
Evaluating the Capability of Prompted LLMs to Recommend
NFR from User Stories: A Preliminary Study

José R. A. Pereira
Federal University of Campina

Grande
Campina Grande, PB, Brazil

carlos.souza@virtus.ufcg.edu.br

Mirko Perkusich
Federal University of Campina

Grande
Campina Grande, PB, Brazil
mirko@virtus.ufcg.edu.br

Felipe B. A. Ramos
Federal Institute of Paraíba
Santa Luzia, PB, Brazil

felipe.ramos@ifpb.edu.br

Danyllo W. Albuquerque
Federal University of Campina

Grande
Campina Grande, PB, Brazil

danyllo.albuquerque@virtus.ufcg.edu.br

Kyller Costa Gorgônio
Federal University of Campina

Grande
Campina Grande, PB, Brazil
kyller@virtus.ufcg.edu.br

Ângelo Perkusich
Federal University of Campina

Grande
Campina Grande, PB, Brazil
perkusich@virtus.ufcg.edu.br

ABSTRACT
[Context] Non-functional requirements (NFRs) are critical to
software quality but are often underspecified in agile projects.
Previous work proposed NFRec, a k-nearest neighbors (kNN)
recommender system, to support NFR elicitation based on
structured User Story metadata. [Objective] This study in-
vestigates whether Large Language Models (LLMs), when
prompted with structured representations of User Stories, can
generate relevant NFRs comparable to those recommended
by NFRec. [Method] We reused the original dataset of 246
User Stories and adopted the same evaluation protocol. The
gpt-4.1-mini model was queried using zero-shot prompt-
ing, instruction tuning, and role-playing strategies. Predicted
NFRs were evaluated using effectiveness measures against
the original ground truth. [Results] The LLM achieved high
recall and moderate F1 performance but lower precision due
to frequent overgeneration. The quality of recommendations
was highly sensitive to prompt design. In several cases, the
model produced plausible NFRs not present in the baseline,
suggesting that traditional metrics may understate its practi-
cal value. [Conclusion] Prompted LLMs offer a viable and
flexible alternative for NFR elicitation, especially in cold-start
scenarios where historical data is scarce. This study serves as
an initial step toward LLM-assisted requirements engineering,
opening up new directions for research in prompt engineer-
ing, hybrid models, and evaluation metrics that better reflect
semantic relevance and practical utility.

KEYWORDS
Non-functional requirements; Agile projects; Large Language
Models; Prompt engineering; Recommender systems.

1 Introduction
Agile Software Development (ASD) has become the dominant
paradigm in software engineering due to its emphasis on adapt-
ability, rapid feedback, and incremental delivery [3]. However,
this flexibility often comes at the cost of structure, particularly
in how software requirements are captured, shared, and reused
across teams [5]. Among these requirements, Non-functional

requirements (NFRs) are frequently overlooked or poorly spec-
ified in agile contexts, despite their critical impact on software
quality and user satisfaction [7].

Previous work has explored the use of recommender sys-
tems based on similarity metrics to support NFR elicitation
in ASD. One such approach is NFRec [22], which applies a
k-nearest neighbors (kNN) algorithm to suggest relevant NFRs
using a project-specific dataset derived from Scrum artifacts.
While effective when sufficient historical data is available, this
type of solution suffers from cold-start limitations and depends
on the availability of structured, labeled examples [24, 26].

Meanwhile, the emergence of Large Language Models
(LLMs), such as GPT-based models, has transformed many
areas of software engineering [1, 4]. These models demon-
strate strong reasoning capabilities and generalize well to
new tasks through prompt-based interaction [2, 19], making
them attractive candidates for replacing or complementing
traditional recommenders. Recent systematic reviews have
identified recommendation as one of the most common ap-
plications of LLMs in software engineering [11], and LLMs
have already shown promising results in domains such as API
suggestion [25], code completion [13], traceability link genera-
tion [18], and tag recommendation for developer forums [10].

In parallel, the recommender systems community has begun
to explore LLMs as generative recommenders [16, 17], capa-
ble of producing suggestions directly from open-ended user
inputs, without relying on structured historical data. These
models are particularly effective in contexts where data is
sparse, domain-specific, or expressed in natural language—all
characteristics commonly observed in NFR elicitation tasks.

Despite this growing body of work, the potential of
LLMs for recommending NFRs remains underexplored. This
paper investigates whether prompt-based interaction with
LLMs—specifically using the gpt-4.1-mini model—can be used
to generate relevant NFR suggestions from functional require-
ment (FR) descriptions, even in zero-shot scenarios. We con-
ducted a comparative evaluation using a previously established
dataset and benchmark from the literature [22], enabling a
head-to-head comparison between the LLM-based approach
and the earlier kNN-based system.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the original kNN approach and discusses

SBES ’25, September 22–26, 2025, Recife, PE Pereira et al.

the growing use of LLMs in recommender systems. Section 3
presents our experimental design. Section 4 reports the re-
sults of our comparative study. Section 5 discusses this study’s
implications, while Section 6 describes the threats to valid-
ity. Finally, Section 7 concludes the paper and outlines future
work.

2 Background and Related Work
This section provides the foundation for our study. We begin
by introducing NFRec, a baseline kNN-based recommender for
NFR elicitation. We then review how LLMs have been applied
to general recommendation tasks, and conclude by discussing
their use in SE contexts.

