Using Large Language Models to Classify Test Case Complexity
with Explainability

Tiago Custddio
Universidade Federal do Amazonas
Manaus, AM, Brazil

André Carvalho
Universidade Federal do Amazonas
Manaus, AM, Brazil

Maikon Santos
Universidade Federal do Amazonas
Manaus, AM, Brazil

tpc@icomp.ufam.edu.br andre@icomp.ufam.edu.br maikon.santos@icomp.ufam.edu.br
Yan Soares Hallyson Melo Nikson Ferreira
Universidade Federal do Amazonas Instituto de Desenvolvimento Instituto de Desenvolvimento
Manaus, AM, Brazil Tecnologico Tecnologico

yan.soares@icomp.ufam.edu.br

Manaus, Amazonas, BR
hallyson.melo@indt.org.br

Manaus, Amazonas, BR
nikson.ferreira@indt.org.br

Rodrigo Marques
Instituto de Desenvolvimento
Tecnologico
Manaus, Amazonas, BR
rodrigo.marques@indt.org.br

ABSTRACT

The classification of black-box test case complexity is a key task
in software testing, enabling resource prioritization and the identi-
fication of edge scenarios. In this work, we propose a three-stage
LLM-based pipeline that integrates explanation generation into
the classification process, treating justifications as central to model
decision-making. Our approach formulates the task as a conditional
generation problem, where LLMs are guided to first produce a ratio-
nale and then a complexity label. Experimental results demonstrate
that this strategy improves both predictive accuracy and explain-
ability compared to using LLMs directly for classification. We show
that LLM-generated justifications not only enhance user trust but
also contribute to more consistent and explainable decisions.

KEYWORDS
Test Case Complexity, Large Language Models, Prompt Engineer

1 Introduction

Classifying the complexity of software test cases is an important
task in software engineering, as it guides critical activities such
as test prioritization, resource allocation, and the identification of
edge-case scenarios [3], [11]. Assigning test cases to predefined
complexity categories enables more efficient testing strategies, since
complex test cases can be prioritized or receive additional resources,
supporting practices such as parallel execution, risk-based selection,
and test suite minimization.

Recent advances in Large Language Models (LLMs), such as GPT-
4[1], LLaMA 2[15], and Gemma[14], have demonstrated remarkable
capabilities in classification, reasoning, and text generation tasks
[5, 18]. These models not only offer strong predictive power but
may also generate natural language justifications that explain the
reasoning behind their decisions, making them promising candi-
dates for applications requiring interpretability [21], [8].

Despite the enthusiasm surrounding the use of LLMs in complex
tasks, few studies have addressed test case complexity classification
with a simultaneous focus on classification quality and explainabil-
ity. This reveals an important gap in the literature, especially in
high-stakes domains like software engineering, where understand-
ing the rationale behind predictions is as crucial as the predictions
themselves [8], [13]. Research in Explainable AI (XAI) emphasizes
that intelligent systems should not only predict but also justify their
outputs, allowing users to audit and trust automated decisions [8].

In this work, we propose a novel approach for test case com-
plexity classification that leverages the predictive and generative
capabilities of LLMs. Specifically, we are interested in the execution
complexity of black box test cases, i.e., the effort, resources and level
of knowledge that a Quality Assurance specialist would spend to
perform the test case. We introduce a three-stage pipeline that inte-
grates LLMs in a structured manner to enhance both classification
accuracy and decision transparency. Unlike traditional methods
that treat justifications as optional by-products, our method makes
explanations central to the decision-making process. The research
is guided by the following question: Can justifications generated
by LLMs measurably and reliably improve test case complexity
classification?

We formulate the task as a conditional generation problem,
where the input (a test case along with structured instructions)
leads to the generation of a list of features that may impact com-
plexity, followed by the generation of a justification of why and how
those features would impact it, followed by a classification into low,
medium, or high complexity and a summary of the rationale for the
classification. Structured prompts guide the LLM through the in-
terpretation, reasoning, and decision phases, ensuring consistency
between the rationale and the final prediction [18], [7].

SBES’25, September 22-26, 2025, Recife, PE

We evaluated our pipeline on a real dataset of black box software
test cases and compared its performance with direct LLM classi-
fication without justifications. Results show measurable gains in
classification accuracy, with clear and coherent justifications.

