable a pro-
gressive refinement process, where the model can address residual
problems left by earlier cycles. Nevertheless, when the experimental
foundation is poorly configured — for example, with vague instruc-
tions or inadequate generation parameters — the repetition may
simply propagate flaws or yield only superficial adjustments.

Thus, the number of iterations should be interpreted as a quality
amplification factor, whose impact is most expressive when em-
bedded within a favorable experimental context. It is therefore a
strategic variable that can be exploited to intensify the iterative
improvement process, provided that the other elements of the ex-
periment are properly calibrated.

Overall, the analysis shows that the experimental configuration
directly and substantially impacts the effectiveness of LLM-driven
automated improvement. Model performance cannot be dissociated
from the accompanying parameters. The Gemini model proved to
be more robust and consistent, whereas GPT-4-mini showed greater

SBES 25, September 22-26, 2025, Recife, PE

variability, being more sensitive to prompt quality, temperature,
and the number of iterations.

Moreover, the interaction between temperature and prompt was
shown to be determinant, with clear evidence that well-structured
prompts are essential to extract the maximum potential of models
operating with greater creative freedom. Meanwhile, the number
of iterations acts as an amplifier, contributing to the maturation of
improvements over multiple cycles.

These findings reinforce that the effectiveness of LLM-based
improvement depends on the orchestration of multiple factors,
requiring systematic planning and experimental design to select
the ideal configuration according to the project’s objectives and
context.

It is important to note that these findings are based on a lim-
ited set of configurations and datasets. Further experimentation is
needed to confirm whether similar patterns hold in larger or more
diverse codebases.

4.4 RQ4 —Is There Any Functional Breakage
Throughout the Iterations of the
Improvement Process?

This research question investigated whether the iterative improve-
ment process assisted by LLMs compromises the original function-
ality of the source code at any point. Since the goal of the study
is to apply improvements based on SonarQube recommendations,
it is crucial to ensure that such modifications do not introduce
regressions or remove expected behaviors.

To address this question, a manual and exploratory evaluation
was conducted on the code versions generated throughout the iter-
ations. The analysis consisted of visually inspecting the changes
made by the models and executing the improved methods when-
ever possible. The primary objective was to identify indications of
functional failures, such as improper removal of code fragments, un-
justified semantic changes, or unexpected modifications in control
logic.

The results indicate that, in the evaluated samples, no explicit
functional breakages were observed. Overall, the LLMs maintained
a conservative behavior, performing punctual improvements such
as code reorganization, renamings, and extraction of auxiliary meth-
ods, without impacting the functional logic of the classes.

A representative example can be observed in Figures 4 and 5.
Figure 4 presents the original version of the lastIndexOf(...)
function, while Figure 5 shows the improved version, in which an
auxiliary method named handleStringlLastIndexOf(...) was
extracted. This modification fully preserves the original functional
behavior while improving readability, promoting modularization,
and facilitating future code maintenance.

Although the results are positive, it is important to highlight
that the functional evaluation conducted has its limitations. The
absence of a comprehensive suite of automated tests or formal se-
mantic validation prevents an exhaustive verification of behavioral
preservation at scale. Although the selected projects include auto-
mated test suites, these were not integrated into the pipeline due
to technical constraints in test setup isolation per file and the het-
erogeneous structure of the repositories. Future work will address

—_

N O U R W N

—_

Ul R W N

_
= O 0

SBES 25, September 22-26, 2025, Recife, PE

this by incorporating mutation testing or oracle-based validation
strategies to improve functional assessment at scale.

static int lastIndexOf(final CharSequence cs, final
CharSequence searchChar, int start) {
if (searchChar == null || cs == null) {
return NOT_FOUND;
3
if (searchChar instanceof String) {
if (cs instanceof String) {
return ((String) cs).lastIndexOf ((String)
searchChar, start);
3
if (cs instanceof StringBuilder) {
return ((StringBuilder) cs).lastIndexOf ((
String) searchChar, start);
}
if (cs instanceof StringBuffer) {
return ((StringBuffer) cs).lastIndexOf ((
String) searchChar, start);