NFRec Background. NFRec is a recommender system de-
signed to support the elicitation of NFRs in agile projects. It
combines content-based and collaborative filtering to suggest
NFRs based on similarities between structured FR profiles.
These profiles encode project metadata derived from Scrum
artifacts, including domain, platform, architecture, language,
frameworks, APIs, persistence, and implemented tasks associ-
ated to FRs.

Each FR is annotated with one or more NFRs, grouped
into three categories: (1) Performance: response time, capacity,
transit delay, efficiency compliance; (2) Reliability: availabil-
ity, integrity, fault tolerance, recoverability; and (3) Security:
confidentiality, access control, authentication.

NFRs are structured as tuples of NFR_Type,
NFR_Attribute, and NFR_Sentence (e.g., "The
system must ensure the response_time by responding within 2
seconds."). This format supports both categorical and semantic
evaluations (see Section 3).

Table 1 shows example FR profiles. The metadata fields
(i.e., Operation, Platform) follow the taxonomy proposed by
Dilorenzo et al. [9], which organizes user stories to promote
reuse. This taxonomy enables structured comparison across
FRs and underpins similarity-based retrieval in NFRec.

The dataset comprises 13 projects spanning domains such
as education, business, and utilities. Table 2 summarizes the
number of FRs, NFRs, and tasks per project. On average, each
FR is linked to 1.8 NFRs.

NFRec uses kNN to recommend NFRs from similar FR pro-
files. Among several distance metrics tested, Manhattan dis-
tance with 𝑘 = 1 yielded the best performance. In system-
centric evaluation, NFRec achieved 78.5% precision, 81.6% re-
call, and 79.0% F-measure. User-centric evaluation showed
consistent results (81.8% precision) and confirmed that devel-
opment teams found the tool useful and easy to apply.

These findings establish a strong baseline but also expose
limitations: NFRec depends entirely on structured input and
prior data, making it susceptible to cold-start problems. In
addition, the approach is limited to recommending NFRs that
are explicitly associated with individual FRs in the dataset.
System-wide or crosscutting quality attributes—such as high
availability or global efficiency goals—are not represented, as
the original study focused on localized, FR-linked NFRs. This
motivates exploring prompt-based LLMs, which can operate
in data-scarce environments and potentially reason about both
local and global quality concerns.

LLMs in Recommender Systems. LLMs have emerged
as flexible and powerful components within recommender
system architectures. Recent surveys [16, 17] highlight the
various roles that LLMs can play throughout the recommen-
dation pipeline, including feature extraction, user modeling,
and even direct generation of recommendations via natural
language prompts.

Unlike conventional models that require structured user-
item interaction data, LLMs leverage open-domain knowledge,
semantic reasoning, and contextual understanding [14]. These
characteristics make them particularly effective in cold-start
scenarios and tasks where structured data is scarce, enabling
zero-shot or few-shot performance [15]. Several studies pro-
pose frameworks for LLM-based recommendation, investigat-
ing how variations in prompt structure, task formulation, and
context encoding impact performance [20, 29].

While these models demonstrate high recommendation
accuracy, they also raise concerns about bias, hallucinations,
and fairness [8]. Consequently, new evaluation strategies have
been developed to assess LLM-based recommenders beyond
traditional utility metrics, incorporating dimensions such as
recency, diversity, and stability [14].

Recent efforts have further explored how ChatGPT can
serve as a general-purpose recommender, analyzing the effects
of prompt design, system roles, and user interaction strate-
gies [21]. These findings emphasize the critical role of prompt
engineering in shaping model outputs and offer practical guid-
ance for adapting LLM-based recommenders to new domains,
including tasks such as requirements elicitation.

LLMs for Recommendation in Software Engineer-
ing. In software engineering, LLMs have been applied to rec-
ommend code completions [13], APIs [12, 25], traceability
links [18, 31], metadata [10], and method names [30]. These
tasks often require aligning informal language with technical
artifacts.

Models like BERT, CodeBERT, and GraphCodeBERT have
outperformed classical IR approaches, especially when pre-
trained on domain-specific corpora [10]. Prompt-tuning has
also proven useful in adapting LLMs to software-specific tasks.
Additionally, a systematic literature review [11] covering 395
studies found that recommendation is among the most fre-
quent uses of LLMs in SE (6.77% of papers). However, nearly
all focus on recommending code-level artifacts; the application
of LLMs to NFR elicitation remains underexplored.

Given that NFRs are often implicit, informal, and context-
dependent, LLMs—when guided by effective prompts—may
offer a viable approach for generating relevant suggestions in
settings where traditional, data-driven recommenders struggle.
This work explores this hypothesis, focusing on the recommen-
dation of NFRs from FR descriptions in agile project settings.

3 Methodology
This study adopts an explanatory sequential mixed-methods
approach [6] to evaluate whether LLMs can effectively support
the recommendation of NFRs from structured FR profiles. The
approach comprises two phases: (i) an initial quantitative anal-
ysis using system-centric metrics, followed by (ii) a focused
qualitative inspection of disagreement cases.