Our main contributions can be summarized as follows: (1) Pro-
posal of an explainable pipeline: a hierarchical framework that
integrates LLMs into the task of complexity classification, placing
natural language justifications at the core of the decision-making
process. (2) Balance between accuracy and interpretability:
empirical evidence that LLM-generated justifications can improve
prediction quality while supporting user understanding. (3) Struc-
tured prompting strategy: a conditional generation process that
aligns reasoning and classification by guiding the model through
sequential reasoning steps.

2 Related Work

Text classification is a well-known task in natural language pro-
cessing research [16]. Recently, many works have depployed LLMs
successfully to enhance this task, with and without fine tuning
Regarding approaches which use fine-tuning methods, Zhang et
al[21] proposed a framework which explores the use of LLMs in
the context of text classification. This framework was built in two
stages: first, an ensemble of base learners, each trained using mis-
classified documents of the previous learner, aiming to enhance
the results of the next learner; the second stage, called recurrent
learners, incorporates the percentage error of the previous learner
and misclassified class in the prompt of the current learner. All this
process may suffer from overfitting due to oversampling the same
data to learners, but the authors made experiments showing that
there was no overfitting. Another work that made use of oversam-
pling as an approach to text classification is [4] that investigates
the performance of the LLM by resampling techniques.

Some approaches try to avoid oversampling data or do not make
use of it. In Wang et al [17] the authors proposed a framework
that aggregates data from different sources, inserting it in a huge
pipeline. The authors do not train or fine-tune the LLM, instead
using a few-shot strategy to classify and a human expert in the
pipeline to change the prompt to improve results. Wu et al[20]
present the use of an LLM to extract the embeddings and train a
classifier through classic machine learning techniques. A classifica-
tion self-regularization framework was proposed by [19] to extract
and constrain unintended features in LLM latent space. To identify
the unintended features in latent space, the authors made use of
the LLMs own features explanations.

Some approaches deal with low data availability and oversam-
pling by using data augmentation techniques. Moller et al [12]
investigates the improvement of LLM performance in text classifi-
cation through data augmentation to classify complex tasks with
few available data.

In our work, due to the gap of data availability, in section 4.1
we provide more details about our dataset. To avoid data over-
sampling, which results may lead to overfitting, we made use of
data augmentation. The data augmentation was realized through
LLMs to generate syntethic training examples. Furthermore, to im-
prove our dataset, we made the explainability strategy [22] present
throughout our architecture.

Custddio et al.

3 Proposed Method

In this section, we describe the test case complexity classification
Task and our proposed architecture.

3.1 Complexity

Carrying out test case complexity classification is important in the
process of prioritization and assigning of Quality Assurance (QA)
specialists to perform the test case, based on their experience and
knowledge of the tested software.

The complexity in our context describes the effort a specialist
may spend to execute a Test Case. This effort can be viewed as the
time spent to complete some of the steps present in the Test Case,
the knowledge required by the specialist, and/or the autonomy in
decision making.

In our tested scenario, as is common in the literature, Test Case
Complexity is divided into 3 levels, Low, Medium, or High. To do
so, in this work, we consider four aspects regarding the test case:
Ambiguity, Domain Expertise, Logical Paths, and Problem-Solving.

The Ambiguity [9] regards how clear and accurate the instruc-
tions are in the Test Case. More ambiguity requires implicit knowl-
edge from the QA analyst if the instructions are vague and not
precise, which can make the execution of the Test Case lead more
to interpretations than just following instructions. Domain Ex-
pertise [9] is the knowledge of the product and the business rules
necessary to execute the Test Case. In this category, the require-
ments of the QA analyst correspond to how familiar and specialized
they are with the complex domains of the Test Case. Logical Paths
is related to programming logic applied to graphs. This category
requires, from the QA analyst, programming logic to perform the
control of the flow graph, logic for multi-conditional statements,
and critical sense for analysis and to prevent mistakes and errors
in the flow graph. Problem Solving [9] is related to the QA ana-
lyst’s autonomy to treat unexpected behaviors when performing a
Test Case. It requires debugging, solving complex issues, and deep
analysis to prevent similar future errors. The table 1 shows the
complexity requirements for each category in our context.

However, an important rule in the classification of the Test Case
complexity is that we always consider first the highest category
present to classify the complexity, that is, if we have one category
classified as High, the complexity of the whole test case is High,
even if the other 3 categories are Medium or Low. Similarly, if the
highest category is Medium, it will be regarded as Medium even if
it is Low in all categories.