Figure 4: Code before improvement.

static int lastIndexOf(final CharSequence cs, final
CharSequence searchChar, int start) {
if (searchChar == null || cs == null) {

return NOT_FOUND;

if (searchChar instanceof String) {
return handleStringlLastIndexOf(cs,
searchChar, start);

(String)

}

private static int handleStringLastIndexOf (final
CharSequence cs, final String searchChar, int start)
{
if (cs instanceof String) {
return ((String) cs).lastIndexOf (searchChar,
start);
}
if (cs instanceof StringBuilder) {
return ((StringBuilder) cs).lastIndexOf (
searchChar, start);
}
if (cs instanceof StringBuffer) {
return ((StringBuffer) cs).lastIndexOf (searchChar
, start);
}
return NOT_FOUND;

Figure 5: Code after improvement through method extrac-
tion.

Despite the positive results, it is important to emphasize that
this analysis was conducted without a formal suite of automated
tests, which limits the ability to generalize the findings. Functional
verification was based on direct execution and visual analysis of the
improved versions, which does not guarantee the detection of all
types of regressions, particularly those involving subtle behaviors
or external context dependencies.

Gongalves and Maia

Therefore, it can be concluded that, in the evaluated samples,
no perceptible functional breakages were observed, and the mod-
els proved capable of performing behaviorally safe improvements.
Nevertheless, the absence of automated tests or formal semantic
validation represents a relevant limitation of the study. Future work
may incorporate mechanisms such as semantic equivalence veri-
fication, specification-based testing, or mutation testing to more
rigorously validate functional preservation throughout the iterative
improvement process..

5 Related Work

The use of Large Language Models (LLMs) — such as GPT-3 [39],
GPT-4 [40], CodeT5 [26], and Codex [37] — has shown great promise
in tasks such as code improvement, automated repair, and code
generation [18, 23]. Zhang et al. [18] conducted a systematic review
on the use of LLMs in Automated Program Repair (APR), organiz-
ing dozens of recent studies, proposing a taxonomy of existing
approaches, and exploring scenarios such as semantic bug fixing
and security vulnerability mitigation.

Complementarily, Hou et al. [23] discussed the use of LLMs with
a special focus on vulnerability repair, emphasizing the importance
of pre-training models on code-specific datasets. Models like Code-
BERT [27] and CodeT5 [26] have been applied to supervised repair
tasks, trained with explicit defect-solution patterns, highlighting
the need for representative datasets to maximize model effective-
ness.

Seeking to reduce dependence on supervised training, several
studies [22, 33, 41] demonstrated that LLMs can autonomously
repair code defects through inference, without requiring manual
labels. However, although these models can reflect on code behavior
and propose corrections, there are no formal guarantees of correct-
ness. As highlighted by Cai et al. [24], this limitation has motivated
the development of complementary mechanisms to guide and vali-
date LLM-generated corrections, mitigating the risk of functional
degradation or the introduction of new defects [12].

Addressing the contextual limitations often faced by LLMs —
especially when code depends on information dispersed across
multiple files or external libraries — recent works have explored
mechanisms based on static analysis and advanced prompt engi-
neering [15, 22].

Among these, the works of Agrawal et al. [12], Ahmed et al. [21],
and Hao et al. [25] stand out. Agrawal et al. proposed the Monitor-
Guided Decoding (MGD) technique, where a monitor acts as a state-
ful interface between the LLM and static analysis tools such as
linters and LSP servers. During code generation, the monitor in-
tercepts code snippets at predefined trigger points, queries these
tools, and transforms their feedback into constraints applied to
subsequent decoding steps.

Ahmed et al. [21] leveraged outputs from tools like SonarQube
— including violated rules, severity, and defect locations — to se-
lect relevant historical examples and compose contextually rich
few-shot prompts, improving generalization capabilities and repair
accuracy on unseen projects.