Evaluating the Capability of Prompted LLMs to Recommend NFR from
User Stories: A Preliminary Study SBES ’25, September 22–26, 2025, Recife, PE

Table 1: Examples of structured FR profiles used in NFRec

ID Mod. Ope. Plat. Arch. Domain Obj. Lang. Fram. API DB Tasks

f1 Authen. Create Account Web MVC Home Auto. Prot. Java Node Facebook MongoDB t1, t2
f2 Regist. Insert Data Web Client-Serv Edu Prod. JavaScript Node Mongoose MongoDB t3, t4
f3 Regist. Insert Data Web Client-Serv Edu Prod. Java Springboot JPA MySQL t3, t5
f4 Regist. Retrieve Data Web Client-Serv Edu Prod. TypeScript Angular Mongoose MongoDB t6, t7
f5 Regist. Retrieve Data Web Layered Info. Rec. Prod. Python Django Firebase MySQL t6, t7

Table 2: Summary of dataset used in NFRec

Project Domain FRs NFRs Tasks NFRs/FR

P1 Entertainment 9 22 31 2.4
P2 Utilities 6 10 15 1.7
P3 Utilities 16 22 36 1.4
P4 Education 30 61 100 2.0
P5 Education 60 81 216 1.4
P6 Business 44 93 126 2.1
P7 Business 39 90 136 2.3
P8 Info. Assets 49 80 131 1.6
P9 Info. Assets 13 27 53 2.1
P10 Info. Assets 27 29 64 1.1
P11 Communications 36 85 91 2.4
P12 Info. Assets 23 37 53 1.6
P13 Office 31 56 75 1.8

Overall — 383 693 1127 1.8

3.1 Dataset and Evaluation Metrics
This study reuses the same dataset and evaluation strategy
adopted by NFRec (see Section 2). The dataset contains 383 FR
profiles annotated with 693 NFRs, covering 13 projects from
various domains. Each profile includes structured metadata
derived from a taxonomy of user stories [9], as well as associ-
ated implementation tasks. The average NFRs-per-FR ratio is
1.8.

Following the original evaluation protocol, we adopted a
system-centric approach to assess the performance of our
model. Precision, Recall, and F-measure are used as metrics,
allowing direct comparison with the NFRec baseline. We ac-
knowledge that some FR profiles in the dataset lack NFR anno-
tations, which may affect the observed performance. However,
this limitation is consistent across both studies and does not
compromise the comparative analysis.

3.2 LLM Configuration and Prompting
Strategy

To generate NFR recommendations, we use the
gpt-4.1-mini model via OpenAI’s API. This model
was selected for its favorable cost-to-performance ratio, with
API costs of $0.40 per million tokens for input and $1.60 per
million for output. All prompts were designed to remain
within practical token limits while preserving clarity.

The prompt design followed established techniques such
as Chain-of-Thought and Role-Playing [21, 27]. Specifically,
the model was instructed to act as a Requirements Engineer
capable of interpreting structured FR profiles and recommend-
ing suitable NFRs based on contextual factors such as domain,
architecture, and implementation details.

It is important to note that the prompt did not constrain
the number of NFRs to match the ground truth. The model
was free to recommend as many requirements as it deemed
relevant. This design choice reflects realistic usage scenarios
and may result in a greater number of suggestions than those
found in the reference dataset, potentially lowering precision
but increasing coverage.

To improve transparency, the following box presents a sum-
marized version of the prompt structure. In practice, the actual
API interaction used a system message to define the model’s
role ("You are a Requirements Engineer") and a separate user
prompt containing the remaining instructions. The full prompt
configuration—including system and user roles—is available
in the accompanying GitHub repository.

Prompt Template for Recommending NFRs

You are a Requirements Engineer. Based on the following structured input
(including domain, architecture, platform, language, and associated tasks), rec-
ommend the most relevant NFRs. Use only the following types and attributes:
Performance: response_time, capacity, transit_delay, efficiency_complianc
Reliability: availability, integrity, fault_tolerance, recoverability
Security: confidentiality, access_control, authentication
For each recommended NFR, return a JSON object with the following structure:

• NFR_Type
• NFR_Attribute
• NFR_Sentence (e.g., "The system must ensure the response_time

by responding within 2 seconds.")
Return a valid JSON array. Do not include explanations or additional text outside
the array. Recommend multiple NFRs if contextually justified. The number of
NFRs may exceed the number of tasks when appropriate.

Example:
Prompt (user input): "Given the following user story: ’As a
user, I want to reset my password so I can regain access to my
account.’ Suggest relevant non-functional requirements."
LLM Output:

{
"NFR_Type": "Security",
"NFR_Attribute": "authentication",
"NFR_Sentence": "The system must ensure

authentication by verifying the user's
identity before allowing password reset."

},
{
"NFR_Type": "Reliability",
"NFR_Attribute": "recoverability",
"NFR_Sentence": "The system must ensure

recoverability by allowing users to
regain access even if their credentials
are lost."

}
]

Although the prompt instructs the model to generate com-
plete NFR sentences, our evaluation in this study considers
only the NFR_Type and NFR_Attribute fields. While ref-
erence sentences exist in the dataset, we did not assess the
similarity between generated and reference NFR_Sentence

SBES ’25, September 22–26, 2025, Recife, PE Pereira et al.

values. This simplifies evaluation and focuses on the classifi-
cation aspect of the task, but represents a limitation in terms
of assessing the semantic quality of the output.