3.2 3-level LLM-Based Complexity
Classification

We propose an architecture to enhance the use of LLM models to
classify the Test Case complexity. In our architecture, illustrated
in Figure 1 the LLM model performs 3 different functions and is
divided into 3 levels. In the Features Extractor Level, the LLM needs
to learn how to extract the main features of the Test Case that
might impact complexity, based on fine tuning using an annotated
Test Case dataset. In the next Level, Justification Level, the LLM
generates the justification regarding how the features extracted
in the previous level might impact the Test Case Complexity. And
finally, the LLM model in Classifier Level is responsible for learning

Using Large Language Models to Classify Test Case Complexity with Explainability

SBES’25, September 22-26, 2025, Recife, PE

l Complexity [Ambiguity Domain Expertise

[Logical Paths Problem Solving

High and requires implicit | complex business logic.
knowledge.

Instructions are vague | Specialized knowledge and

Programming logic to perform | Solve and debugging complex
graph control, multi-conditional | issues and analysis to prevent
statements and analyze any path | errors in the future.

that is not explicit defined.

Instructions are clear and | Familiarity with specific sys-

Programming logic to perform | Solve and debugging minor is-

tem knowledge.

Medium require some interpreta- | tem modules and basic to mod- | graph control, simple multi- | sues. May handle analysis.
tion. erate business logic. conditional statements.
Instructions are precise | Common knowledge domain | Programming to handle simple con- | No debugging.
Low without interpretation. without any specialized sys- | ditional statements.

Table 1: Complexity Categories and the criterias for high, medium and low labels for each category.

and classifying the complexity of a Test Case and issuing a summary
of the reasons behind such classification.

The LLM performs a different role for each Level resulting in
the complexity classification. To perform this final task, we con-
structed different Prompts for each Level in our architecture. The
construction of our prompts are divided into three steps: System
Prompt, User Prompt, Input.

The System Prompt, see Table 2, explains the role that the LLM
should take for the specific level and how it behaves itself in broad
terms. The User prompt, in the Table 3, describes the task at hand
at that specific level, including restrictions and output format, and
the Input is the test case to be classified along with information
extracted from the previous levels.

3.3 Feature Extractor Level

The Feature Extractor Level was designed to generate the features
of the Test Case. The features is a list with the main features that
classify the Test Case complexity. These main features were anno-
tated by specialists with the necessary knowledge to classify the
complexity, given an arbitrary Test Case, and the understanding of
what makes a Test Case more complex than others.

In our studies and experiments, we concluded that the main
features increase the LLM model quality. However, this is other
information that our LLM model must learn to generate because,
thinking on test or production data, this information will not be
provided. As we can see in Figure 1, in the Features Extractor Level
the provided dataset has 4 fields: Summary, Steps, Initial Setup and
Expected Results, see section 4.1 for more details of each field.

Therefore, in the Features Extractor Level of our architecture, we
realize a fine-tuning of our LLM model. To perform the fine-tuning,
we made use of the Quantized Low-Rank Adaptation (QLoRA)
technique, which uses adapters on training. It is important to note
that these adapters will be our "new weights", in other words, we
do not change the original LLM model parameters in any Level of
our architecture. In the end of the Features Extractor Level, our
model generates the features, which enhances our raw dataset to
New Dataset - 1. The Table 3 shows the prompt used to guide our
LLM model to generate the features of a Test Case.

3.4 Prompt Construction Justification Level

At the Justification Level, the LLM model generates the Test Case
justification, which synthesizes the Test Case itself. The main dif-
ference between the human-extracted features (from the Feature

Extractor) and the justifications is that the former are created by
human specialists, while the latter are generated by the LLM.

We consider the justifications generated by the LLM as "Al-
features”, meaning they represent the main features of the Test
Case from the LLM’s perspective at this Justification Level.

Initially, the idea was for the LLM to synthesize the entire Test
Case. However, after experiments and analyzing the results, we
concluded that the Test Case justification, synthesized by the LLM,
improved the results when used in conjunction with the complete
Test Case data as input.

The System Prompt also assigns a role to the LLM, as in the
Feature Extraction Level. The User Prompt instructs the LLM to
output a list of features, with a maximum of 5 words per feature.
This limit was set to prevent LLM hallucination and repetitive
outputs, ensuring a concise and diverse set of features.