In a distinct line of research, Hao et al. [25] explored the potential
of guiding LLMs through the symbolic execution of pseudocode
embedded directly into prompts. Their approach enables the model

An Empirical Study on the Effectiveness of Iterative LLM-Based Improvements for
Static Analysis Issues

to reason about variables, control flow, and method calls, simulating
aspects of static analysis internally without external instrumenta-
tion.

Beyond pointwise analysis and repair strategies, recent stud-
ies have explored iterative improvement cycles, where suggestions
generated by LLMs are applied, evaluated, and refined over multi-
ple rounds. Barke et al. [19] investigated this interactive approach
using LLMs integrated into GitHub Copilot [29], while other pro-
posals designed fully automated pipelines combining static analysis,
suggestion generation, and continuous reassessment [33, 41].

These approaches collectively highlight the growing maturity of
LLM usage in software engineering, reinforcing the importance of
static analysis integration, contextual prompt curation, and contin-
uous iteration to overcome inherent limitations and enhance model
robustness in real-world development scenarios.

6 Threats to Validity

Although the results obtained in this research demonstrate the
potential of Large Language Models (LLMs) for automated source
code improvement, some limitations and threats to validity must
be acknowledged.

6.1 External Validity

This study was conducted using a specific set of open-source Java
repositories (Apache Commons Lang, Apache Commons IO, and
Google Guava), which may limit the generalizability of the findings
to other application domains, programming languages, or coding
styles. In addition, only two LLMs (GPT-4-mini and Gemini) were
evaluated under a restricted set of configurations. Although multi-
ple executions were carried out to reduce variability, the explored
parameter space remains limited compared to the full range of LLM
behaviors and prompt engineering possibilities.

6.2 Internal Validity

One of the main threats concerns the functional evaluation of the
improved code. Although the iterative process significantly reduced
issues, functionality preservation was verified manually. The ab-
sence of automated testing limits the generalization of the results.
Although no failures were observed in manual execution, we rec-
ognize that this form of validation does not guarantee the absence
of semantic regressions. This limitation will be addressed in future
work by integrating mutation testing and differential validation.

6.3 Construct Validity

Another threat relates to the reliance on SonarQube as the sole
evaluation tool for measuring improvement. While SonarQube pro-
vides detailed static analysis results, it may not capture all relevant
aspects of software quality, such as architectural design issues, code
readability improvements not mapped to rules, or maintainability
aspects beyond detected issues.

6.4 Conclusion Validity

Finally, the evaluated LLMs operate as black-box systems, lacking
explicit reasoning regarding the software’s broader architecture
and context. As a result, the generated improvements are primarily
focused on localized changes, potentially ignoring dependencies

SBES 25, September 22-26, 2025, Recife, PE

and interactions among components. This may affect the long-term
maintainability and integration quality, even if short-term static
analysis metrics are improved.

7 Conclusion

This work investigated the use of Large Language Models (LLMs)
for automated source code improvement through an iterative pro-
cess guided by SonarQube recommendations. The core proposal
was operationalized through the development of an automated
experimental pipeline that integrates static analysis, prompt gener-
ation, interaction with LLMs, and continuous quality reassessment
after each iteration.

The developed pipeline played a fundamental role in conduct-
ing the research, enabling reproducible, scalable, and comparable
execution of multiple experiments. By automating tasks from in-
put file reading to post-improvement result collection, the pipeline
made it possible to consistently apply the iterative process across
different repositories, models, and configurations, while facilitating
quantitative analysis of the results.

The collected data demonstrated that the models were capable of
promoting significant reductions in the identified issues, with aver-
age reductions exceeding 58% across the experiments. The analysis
segmented by severity revealed that the models tend to be more
effective in resolving MAJOR and CRITICAL issues, which achieved
the highest correction rates. This finding indicates that LLMs are
capable of contributing to more technically relevant improvements,
countering the assumption that they would be effective only in
simple corrections.

The reduction of technical debt, measured in estimated effort
minutes, partially followed the reduction of issues, although with
variations among different configurations. Stronger correlations
were observed when corrections were more concentrated on high-
severity issues. This observation reinforces the importance of con-
sidering multiple quality metrics — both quantitative and qualitative
— when evaluating automated improvement processes.