All datasets, prompt templates, and generated results are
publicly available in the accompanying GitHub repository.

3.3 Quantitative Analysis
In the first phase of the evaluation, we conducted a quantitative
analysis by comparing the NFRs recommended by the LLM
against the reference dataset. Each predicted NFRwasmatched
against the ground truth using an exact comparison of the
NFR_Type and NFR_Attribute fields.

True Positives (TP) were counted when the LLM-predicted
NFR matched one from the reference dataset. False Posi-
tives (FP) corresponded to predicted NFRs not present in the
ground truth, while False Negatives (FN) referred to ground
truth NFRs that the LLM did not recommend. Evaluation met-
rics—Precision, Recall, and F1-measure—were computed glob-
ally by aggregating TP, FP, and FN across all FR profiles. These
results were then compared to those obtained by NFRec [22].

3.4 Qualitative Analysis of Disagreements
To complement the quantitative evaluation, we conducted a
focused qualitative analysis of disagreement cases. Given the
large number of mismatches between model predictions and
reference annotations, we selected a representative project for
manual inspection.

Specifically, we chose one project with a near-average agree-
ment rate and a manageable number of disagreements. Each
disagreement in this sample was reviewed by one of the au-
thors to determine whether the additional NFRs suggested by
the LLM—those not present in the ground truth—were valid
yet missing recommendations, or simply incorrect predictions.
This phase aims to uncover potential gaps in the reference
dataset, as well as identify limitations in the model’s reasoning
or prompt configuration.

4 Results and Discussion
This section presents the results of our evaluation, organized
into two parts. First, we report the quantitative performance
of the LLM in terms of precision, recall, and F1-measure, com-
paring it to the NFRec baseline. Then, we provide a qualitative
analysis of disagreement cases to better understand the nature
of the mismatches and explore whether the LLM’s broader rec-
ommendations may still offer practical value despite deviating
from the ground truth.

4.1 Quantitative Analysis
Table 3 summarizes the number of TP, FP, and FN observed
across the 13 projects in the dataset. These values were ag-
gregated to compute macro-level effectiveness measures (i.e.,
Precision, Recall, and F1-measure), enabling a direct compari-
son with the NFRec baseline.

From these aggregate values, we derived the following per-
formance metrics for the LLM:

• Precision: 24.6%
• Recall: 72.1%

Table 3: TP, FP, and FN per project

Project TP FP FN

P01 14 17 2
P02 6 7 1
P03 15 67 4
P04 46 129 9
P05 57 186 9
P06 47 108 20
P07 39 158 32
P08 37 242 24
P09 20 38 3
P10 12 108 14
P11 48 45 18
P12 16 60 11
P13 39 50 6

Total 396 1215 153

• F1-measure: 36.7%
In comparison, the NFRec baseline reported 78.5% preci-

sion, 81.6% recall, and a 79.0% F1-measure [22]. The sharpest
contrast lies in precision, which is substantially lower for the
LLM-based approach.

However, these results should not be interpreted as evidence
of poor performance.While the LLM produces more FPs, it also
achieves high recall, indicating strong coverage of the relevant
NFRs defined in the ground truth. The lower precision stems
from the LLM’s broader generalization capacity—an inherent
feature of foundation models that rely on extensive world
knowledge rather than local patterns.

Unlike NFRec, which is constrained to recommending NFRs
previously observed in similar cases, the LLM is capable of sug-
gesting requirements that may not have been documented in
the reference dataset but are still contextually valid. This raises
questions about the completeness and representativeness of
the ground truth itself, particularly since many of the original
projects offer limited information about their expected quality
levels, target scale, or development maturity (e.g., MVPs vs.
production-ready systems).

NFR recommenders are best viewed as exploratory assis-
tants. In agile or early-stage projects, where requirements
are often incomplete, it is better to surface plausible sugges-
tions—even at the risk of false positives—than to miss critical
quality concerns [23]. False positives can be reviewed and
discarded, but false negatives may go unnoticed and harm
system quality. Prior work emphasizes recall as a priority in
such settings. Still, too many irrelevant suggestions can reduce
trust in the tool, making it resemble a generic checklist. High
recall is useful—but only if balanced with enough precision to
keep recommendations actionable.

4.2 Qualitative Analysis of Disagreements
To complement the quantitative evaluation and contextualize
the disagreement cases, we conducted a qualitative review.
Given the large number of mismatches across the dataset, we
selected project P09 as a representative case for in-depth anal-
ysis. This project exhibited a near-average agreement rate and
a manageable number of disagreements (38 in total), enabling
a thorough expert review.

Evaluating the Capability of Prompted LLMs to Recommend NFR from
User Stories: A Preliminary Study SBES ’25, September 22–26, 2025, Recife, PE

The analysis shows that the LLM correctly identified the
dominant NFR categories—Security, Performance, and Reliabil-
ity—across most user stories. For example, in authentication-
related scenarios (US01–US03), the model accurately recom-
mended authentication, access control, and confidentiality,
which were present in the ground truth. However, it also pre-
dicted additional performance-related attributes such as re-
sponse time and capacity. These were not annotated but are
arguably relevant in real systems, especially under production-
like expectations.