The diversity of the justification set is crucial for extracting
non-similar justifications for the same Test Case, assigning unique
justifications that can be used to classify Test Case complexity. In
other words, Test Cases with similar justifications can be considered
to have the same or very similar complexity.

3.5 Prompt Construction Classifier Level

The Classifier Level was designed to classify the Test Case com-
plexity. In this Level, all data produced in previous Levels is used
as input to our LLM model to realize the fine-tuning process.

The fine-tuning process in this Level is similar to that realized on
the Feature Extraction Level. The training on this Level was done
without any other trained weights generated on previous Levels,
in other words, the fine-tuning made in Classifier Level used the
same LLM model but without the weights generated in the Feature
Extraction Level. This process was realized due to the fact that
all Test Case information must be lent by the dataset and learned
by our LLM model in each Level. Therefore, the last Level of our
method was created to focus the learning on classifying the Test
Case complexity.

4 Experiments

In this section, the experiments were conducted to evaluate the
proposed method. It is important to add that our dataset is private
and has sensitive data, and thus some of the details might be om-
mited due to compliance. Due to the same reason, the LLMs used
were run locally, to avoid uploading confidential information to
cloud-based servers due to compliance.

SBES’25, September 22-26, 2025, Recife, PE

Generate
Input

Input

Custddio et al.

Generate

Input

Generate

TC - Dataset New Dataset - 1

Feature Extractor Level

New Dataset - 2

Justification Level Classifier Level

Figure 1: The LLM pipeline of our proposed method, containing 3 levels: Feature Extractor, Justification and Classifier.

[Feature Extractor Level and Justification Level

[Classifier Level]

You are an expert in evaluating the Test Case’s complexity which is used to test Android systems.
You know the step-by-step process of all test cases and the logical flow of each one. You know all
the features to measure the complexity of the Test Case. You are also very familiar with test cases,
due to your extensive experience and knowledge in evaluating the difficulty of test cases precisely.

You are an expert in evaluate the Test Case’s complexity which is used to test Android systems. You
know the step-by-step process of all test cases and the logical flow of each one. You are also very
familiar with test cases, due to your extensive experience and knowledge in evaluating the difficult
of a test cases precisely. The difficult/complexity of a Test Case can be: High, Medium or Low.

Table 2: System Prompt for each Level from our architecture

Feature Extractor Level

Prompt Construction Justification Level

Prompt Construction Classifier Level l

Extract the main features of the Test Case.

To extract the features of the Test Case, you must
strictly follow the following format:

Main Features:

1. <Feature 1 be succinct>

2. <Feature 2 be succinct>

IMPORTANT:

The features describes the main components of
the Test Case.

Pay attention on context.

Describe the features of the Test Case.

Input: Test Case Data.

To extract the features of a test case, you must strictly follow the following
format:

Features:

1. <Feature 1 be succinct, maximum of 5 words.>

2. <Feature 2 be succinct, maximum of 5 words.>

IMPORTANT:

Use only the provided format.

Keep your answers concise and brief.

Pay attention on context.

Each Feature must have a maximum of 5 words.
Extract the Features of the Test Case.

Input: New Dataset - 1

Classify the difficult of the respect test case with only one word (Low,
Medium or High).

To classify the complexity of a test case, you must strictly follow the
following format:

<The Complexity must be High, Medium or Low>

IMPORTANT:

The difficult describes how much effort is necessary to realize a test case.
The difficult can be considered as Low, Medium and High.

Always consider the highest feature to classify the test case.

The order of the higher difficult to lower is: High, Medium and Low.

Pay attention on context.

Classify the difficult of the Test Case.

Input: New Dataset - 2

Table 3: User Prompt for each Level from our architecture

4.1 Dataset

Our data set consists of 354 test cases. Each Test Case has six
columns: (1) Summary: is a brief Test Case description; (2) Initial
Setup: contains all initial configurations to realize the test; (3) Steps:
describes each step to perform the test; (4) Expected Results: the
results that are expected after performing the test; (5) Features: is
a list of features that justify the labeled complexity. This list was
created by a team of specialists with the knowledge to classify the
Test Case complexity; (6) Complexity: describes how much effort
a specialist will apply to perform the test.

All experiments were performed with these data; in other words,
no additional external data was used to train and/or generate new
data samples, except for the data that our own model produced.
Both for fine-tuning and generation Levels, our data was split into
283 TCs to train and 71 TCs to test.