The verification of the preservation of functionality in the im-
proved code was performed manually through the inspection and
direct execution of the altered methods. Although no execution
failures were identified in the evaluated samples, this strategy does
not systematically guarantee semantic equivalence with the origi-
nal behavior, representing an important limitation to be addressed
by more robust validation approaches in future work.

Regarding experimental configurations, the results highlight the
importance of synergy between parameters. The Gemini model,
combined with five iterations, a well-structured prompt, and a con-
servative temperature setting (experiment 7), exhibited the best
overall performance. GPT-4-mini, in turn, showed greater sensitiv-
ity to configuration, with results more dependent on fine-tuning
temperature, prompt elaboration, and the number of iterations.

In summary, this study demonstrated that LLMs can be success-
fully used in automated pipelines for source code improvement,
achieving tangible gains in the reduction of problems identified
by static analysis tools. The developed pipeline proved essential
for systematically structuring the process and enabling iterative
experimentation across multiple scenarios. Despite the limitations
related to functional validation, the obtained results reinforce the

SBES 25, September 22-26, 2025, Recife, PE

potential of LLM-based solutions as support tools for software devel-
opment and maintenance, provided they are accompanied by sound
engineering practices and appropriate validation mechanisms.
The proposed solution is not only experimentally effective but
also practical: it can be integrated into real-world development
pipelines to support automated refactoring based on static analysis
feedback, reducing developer workload and increasing consistency
in code quality improvements.

For future work, the following directions are proposed:

o Incorporating more rigorous functional and semantic valida-
tion metrics, such as specification-based tests or enhanced
coverage analyses, to ensure behavior preservation;

o Expanding the experiments to different software contexts, in-
cluding other programming languages, complex frameworks,
and codebases with insufficient testing;

o Applying adaptive prompt engineering techniques, allowing
the iterative evolution of the instructions provided to the
model throughout the improvement process;

o Integrating the approach with version control systems to
assess the impact of improvements within real development
cycles (e.g., pull requests, merges, human reviews);

o Finally, investigating hybrid strategies that combine static
heuristics, human suggestions, and LLM outputs to enhance
confidence and explainability in assisted improvement pro-
cesses.

These future directions aim not only to increase the reliability of
LLMs in code improvement tasks but also to broaden their practical
applicability in continuous development and real-world system
maintenance scenarios.

ARTIFACT AVAILABILITY

All artifacts are available on Zenodo [30].

REFERENCES

[1] G. Ann Campbell and P. Patroklos Papapetrou. 2013. SonarQube in Action. Man-

[9

=

ning Publications.

CodeGen. 2024. CodeGen Al Platform. https://www.codegen.com/. Accessed:
2024-04-18.

Han Cui. 2024. Can large language model replace static analysis tools. In Interna-
tional Conference on Computer Network Security and Software Engineering (CNSSE
2024), Vol. 13175. SPIE, 320-325.

Igor Regis da Silva Simdes and Elaine Venson. 2024. Evaluating Source Code
Quality with Large Language Models: a comparative study. In Proceedings of the
XXIII Brazilian Symposium on Software Quality. 103-113.

Sayed Mehdi Hejazi Dehaghani and Nafiseh Hajrahimi. 2013. Which factors
affect software projects maintenance cost more? Acta Informatica Medica 21, 1
(2013), 63.

Aidan ZH Yang et al. 2024. Revisiting unnaturalness for automated program
repair in the era of large language models. arXiv preprint arXiv:2404.15236 (2024).
Boshi Wang et al. 2023. Towards Understanding Chain-of-Thought Prompting:
An Empirical Study of What Matters. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, Toronto, Canada, 2717-2739. doi:10.18653/v1/
2023.acl-long.153

Danilo Nikoli¢ et al. 2021. Analysis of the tools for static code analysis. In 2021
20th International Symposium INFOTEH-JAHORINA (INFOTEH). IEEE, 1-6.
Greta Dolcetti et al. 2024. Helping LLMs Improve Code Generation Using Feed-
back from Testing and Static Analysis. arXiv preprint arXiv:2412.14841 (2024).