Similar over-predictions occurred in US04 and US07, where
the LLM suggested attributes like high availability and effi-
ciency compliance. While these were absent from the manual
annotations, they align with common quality expectations in
user data management features. In account deletion (US05)
and password recovery (US06) scenarios, the LLM correctly
included security and reliability attributes and further pro-
posed relevant qualities like recoverability and integrity, again
extending beyond the ground truth.

In visualization features (US08), the LLM predicted per-
formance attributes such as rendering time and support for
concurrent users. While these recommendations were not
included in the dataset annotations, they reflect real-world
expectations that could enhance user experience and system
robustness.

Notably, several of the LLM’s predictions—such as high
availability and support for concurrent users—refer to cross-
cutting concerns typically addressed at the system level. In
agile settings, such requirements are often captured in the
Definition of Done or broader quality policies, rather than
being explicitly tied to individual FRs (i.e., user stories). Since
the reference dataset annotated only NFRs directly linked to
specific FRs, this structural limitation may have caused valid,
system-wide concerns to be labeled as false positives. This
suggests that LLMs may complement conventional elicitation
practices by surfacing global quality requirements that are
often overlooked in FR-level analyses.

More broadly, the LLM appears to leverage domain knowl-
edge and software engineering best practices to make gen-
eralizations that exceed the scope of the original annota-
tions. In several cases, these generalizations resulted in plau-
sible—though unsolicited—NFRs that were penalized in the
quantitative evaluation despite their practical relevance.

In summary, the model tends to overemphasize
performance-related attributes—such as response time,
capacity, and efficiency compliance—even when the primary
concern in a user story lies elsewhere. This behavior likely
stems from the LLM’s learned priors about common quality
expectations in software systems. While some of these
suggestions did not match the ground truth, they were
defensible from a design and engineering perspective. These
findings reinforce the potential of LLMs to support NFR
elicitation by augmenting human judgment with contextual
reasoning and industry-aligned recommendations.

5 Implications for Research and Practice
This study offers insights for both researchers and practition-
ers interested in enhancing NFR elicitation using LLMs. While

our findings confirm that LLMs can produce a broader set of
NFR recommendations than traditional approaches, they also
expose challenges related to evaluation, dataset limitations,
and prompt sensitivity. In what follows, we discuss implica-
tions for future research and practical adoption below.

Implications for Research. Our study highlights the po-
tential and current limitations of LLMs in supporting NFR
elicitation from structured textual input. Based on our results,
we identify the following implications:

• Limitations of Traditional Evaluation Metrics. The LLM’s
low precision stemmed from suggesting plausible NFRs
not in the ground truth. This highlights a limitation of
conventional metrics (e.g., precision, F1) in capturing
the value of generative models for early-stage elicita-
tion. As noted by Jiang et al. [14], broader metrics like
plausibility and diversity should be considered.

• Sensitivity to Prompt Design. We observed that output
quality depends heavily on how the prompt is formu-
lated. While our study used a consistent, carefully con-
structed zero-shot prompt, future work should investi-
gate the impact of alternative prompting strategies and
prompt variations on recommendation quality.

• Potential for Dataset Enrichment. Our qualitative analy-
sis revealed several cases where LLM-generated NFRs,
although absent from the reference dataset, were con-
textually valid and aligned with best practices. This
suggests that LLMs could support the expansion of
incomplete datasets, especially in cold-start or under-
specified projects. Additionally, many relevant NFRs
(e.g., availability, scalability) are usually crosscutting
concerns typically defined in system-wide artifacts (e.g.,
Definition of Done) rather than attached to individual
FRs. Future datasets should better reflect this layered
nature of NFR specification.

Implications for Practice. This study reinforces the
emerging role of LLMs as assistants in requirements elici-
tation. Despite their lower precision under conventional met-
rics, LLMs can serve as valuable tools to expand the scope of
consideration, stimulate stakeholder discussion, and identify
overlooked quality concerns.

• Augmenting, Not Replacing, Human Expertise. Our qual-
itative analysis revealed that many "false positives" gen-
erated by the LLM were, in fact, valid NFRs missing
from the ground truth. This suggests that LLMs are
best positioned as assistants that stimulate reflection
and expand the analyst’s perspective, rather than as
automated replacements.

• Reducing Cold-Start Limitations. Unlike knowledge-
based recommenders such as NFRec, LLMs do not re-
quire historical data to make suggestions. This can be
particularly useful in early-phase projects or when fac-
ing new domains or architectures for which similar past
cases are unavailable.

• Enabling Lightweight NFR Support in Agile Teams. Agile
development processes often neglect systematic NFR
elicitation due to time constraints or lack of formal
structure. LLMs offer a low-effort way to generate initial

SBES ’25, September 22–26, 2025, Recife, PE Pereira et al.

suggestions based on high-level context, which can be
refined collaboratively with stakeholders.

Overall, our findings support the use of LLMs as practical
support tools for NFR elicitation. However, they also under-
score the need for careful prompt design, interpretive evalua-
tion, and human oversight in their application.

6 Threats to Validity
We discuss potential threats to the validity of our findings
using standard classifications: construct, internal, external,
and reliability validity [28].