4.2 Features Generation

In the Feature Extractor Level, we focused on the fine-tuning of
our LLM to learn the features of the Test Case. These features were

provided by a team of Android Test Case specialists. As explained
before, in this Level we augmented our dataset from 283 TCs to
5287 TCs. The Large Language Model used in the Feature Extractor
Level was Llama 3.1 8 billion parameters [2].To perform data aug-
mentation, we used of the same LLM model, Llama 3.1, to generate
new examples based on the original training examples.

To perform the fine-tuning, we used the efficient fine-tuning
method Quantized Low-Rank Adapters [6], QLoRA, which provides
the training of adapters without updating the LLM original weights.
Furthermore, the QLoRA reduces the usage of GPU, which enables
the fine-tuning of bigger models with the same resources. In this
work, we focused on local LLM finetuning due to the confidential
nature of the test cases and their complexity labels.

The data used to perform the fine-tuning in this Level is the
original dataset, TC - Dataset, section 4.1 for more details.

The features generated in the Features Extractor Level will be
used to enhance our dataset, New Dataset - 1 with the features
extracted from the LLM. With this new information available, we

Using Large Language Models to Classify Test Case Complexity with Explainability

expect the LLM model to use it as main features in the following
Levels, Justification and the Classifier.

4.3 Justification Generation

The Justification Level, we made the LLM generate the justification
of the features that it considers more important in the Test Case.
In the previous Level, Feature Extractor Level, the LLM learns
the Test Case’s main features from the view of the specialists. As
mentioned earlier, these main features synthesize the Test Case
complexity, however, in our experiments, we discovered that the
features generated by the LLM, the justifications, from its own point
of view, improve further the final results.

To perform Justification Generation, we made use of the Zero-
shot strategy [10]. The Large Language Model used to generate the
justifications is the same as the previous Level, Llama 3.1 8 billion
parameters. An important detail is that the Llama model used in
the Justification Level does not use the weights or adapters trained
in the Feature Extractor Level, the previous Level.

The LLM receives the original augmented dataset plus the fea-
tures, the New Dataset - 1, to then artificially generate the Test
Case justification. This process was realized because we want the
LLM to extract the important features on its own. The justifications
were extracted from the augmented dataset, with the main features
generated at the Feature Extractor Level, resulting in our new en-
hanced dataset, New Dataset - 2. This new dataset will be used by
our Complexity Level to classify the Test Case.

4.4 Classification Level

Now, in the last Level, the Classifier Level, we made a fine-tuning
of our LLM model to learn the Test Case Complexity. The Large
Language Model used in this Level is the same as the previous
Levels, Llama 3.1 8 billion parameters and the fine-tuning training
was realized through QLoRA. To fulfill this task, we used all the data
generated before, New Dataset - 2, to perform the fine-tuning. The
complexity that our LLM model must learn can be High, Medium or
Low, for more details see section 3.1. An important detail in the fine-
tuning process in this Level, is that no trained weights or previous
adapters were used, in other words, new adapters were trained
from scratch in the Classifier Level. Therefore, all the information
learned from the previous Levels is shared just by the data.

4.5 Results

To evaluate our method, we utilized traditional classification met-
rics: precision, recall, f1-score, and accuracy. We also present Con-
fusion Matrices to show the its performance across each class.

An analysis of the confusion matrix (2) reveals two key findings:
(1) the LLM is highly effective at differentiating between High and
Low complexity classes, and (2) the Medium class (as anticipated)
presents the greatest challenge for the model, which often misclas-
sifies High or Low complexity test cases as Medium. Interestingly,
when the true complexity was Medium, the LLM achieved strong
performance (21 out of 24).

The results in Table 4 provide further details on the LLM’s perfor-
mance in classifying Test Case complexity. While the High and Low
classes exhibited high precision (83% and 85% respectively), demon-
strating the LLM’s capability to differentiate them from the Medium
class (62%), the misclassifications of Medium class instances as High

SBES’25, September 22-26, 2025, Recife, PE

(8) and Low (5), reflected in the recalls (69% and 61% respectively),
highlight the model’s difficulty in distinguishing the Medium class
from the others, even with its highest recall (88%). Nevertheless, the
similar f1-scores across all classes indicate the LLM’s consistency.