[10] Junyi Lu et al. 2023. Llama-reviewer: Advancing code review automation with

large language models through parameter-efficient fine-tuning. In 2023 IEEE
34th International Symposium on Software Reliability Engineering (ISSRE). IEEE,
647-658.

[11

[12

[13

(14]

[16

[17

[18

[19

)
=

[21

[22

[23]

[24]

[25]

[27

[28

[29

[30]

w
—

[32

(33]
(34]

[35

[36

[37

w
&,

[39

[40

[41

Gongalves and Maia

Khashayar Etemadi et al. 2022. Sorald: Automatic patch suggestions for sonarqube
static analysis violations. IEEE Transactions on Dependable and Secure Computing
20, 4 (2022), 2794-2810.

Lakshya A. Agrawal et al. 2023. Monitor-guided decoding of code Ims with static
analysis of repository context. Advances in Neural Information Processing Systems
36 (2023), 32270-32298.

Lishui Fan et al. 2024. Exploring the capabilities of llms for code change related
tasks. ACM Transactions on Software Engineering and Methodology (2024).
Mark Chen et al. 2021. Evaluating Large Language Models Trained on Code.
arXiv preprint arXiv:2107.03374 (2021).

Mohammad Mahdi Mohajer et al. 2024. Effectiveness of chatgpt for static analysis:
How far are we?. In Proceedings of the 1st ACM International Conference on Al-
Powered Software. 151-160.

Maosheng Zhong et al. 2023. Codegen-test: An automatic code generation model
integrating program test information. In 2023 2nd International Conference on
Cloud Computing, Big Data Application and Software Engineering (CBASE). IEEE,
341-344.

Qianou Ma et al. 2024. How to teach programming in the ai era? using llms as a
teachable agent for debugging. In International Conference on Artificial Intelligence
in Education. Springer, 265-279.

Quanjun Zhang et al. 2024. A systematic literature review on large language
models for automated program repair. arXiv preprint arXiv:2405.01466 (2024).
Shraddha Barke et al. 2023. Grounded Copilot: How Programmers Interact with
Code-Generating Models. Commun. ACM 66, 6 (2023), 106-115.

Steven I Ross et al. 2023. The programmer’s assistant: Conversational interaction
with a large language model for software development. In Proceedings of the 28th
International Conference on Intelligent User Interfaces. 491-514.

Toufique Ahmed et al. 2023. Improving few-shot prompts with relevant static
analysis products. arXiv preprint arXiv:2304.06815 (2023).

Xinyun Chen et al. 2023. Teaching large language models to self-debug. arXiv
preprint arXiv:2304.05128 (2023).

Xinyi Hou et al. 2024. Large language models for software engineering: A
systematic literature review. ACM Transactions on Software Engineering and
Methodology 33, 8 (2024), 1-79.

Yufan Cai et al. 2025. Automated Program Refinement: Guide and Verify Code
Large Language Model with Refinement Calculus. Proceedings of the ACM on
Programming Languages 9, POPL (2025), 2057-2089.

Yu Hao et al. 2023. E&v: Prompting large language models to perform static anal-
ysis by pseudo-code execution and verification. arXiv preprint arXiv:2312.08477
(2023).

Yue Wang et al. 2021. CodeT5: Identifier-aware Unified Pre-trained Encoder-
Decoder Models for Code Understanding and Generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing (EMNLP).
8696—8708.

Zhangyin Feng et al. 2020. CodeBERT: A Pre-Trained Model for Programming and
Natural Languages. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). 1536-1547.

Maryam Al-Hitmi Fida Zubair and Cagatay Catal. 2024. The use of large language
models for program repair. Computer Standards & Interfaces (2024), 103951.
GitHub. 2024. GitHub Copilot. https://github.com/features/copilot. Accessed:
2024-04-18.