Construct Validity. Our evaluation assumes that the ref-
erence dataset and its manually annotated NFRs are complete
and correct. However, as shown in our qualitative analysis, sev-
eral LLM suggestions—labeled as false positives—may actually
be valid but unannotated, revealing potential incompleteness
or narrowness in the ground truth. Additionally, the dataset
only includes NFRs explicitly linked to specific functional re-
quirements, omitting crosscutting concerns (e.g., availability,
scalability) that are often addressed at the system level in agile
projects. This structural constraint may penalize otherwise
reasonable recommendations. Our evaluation also focused
solely on NFR_Type and NFR_Attribute, ignoring the
NFR_Sentence field—potentially overlooking semantic dif-
ferences or alignments in how requirements were phrased.
Moreover, following the protocol used in NFRec, we relied
on traditional system-centric metrics (precision, recall, and
F1), which emphasize exact matches. This framing may un-
derestimate the value of plausible, diverse, or contextually
appropriate NFRs generated by the LLM, as emphasized by
Jiang et al. [14].

Internal Validity. All experiments were run using GPT-
4.1-mini with fixed parameters and temperature zero. We did
not measure variation across multiple runs or models. Also,
the quality expectations of the dataset projects are not clearly
documented. These factors may influence how thoroughly
NFRs were specified and annotated. In addition, the prompt
was tailored to the dataset and task, raising the risk that results
are specific to this configuration and may not generalize to
other scenarios.

External Validity. This study is based on a single dataset
composed of user stories from Brazilian software projects and
focuses exclusively on three NFR categories. As such, the re-
sults may not capture the diversity, complexity, or rigor found
in other domains, including safety-critical systems or large-
scale industrial environments. Additionally, all user stories
were written in Portuguese, which may introduce linguistic or
cultural biases that limit generalizability to other languages
or regions. Another limitation is the exclusive use of a single
model—GPT-4.1-mini (OpenAI)—without comparison to other
commercial or open-source LLMs. While this model offered
competitive performance, different architectures or tuning
strategies may yield varying results. Still, these constraints
are consistent with our goal of exploring feasibility under
controlled and reproducible conditions.

Reliability. The prompt template and all datasets are avail-
able online to support replication. However, the qualitative
review of disagreements was limited to a single project (P09)

and performed by a single researcher, which may introduce
interpretation bias. Finally, our experiments used OpenAI’s
API with version-controlled prompts and temperature settings.
However, commercial APIs may change behavior over time
without notice, which can affect reproducibility.

7 Conclusions
This study demonstrates the feasibility of using LLMs to sup-
port the elicitation of NFRs in agile software projects. Unlike
traditional data-driven recommenders like NFRec, LLMs op-
erate without requiring historical datasets, making them es-
pecially useful in cold-start scenarios or settings with limited
documentation.While the LLM in our study tended to overgen-
erate compared to the ground truth, many of its suggestions
aligned with best practices and addressed relevant quality
attributes not explicitly documented by human analysts.

At the same time, our results underscore key limitations.
The model’s output is sensitive to prompt phrasing, and
conventional evaluation metrics—such as precision and re-
call—may not fully capture the practical utility or semantic
correctness of generative outputs. This highlights the value
of combining quantitative analysis with expert-led qualita-
tive reviews to better interpret the nature of LLM-generated
recommendations.

Future work should expand empirical validation across dif-
ferent domains, projects, and LLM variants, and evaluate the
effectiveness of more advanced techniques such as few-shot
prompting, instruction tuning, and retrieval-augmented gen-
eration (RAG). In parallel, hybrid architectures that combine
the creativity of LLMs with the precision of structured rec-
ommenders (e.g., kNN-based systems) represent a promising
research direction.

Finally, we encourage the development of richer datasets,
standardized evaluation protocols, and shareable prompt tem-
plates to advance reproducibility in this area. We hope these
initial findings will inspire future work on LLM-driven tools
for NFR elicitation and broaden how we think about complete-
ness and quality in early requirements engineering.

ARTIFACT AVAILABILITY
All artifacts related to this study—including prompts, scripts,
detailed methodology, intermediate results, and evaluation
resources—are publicly available to facilitate transparency,
replication, and further research1.

ACKNOWLEDGMENTS
This work has been partially funded by the project ’iSOP Base:
Investigação e desenvolvimento de base arquitetural e tec-
nológica da Intelligent Sensing Operating Platform (iSOP)’
supported by CENTRO DE COMPETÊNCIA EMBRAPII VIR-
TUS EM HARDWARE INTELIGENTE PARA INDÚSTRIA
- VIRTUS-CC, with financial resources from the PPI Hard-
wareBR of the MCTI grant number 055/2023, signed with
EMBRAPII.

1Available at: https://anonymous.4open.science/r/NRFRecLLM-1ABE/

https://anonymous.4open.science/r/NRFRecLLM-1ABE/

Evaluating the Capability of Prompted LLMs to Recommend NFR from
User Stories: A Preliminary Study SBES ’25, September 22–26, 2025, Recife, PE

REFERENCES
[1] Danyllo Albuquerque, Everton Guimarães, Graziela Tonin, Pilar Ro-

dríguezs, Mirko Perkusich, Hyggo Almeida, Angelo Perkusich, and Fer-
dinandy Chagas. 2023. Managing Technical Debt Using Intelligent Tech-
niques - A Systematic Mapping Study. IEEE Transactions on Software Engi-
neering 49, 4 (2023), 2202–2220. https://doi.org/10.1109/TSE.2022.3214764

[2] Yonatha Almeida, Danyllo Albuquerque, Emanuel Dantas Filho, Felipe
Muniz, Katyusco de Farias Santos, Mirko Perkusich, Hyggo Almeida, and
Angelo Perkusich. 2024. AICodeReview: Advancing code quality with
AI-enhanced reviews. SoftwareX 26 (2024), 101677.