True label

High Medium Low
Predicted label

Figure 2: Confusion Matrix for the classification of Test Case
Complexity by our proposed method.

Class Precision | Recall | F1-Score

High 83% 69% 75%
Medium 62% 88% 72%

Low 85% 61% 71%

Table 4: Classification Results of our proposed model in clas-
sifying the Test Case complexity.

>
n

o] o

Q Q Q

8 o 8

Q [[

z 2 2
Yes No Yes No Yes No
Predicted label Predicted label Predicted label

(a) High Classifier (b) Medium Classi- (c) Low Classifier

fier

Figure 3: Confusion matrices for the high, medium, and low
complexity classifiers.

We believe the Medium complexity was not well-defined by the
dataset, potentially leading to numerous misclassifications from
other classes. The main features, as labeled by specialists, may
not adequately describe or delineate the complexities to effectively
differentiate the Medium class from the High and Low classes.

To address the challenges in classifying complex Test Cases,
we conducted an experiment: we trained three LLM models using
QLoRA for binary classification (yes/no for each complexity class).
Figure 3 illustrates the results, revealing the LLM’s difficulty in
performing a single-task complexity classification. As observed,
employing three classifiers led to higher precision for High and Low
classes, but lower precision for the Medium class. This approach
could be an interesting alternative for use cases where identifying
edge cases is paramount.

Finally, Table 5 demonstrates how the different levels of our pro-
posed method impact the final classification results. It’s evident that

SBES’25, September 22-26, 2025, Recife, PE

Custddio et al.

Experiments Precision ‘ Recall [F1-Score | Accuracy Dataset Fine-Tuning
Classifier Only 13% 30% 18% 37% TC - Dataset No
Classifier Only 79% 53% 48% 56% TC - Dataset Yes
Feature Extractor + Classifier 24% 32% 22% 38% New Dataset - 1 No
Feature Extractor + Classifier 70% 60% 61% 63% New Dataset - 1 Yes
Feature Extractor + Justification + Classifier 29% 37% 29% 44% New Dataset - 2 No
Feature Extractor + Justification + Classifier 77% 73% 73% 73% New Dataset - 2 Yes

Table 5: Ablation of the Proposed Method, regarding both LLMs with and without fine-tuning.

System Prompt [User Prompt

Explanation l

You are an expert in evaluat-
ing Test Case’s complexity to
test Android systems. You know
the step-by-step process of all
test cases and the logical flow
of each one. You are also very
familiar with test cases, due to
your extensive experience and
knowledge in evaluating the dif-
ficult of a test cases precisely.
The difficult/complexity of a
Test Case can be: High, Medium
or Low.

<Explanation: explain your answer>
IMPORTANT:

Pay attention on context.
Classify the difficult of the Test Case.

Input: New Dataset - 2

Classify the difficult of the respect test case with only one word (Low, Medium or High). To classify the
complexity of a test case, you must strictly follow the following format:
<The Complexity must be High, Medium or Low>

The difficult describes how much effort is necessary to realize a test case.

The difficult can be considered as Low, Medium and High.

Always consider the highest feature to classify the test case.

The order of the higher difficult to lower is: High, Medium and Low.

Use the field Main Features as main information to classify the complexity.

After this field you consider Features, Summary, Steps, Initial Setup, Expected Results in this order.

Explain the reason you classify the complexity of the Test Case.

The test case involves basic
Enable/Disable functionality
of SIM Card, user interface
verification, ~which doesn’t
require any complex actions
or conditions. It’s a simple
verification of SIM Card status
change.

Complexity: Low

Table 6: Explainability Example

fine-tuning the LLMs with QLoRA significantly affects the classifica-
tion outcomes, with fine-tuned versions consistently outperforming
their original counterparts. Furthermore, while incorporating the
feature extractor level enhanced recall, it concurrently reduced
precision. Lastly, the inclusion of the justification level resulted in
a notable increase across all metrics, strongly indicating that the
more processed justification indeed led to improved comprehension
at the classification level.

4.6 Explainability

Our method generates two levels of explainability. In the Justifica-
tion Level, the explainability is presented with the features gener-
ated by the LLM. In section 3.4, we describe the prompt and how
the LLM will generate this information. This way, the LLM itself
evaluates the importance of each feature and basically summarizes
and explains the Test Case regarding its complexity. Evaluating
these features, explanations, generated by the LLM, we can see the
improvement of the model performance shown in Table 5.