Jodo Carlos Gongalves and Marcelo de Almeida Maia. 2025. Data of An Empiri-
cal Study on the Effectiveness of Iterative LLM-Based Improvements for Static
Analysis Issues. doi:10.5281/zenodo.15278368

Hugging Face. 2023. StarCoder and StarCoderBase: The next generation of code
LLMs. https://huggingface.co/blog/starcoder. Accessed: 2024-04-18.

Michael W. Hicks Jeffrey S. Foster and William Pugh. 2007. Improving software
quality with static analysis. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering. 83-84.

Aman Madaan. 2023. Self-refine: Iterative refinement with self-feedback. Ad-
vances in Neural Information Processing Systems 36 (2023), 46534-46594.

Tom Mens and Tom Tourwé. 2004. A survey of software refactoring. IEEE
Transactions on Software Engineering 30, 2 (2004), 126-139.

Meta. 2023. Code Llama: An Open Reproduction of Code-Related Large Language
Models. https://ai.meta.com/blog/code-llama-large-language-model-coding/.
Accessed: 2024-04-18.

Douglas C. Montgomery. 2017. Design and analysis of experiments. John wiley &
sons.

OpenAl 2021. OpenAl Codex. https://openai.com/index/openai-codex/. Ac-
cessed: 2024-04-18.

OpenAl 2023. GPT-4 Technical Report. OpenAlI Research. https://openai.com/
research/gpt-4.

OpenAl 2024. GPT-3 Apps: Applications Powered by OpenAI's GPT-3. https:
//openai.com/index/gpt-3-apps/. Accessed: 2024-04-18.

OpenAl 2024. GPT-4 by OpenAl https://openai.com/index/gpt-4/. Accessed:
2024-04-18.

Yuhao Wang Shuyang Jiang and Yu Wang. 2023. Selfevolve: A code evolution
framework via large language models. arXiv preprint arXiv:2306.02907 (2023).

https://www.codegen.com/
https://doi.org/10.18653/v1/2023.acl-long.153
https://doi.org/10.18653/v1/2023.acl-long.153
https://github.com/features/copilot
https://doi.org/10.5281/zenodo.15278368
https://huggingface.co/blog/starcoder
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://openai.com/index/openai-codex/
https://openai.com/research/gpt-4
https://openai.com/research/gpt-4
https://openai.com/index/gpt-3-apps/
https://openai.com/index/gpt-3-apps/
https://openai.com/index/gpt-4/

An Empirical Study on the Effectiveness of Iterative LLM-Based Improvements for

Static Analysis Issues SBES 25, September 22-26, 2025, Recife, PE
[42] SonarSource. 2024. SonarSource - Continuous Code Quality. https://www. [43] Jones Yeboah and Saheed Popoola. 2023. Efficacy of static analysis tools for soft-
sonarsource.com/ Accessed: 2024-04-18. ware defect detection on open-source projects. In 2023 International Conference on

Computational Science and Computational Intelligence (CSCI). IEEE, 1588-1593.

https://www.sonarsource.com/
https://www.sonarsource.com/

	ABSTRACT
	1 Introduction
	2 Background
	2.1 Static Code Analysis
	2.2 Large Language Models

	3 Methodology
	3.1 Automated Iterative Improvement Pipeline
	3.2 Research Questions
	3.3 Experimental Configurations and Design Justification
	3.4 Repositories and Data Sources
	3.5 Evaluation Metrics

	4 Results and Discussion
	4.1 RQ1 — What is the percentage reduction of issues?
	4.2 RQ2 — Does the Reduction of Issues Proportionally Impact the Reduction of Technical Debt?
	4.3 RQ3 — How Does the Experimental Configuration Impact Code Improvement?
	4.4 RQ4 — Is There Any Functional Breakage Throughout the Iterations of the Improvement Process?

	5 Related Work
	6 Threats to Validity
	6.1 External Validity
	6.2 Internal Validity
	6.3 Construct Validity
	6.4 Conclusion Validity

	7 Conclusion
	REFERENCES