[3] Corey Baham and Rudy Hirschheim. 2022. Issues, challenges, and a pro-
posed theoretical core of agile software development research. Information
Systems Journal 32, 1 (2022), 103–129.

[4] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran
Arora, Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine
Bosselut, Emma Brunskill, Erik Brynjolfsson, S. Buch, Dallas Card, Rodrigo
Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen A. Creel, Jared
Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus,
Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea
Finn, Trevor Gale, Lauren E. Gillespie, Karan Goel, Noah D. Goodman,
Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson,
John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas F.
Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti,
Geoff Keeling, Fereshte Khani, O. Khattab, Pang Wei Koh, Mark S. Krass,
Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina
Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li,
Tengyu Ma, Ali Malik, Christopher D. Manning, Suvir P. Mirchandani,
Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak
Narayanan, Benjamin Newman, Allen Nie, Juan Carlos Niebles, Hamed
Nilforoshan, J. F. Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou,
Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts, Aditi
Raghunathan, Robert Reich, Hongyu Ren, Frieda Rong, Yusuf H. Roohani,
Camilo Ruiz, Jack Ryan, Christopher R’e, Dorsa Sadigh, Shiori Sagawa, Ke-
shav Santhanam, Andy Shih, Krishna Parasuram Srinivasan, Alex Tamkin,
Rohan Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William
Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro
Yasunaga, Jiaxuan You, Matei A. Zaharia, Michael Zhang, Tianyi Zhang,
Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang.
2021. On the Opportunities and Risks of Foundation Models. ArXiv (2021).
https://crfm.stanford.edu/assets/report.pdf

[5] Lan Cao and Balasubramaniam Ramesh. 2008. Agile Requirements Engi-
neering Practices: An Empirical Study. IEEE Software 25, 1 (2008), 60–67.
https://doi.org/10.1109/MS.2008.1

[6] John W Creswell and J David Creswell. 2018. Mixed methods procedures.
Research Defign: Qualitative, Quantitative, and Mixed M ethods Approaches
31, 3 (2018), 75–77.

[7] Karina Curcio, Tiago Navarro, Andreia Malucelli, and Sheila Reinehr. 2018.
Requirements engineering: A systematic mapping study in agile software
development. J. Syst. Softw. 139, C (May 2018), 32–50. https://doi.org/10.
1016/j.jss.2018.01.036

[8] Yashar Deldjoo. 2024. Understanding biases in ChatGPT-based recom-
mender systems: Provider fairness, temporal stability, and recency. ACM
Transactions on Recommender Systems (2024).

[9] Ednaldo Dilorenzo, Emanuel Dantas, Mirko Perkusich, Felipe Ramos,
Alexandre Costa, Danyllo Albuquerque, Hyggo Almeida, and Angelo
Perkusich. 2020. Enabling the Reuse of Software Development Assets
Through a Taxonomy for User Stories. IEEE Access 8 (2020), 107285–107300.
https://doi.org/10.1109/ACCESS.2020.2996951

[10] Junda He, Xin Zhou, Bowen Xu, Ting Zhang, Kisub Kim, Zhou Yang,
Ferdian Thung, Ivana Clairine Irsan, and David Lo. 2024. Representation
learning for stack overflow posts: How far are we? ACM Transactions on
Software Engineering and Methodology 33, 3 (2024), 1–24.

[11] Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xi-
apu Luo, David Lo, John Grundy, and Haoyu Wang. 2024. Large Lan-
guage Models for Software Engineering: A Systematic Literature Review.
arXiv:2308.10620 [cs.SE] https://arxiv.org/abs/2308.10620

[12] Qiao Huang, Xin Xia, Zhenchang Xing, David Lo, and Xinyu Wang. 2018.
API method recommendation without worrying about the task-API knowl-
edge gap. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. 293–304.

[13] Maliheh Izadi, Roberta Gismondi, and Georgios Gousios. 2022. Code-
fill: Multi-token code completion by jointly learning from structure and
naming sequences. In Proceedings of the 44th international conference on
software engineering. 401–412.

[14] Chumeng Jiang, Jiayin Wang, Weizhi Ma, Charles LA Clarke, Shuai Wang,
Chuhan Wu, and Min Zhang. 2025. Beyond Utility: Evaluating LLM as
Recommender. In Proceedings of the ACM on Web Conference 2025. 3850–
3862.

[15] Genki Kusano, Kosuke Akimoto, and Kunihiro Takeoka. 2024. Are Longer
Prompts Always Better? Prompt Selection in Large Language Models for

Recommendation Systems. arXiv preprint arXiv:2412.14454 (2024).
[16] Lei Li, Yongfeng Zhang, Dugang Liu, and Li Chen. 2023. Large language

models for generative recommendation: A survey and visionary discus-
sions. arXiv preprint arXiv:2309.01157 (2023).