In the Classifier Level, our method generates the explanation
and the Test Case complexity at the same level. In Table 6, we can
see an example of how the explanation works. The LLM model
explains the reason for the complexity in a simple way, before the
complexity. Therefore, both the LLM can use this explanation in
its reasoning and human, more importantly, the explanation gives
insights to QA analysts when analyzing the model results.

5 Conclusion

In this work, we proposed a method that uses data augmentation
and explainability to improve Test Case Complexity classification.
The results show that our method improves not only the precision

of the model, but also how the explainability generated in Justifi-
cation Level improves the answer of the model. Furthermore, the
justification assists in the understanding of the misclassifications
by the specialist and by the own LLM.

However, our results showed that, while differentiating High
complexity from Low yielded good results, the Medium class is still
the hardest to classify. In future work, we intend to perform a more
in-depth analysis regarding how to better differentiate Medium
complexity Test Cases, including interviews with QA analysts to
better understand these differences.

ARTIFACT AVAILABILITY

In compliance with confidentiality policies and signed data pro-
tection agreements, the datasets utilized in this study cannot be
publicly disclosed. These datasets contain sensitive information and
internal processes, including mobile device validation flows, file
naming conventions, and proprietary technical commands. Access
to these datasets has been strictly limited to internal research and
solution development purposes, in accordance with the terms set
forth in confidentiality agreements (NDAs).

ACKNOWLEDGMENTS

This work was supported by the following Brazilian agencies: the
Coordenacdo de Aperfeicoamento de Pessoal de Nivel Superior-
Brasil (CAPES-PROEX)- Finance Code 001, the National Council
for Scientific and Technological Development (CNPq), and Ama-
zonas State Research Support Foundation- FAPEAM- through the
POSGRAD project 2024/2025, and by Motorola Mobility Comércio
de Produtos Eletronicos Ltda, under the terms of Federal Law No.
8.387/1991, through agreement No. 02/2021 with ICOMP/UFAM.

Using Large Language Models to Classify Test Case Complexity with Explainability SBES’25, September 22-26, 2025, Recife, PE

REFERENCES [11

Dragan Milicev. 2007. On the Semantics of Associations and Association Ends in

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Floren- UML. IEEE Transactions on Software Engineering 33, 4 (2007), 238-251. doi:10.
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal 1109/ TSE"2007'3?))
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774 [12] Anders Giovanni Meller, Jacob Aarup Dalsgaard, Arianna Pera, and Luca Maria
(2023). Aiello. 2023. The parrot dilemma: Human-labeled vs. LLM-augmented data in

[2] Al@Meta. 2024. The Llama 3 Herd of Models. arXiv:2407.21783 [cs.Al] https: Class1ﬁcat19n t‘?\sk's. arXiv preprtint arXiv:2304.13861 (202'3) .
//arxiv.org/abs/2407.21783 [13] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I

[3] Antonia Bertolino. 2007. Software Testing Research: Achievements, Challenges, Trust You?": Explaining the F’redlctlons of Any Classifier. In P roceedings of the
Dreams. In Future of Software Engineering (FOSE "07). 85-103. d0i:10.1109/FOSE. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
2007.25 Mining (San Francisco, California, USA) (KDD ’16). Association for Computing

[4] Nicolas Antonio Cloutier and Nathalie Japkowicz. 2023. Fine-tuned generative Machinery, New York, NY, USA, 1135-1144. doi:10.1145/2939672.2939778

LLM oversampling can improve performance over traditional techniques on [14] Gemma Tefam. 2025. Gemma 3 Technical Report. arXiv:2503.19786 [cs.CL]
multiclass imbalanced text classification. In 2023 IEEE International conference on hitps://arxiv.org/ abs/ 2503‘1‘9786 . . .
big data (BigData). IEEE, 5181-5186. [15] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-

[5] Naihao Deng, Yikai Liu, Mingye Chen, Winston Wu, Siyang Liu, Yulong Chen, Yue mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-

Zhang, and Rada Mihalcea. 2023. EASE: An Easily-Customized Annotation Sys- ale, et. al 20?3' Llama 2: Open foundation and fine-tuned chat models. arXiv

tem Powered by Efficiency Enhancement Mechanisms. arXiv:2305.14169 [cs.HC] preprint arX%v:Z30Z09288 (20,23)' . . o

https://arxiv.org/abs/2305.14169 [16] Sowmya Vajjala and Shwetali Shimangaud. 2025. Text Classification in the LLM
[6] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. Erg-Where do we stand? arXiv prep rmlt aerv:2502.11830 (2025).