[17] Jianghao Lin, Xinyi Dai, Yunjia Xi, Weiwen Liu, Bo Chen, Hao Zhang,
Yong Liu, Chuhan Wu, Xiangyang Li, Chenxu Zhu, et al. 2025. How can
recommender systems benefit from large language models: A survey. ACM
Transactions on Information Systems 43, 2 (2025), 1–47.

[18] Jinfeng Lin, Yalin Liu, Qingkai Zeng, Meng Jiang, and Jane Cleland-Huang.
2021. Traceability transformed: Generating more accurate links with pre-
trained bert models. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 324–335.

[19] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey
of prompting methods in natural language processing. ACM computing
surveys 55, 9 (2023), 1–35.

[20] Ahtsham Manzoor, Samuel C Ziegler, Klaus Maria Pirker Garcia, and
Dietmar Jannach. 2024. ChatGPT as a conversational recommender system:
A user-centric analysis. In Proceedings of the 32nd ACM Conference on User
Modeling, Adaptation and Personalization. 267–272.

[21] Dario Di Palma, Giovanni Maria Biancofiore, Vito Walter Anelli, Fedelu-
cio Narducci, Tommaso Di Noia, and Eugenio Di Sciascio. 2024. Eval-
uating ChatGPT as a Recommender System: A Rigorous Approach.
arXiv:2309.03613 [cs.IR] https://arxiv.org/abs/2309.03613

[22] Felipe Ramos, Alexandre Costa, Mirko Perkusich, Luiz Silva, Dalton Val-
adares, Ademar de Sousa Neto, Felipe Cunha, Hyggo Almeida, and Angelo
Perkusich. 2025. A Data-Driven Recommendation System for Enhanc-
ing Non-Functional Requirements Elicitation in Scrum-Based Projects.
IEEE Access 13 (2025), 44000–44023. https://doi.org/10.1109/ACCESS.2025.
3548631

[23] John Slankas and Laurie Williams. 2013. Automated extraction of non-
functional requirements in available documentation. In 2013 1st Inter-
national workshop on natural language analysis in software engineering
(NaturaLiSE). IEEE, 9–16.

[24] Jianling Wang, Haokai Lu, James Caverlee, Ed H Chi, and Minmin Chen.
2024. Large language models as data augmenters for cold-start item rec-
ommendation. In Companion Proceedings of the ACM Web Conference 2024.
726–729.

[25] Moshi Wei, Nima Shiri Harzevili, Yuchao Huang, Junjie Wang, and Song
Wang. 2022. Clear: contrastive learning for api recommendation. In Proceed-
ings of the 44th International Conference on Software Engineering. 376–387.

[26] Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan Li, Xuanping Li, and
Tat-Seng Chua. 2021. Contrastive learning for cold-start recommendation.
In Proceedings of the 29th ACM international conference on multimedia.
5382–5390.

[27] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Dou-
glas C. Schmidt. 2023. ChatGPT Prompt Patterns for Improving Code
Quality, Refactoring, Requirements Elicitation, and Software Design.
arXiv:2303.07839 [cs.SE] https://arxiv.org/abs/2303.07839

[28] ClaesWohlin, Per Runeson, Martin Höst, Magnus COhlsson, Björn Regnell,
Anders Wesslén, et al. 2012. Experimentation in software engineering.
Vol. 236. Springer.

[29] Lanling Xu, Junjie Zhang, Bingqian Li, Jinpeng Wang, Sheng Chen,
Wayne Xin Zhao, and Ji-Rong Wen. 2025. Tapping the Potential of Large
Language Models as Recommender Systems: A Comprehensive Frame-
work and Empirical Analysis. ACM Transactions on Knowledge Discovery
from Data (2025).

[30] Jie Zhu, Lingwei Li, Li Yang, XiaoxiaoMa, and Chun Zuo. 2023. Automating
method naming with context-aware prompt-tuning. In 2023 IEEE/ACM 31st
International Conference on Program Comprehension (ICPC). IEEE, 203–214.

[31] Jianfei Zhu, Guanping Xiao, Zheng Zheng, and Yulei Sui. 2022. Enhanc-
ing traceability link recovery with unlabeled data. In 2022 IEEE 33rd In-
ternational Symposium on Software Reliability Engineering (ISSRE). IEEE,
446–457.

https://doi.org/10.1109/TSE.2022.3214764
https://crfm.stanford.edu/assets/report.pdf
https://doi.org/10.1109/MS.2008.1
https://doi.org/10.1016/j.jss.2018.01.036
https://doi.org/10.1016/j.jss.2018.01.036
https://doi.org/10.1109/ACCESS.2020.2996951
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2308.10620
https://arxiv.org/abs/2309.03613
https://arxiv.org/abs/2309.03613
https://doi.org/10.1109/ACCESS.2025.3548631
https://doi.org/10.1109/ACCESS.2025.3548631
https://arxiv.org/abs/2303.07839
https://arxiv.org/abs/2303.07839

	ABSTRACT
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Dataset and Evaluation Metrics
	3.2 LLM Configuration and Prompting Strategy
	3.3 Quantitative Analysis
	3.4 Qualitative Analysis of Disagreements

	4 Results and Discussion
	4.1 Quantitative Analysis
	4.2 Qualitative Analysis of Disagreements

	5 Implications for Research and Practice
	6 Threats to Validity
	7 Conclusions
	REFERENCES