QLoRA: Efficient Finetuning of Quantized LLMs. arXiv:2305.14314 [cs.LG] https: (17] Zhigiang Wang, Yiran Pang, and Yanbin Lin. 2024. Smart Expert System: Large

J/arxiv.org/abs/2305.14314 Language Models as Text Classifiers. arXiv e-prints (2024), arXiv-2405.

[18] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc
Le, and Denny Zhou. 2022. Chain of Thought Prompting Elicits Reasoning in
Large Language Models. CoRR abs/2201.11903 (2022). arXiv:2201.11903 https:

=L

Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-Wei Chang, Dipanjan
Das, and William Cohen. 2019. Handling Divergent Reference Texts when
Evaluating Table-to-Text Generation. In Proceedings of the 57th Annual Meeting :
of the Association for Computational Linguistics, Anna Korhonen, David Traum, //arxiv.org/abs/2201.11903)

and Lluis Marquez (Eds.). Association for Computational Linguistics, Florence, (19] Xuans}{eng Wu, 'Wenhao Yu, Xiaoming Zhal’ and Ninghao Liu. 2025. Self-
Ttaly, 4884-4895. doi:10.18653/v1/P19-1483 r?gulgrlzatlon'W1th lgtent space explanations for controllable llm-based clas-
Finale Doshi-Velez and Been Kim. 2017. Towards A Rigorous Science of Inter- sification. arXiv preprint arXiv:2502.14133 (2025).

pretable Machine Learning. arXiv:1702.08608 [stat.ML] https://arxiv.org/abs/ [20] Yuhang Wu, Yingfei Wang, Chu Wang, Aand Zeyu Zheng: 2024. Large Language
1702.08608 Model Enhanced Machine Learning Estimators for Classification. arXiv preprint

arXiv:2405.05445 (2024).

Yazhou Zhang, Mengyao Wang, Chenyu Ren, Qiuchi Li, Prayag Tiwari, Benyou
Wang, and Jing Qin. 2024. Pushing The Limit of LLM Capacity for Text Classifi-
cation. arXiv:2402.07470 [cs.CL] https://arxiv.org/abs/2402.07470

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and (22 Haiyfm' Zhao, Hanjie Ch'en', Fan Yang, Ninghao Liu, Huigi]?eng, 'Hengyi Cai,
Yusuke Iwasawa. 2023. Large Language Models are Zero-Shot Reasoners. Shuaigiang Wang, Dawei Yin, ar}d Mengnan Du. 2023. Explamablllty for Large
arXiv:2205.11916 [cs.CL] https://arxiv.org/abs/2205.11916 ﬁgggage Models: A Survey. arXiv:2309.01029 [cs.CL] https://arxiv.org/abs/2309.

o
&

=

Evgenia Gkintoni, Hera Antonopoulou, Andrew Sortwell, and Constantinos
Halkiopoulos. 2025. Challenging Cognitive Load Theory: The Role of Educational (21
Neuroscience and Artificial Intelligence in Redefining Learning Efficacy. Brain

Sciences 15, 2 (2025), 203.

[10

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1109/FOSE.2007.25
https://doi.org/10.1109/FOSE.2007.25
https://arxiv.org/abs/2305.14169
https://arxiv.org/abs/2305.14169
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://doi.org/10.18653/v1/P19-1483
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://doi.org/10.1109/TSE.2007.37
https://doi.org/10.1109/TSE.2007.37
https://doi.org/10.1145/2939672.2939778
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2402.07470
https://arxiv.org/abs/2402.07470
https://arxiv.org/abs/2309.01029
https://arxiv.org/abs/2309.01029
https://arxiv.org/abs/2309.01029

	ABSTRACT
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Complexity
	3.2 3-level LLM-Based Complexity Classification
	3.3 Feature Extractor Level
	3.4 Prompt Construction Justification Level
	3.5 Prompt Construction Classifier Level

	4 Experiments
	4.1 Dataset
	4.2 Features Generation
	4.3 Justification Generation
	4.4 Classification Level
	4.5 Results
	4.6 Explainability

	5 Conclusion
	REFERENCES

